SlideShare uma empresa Scribd logo
1 de 62
1
 All human activities currently generate about 37 Gt of CO2 emissions.
At the current rate of increase in atmospheric CO2 concentration, the average
global temperature will increase some 6 °C up to end of century.
Several methods for mitigation of CO2 has been developed like conversion of
CO2 to chemicals such as carbonates polycarbonates polyols etc but all the
procedures are energy intensive and require heat as source of activation energy.
Sunlight is inexhaustible source of energy.
If we can capture 10% of the solar energy falling on 0.3% of the land surface it
will be suffice for meeting our energy demand in 2050.
Photocatalytic conversion of carbon dioxide into valuable products can provide
energy in a sustainable way with leveling off the concentration of CO2 in our
environment. 2
Chapter 1: photoreduCtion of Co2 to fuel
and ChemiCals: an overview
3
CO2
+ 2H+
+ 2e-
→ CO + H2
O E0
= -0.53 V …………….(1)
CO2
+ 2H+
+ 2e-
→ HCOOH E0
= -0.61 V …………….(2)
CO2
+ 4H+
+ 4e-
→ HCHO + H2
O E0
= -0.48 V……………..(3)
CO2
+ 6H+
+ 6e-
→ CH3
OH + H2
O E0
= -0.38 V……………..(4)
CO2
+ 8H+
+ 8e-
→ CH4
+ 2H2
O E0
= -0.24 V……………..(5)
CO2
+ e-
→ CO2
-o
E0
= -1.90 V……………..(6)
Why CO2 photoreduction is difficult ?
The reduction of CO2 to CO2
.-
by one electron is unfavorable because reduction potential is
high due to bent structure of CO2
.-
Rapid reduction require overpotential of up to -0.6 V .
Potentials for the reduction of CO2 to various products and potentials for the oxidation of H2O to various products (at pH 7 in
aqueous solution versus NHE, 25 o
C, 1 atmosphere gas pressure, and 1 M for the other solutes)
Chem. Soc. Rev., 2009, 38, 89–99
Basic requirements for CO2 photo-reduction process
4
Mechanism and pathways for photocatalytic oxidation
and reduction processes on the surface of heterogeneous
photocatalyst.
Chem. Rev. 1995, 95, 735 – 758
Semiconductor materials as heterogeneous photocatalyst:
 Semiconductor materials like TiO2, ZnO, CdS, etc have been extensively used as photocatalysts
for CO2 reduction.
 Among them, TiO2 owing to its low cost, nontoxicity and suitable band position has been widely
studied.
 Other nanostructured materials like Zn2GeO4, SrNb2O6, npg-C3N4 etc can also be used for the
reduction of CO2
5Schematics of electron and hole capture by
metal doped semiconductor Catalysts 2013, 3(1), 189-218
Doping can improve photocatalytic performance
N doping can shift position of valance band upward
Band gap and band edge position of some semiconductors
Energy Conversion and Management 76 (2013) 194–
214
• Due to large band gap
most of semiconductors
works in UV light
• UV is only 5% in solar
spectrum
• Electron hole pair
recombination rate is
higher so conversion
efficiency is very low
But the main challenges are:
Less robust!
Non-recoverable.
Requires tertiary amines as sacrificial donor.6
Homogeneous metal complexes as photocatalyst
 Transition metal complexes may provide
alternative pathway by forming metal CO2
hybrid bond.
 Macrocyclic metal complexes like :
phthalocyanines, ruthenium bipyridyl, rhenium
and iridium complexes are more attractive due
to their wide spectrum of absorption.
By changing ligands, catalyst can also be
tuned for desired product like methanol.
Inorg. Chem., 2012, 51, 890−899
7
Advantages:
Make the catalyst recoverable and recyclable
Visible light active.
 Show increased efficiency if anchored to photoactive supports.
 More robust.
Can be tuned for desired products.
 No need of sacrificial donor.
Immobilization of homogeneous photocatalysts or photosensitizers to
various photoactive supports.
How immobilized system works ?
 After absorbing visible light homogeneous catalyst
transfer electrons to conduction band of active
supporting materials.
 These electrons in conduction band is used for
reduction of CO2.
 Due to continuous pumping of electrons the electron
hole recombination rate get decreased
Mechanism of sensitization of semiconductors
with metal complexes for reduction of CO2
8
Part A: Cobalt phthalocyanine immobilized on graphene oxide: an efficient visible
active catalyst for the photoreduction of carbon dioxide
Chapter 2: Phthalocyanine-semiconductor hybrids for photoreduction of CO2
Chem. Eur. J. 2014, 20, 6154-61611
GO GO-COOH
GO-COCl
GO-CoPc
1. Synthesis of GO-CoPc photocatalyst.
9
TEM image of a) GO, b) GO-CoPc, c) GO-COOH and
d) SAED pattern of GO-CoPc
XRD of a) GO and b) GO-CoPc.
FT-IR of a) CoPc, b) GO and c) GO-CoPc
Chem. Eur. J. 2014, 20, 6154-61611
UV/Vis spectra of a) CoPc; b) GO; and c) GO-CoPc.
(001)
(002)
S band Q band
10
N1s XPS of a) CoPc and b) GO-CoPc
TGA pattern of; a) GO; b) GO-CoPc
Chem. Eur. J. 2014, 20, 6154-61611
Step 1: Borosil vessel charged with water and triethylamine (45 mL/5 mL)
Step 2: Purged with N2 than saturated with CO2
Step 3: Added 100 mg catalyst and irradiated with 20 W white cold LED
light λ >400 nm. Intensity on vessel- 85 W/m2
Step 4: Sample withdrawn after fixed intervals and analyzed with GC-FID
and HPLC.
Step 5: Blank experiments were carried out to confirm that the product
was originated from the CO2 reduction
Photocatalytic CO2 reduction experiment
398.95 - C– N
400.43 – NH2
401.58 - C=N
400.69 – NH
11
Table: Photoreduction of carbon dioxide to methanol
Chem. Eur. J. 2014, 20, 6154-61611
Calibration curve for quantitative determination of
methanol Methanol conversion rate for a) GO, b) GO:Co-
Pc (1:1) and c) GO-CoPc
Recycling Experiment
Cobalt content
Fresh catalyst- 1.13 wt%
After one recycling – 1.05 wt%
Methanol- 3781.8881
μmol g-1
cat
Gaseous analysis-
99.17% CO2
0.82% CO
Varian CP-3800, having
30 m long Stabilwax®
w/Integra-Guard® column) at
flow rate 0.5 mL min−1
, injector
temp., 250 °C, and FID detector
temp., 275 °C
12
Possible Mechanistic Pathway of CO2
reduction
Chem. Eur. J. 2014, 20, 6154-61611
CoPc + Visible light = CoPc*
(excited Singlet state)
CoPc*
= CoPc+
+ e-
GO (electron transfer in CB)
CoPc+
+ TEA = CoPc + TEA o+
e-
GO (electron in CB) + CO2
+ H+ = CH3
OH
13
Part B: Heterostructured nanocomposite tin phthalocyanine@mesoporous
ceria (SnPc@CeO2) for photoreduction of CO2 in visible light
Synthesis of SnPc@CeO2
catalyst
RSC Adv., 2015, 5, 42414-42421
14
SEM images of a) uncalcined CeO2
b) meso-CeO2
and c) SnPc@CeO2
and EDX pattern of d)
uncalcined CeO2
e) meso-CeO2
and f) SnPc@CeO2
TEM images of a) meso-CeO2
b) SnPc@CeO2
and c)
SAED pattern of SnPc@CeO2
UV/Vis absorption spectra of a) SnPcCl2
b) meso-CeO2
c) SnPc@CeO2RSC Adv., 2015, 5, 42414-42421
O-2p to Ce-4f transition
Broad Q band-
aggregated form
Sharp Q band-
monomeric form
5–10 nm
15
FT-IR Spectra of a) SnPcCl2
b) meso-CeO2
c) SnPc@CeO2
XRD diffraction Pattern of a) meso-CeO2
b) SnPc@CeO2
N2
adsorption desorption isotherm and pore size distribution of (a) meso-CeO2
and
(b) SnPc@CeO2RSC Adv., 2015, 5, 42414-42421
fcc cubic space
group Fm3m (225)
structure
JCPDS card no.
34-0394
SBET-75.92 m2
g-1 SBET-
20.52 m2
g-1
16
DT-TGA thermogram of a) SnPcCl2
b)
meso-CeO2
c) SnPc@CeO2
Photocatalytic methanol formation versus time by
using a) Blank reaction b) meso-CeO2
and c) SnPcCl2
equimolar amount as in SnPc@CeO2
and d) SnPc@CeO2
Methanol yield after repurging CO2
Reuse experiments of photocatalytic CO2
reduction by using SnPc@CeO2
catalyst
DMF + water + TEA
(3 : 1 : 1)
Photoreduction experiment
tin content:
fresh catalyst
0.38 wt%
After 5 recycling-
0.34 wt%
Methanol –
2342 μmol g-1
cat
Quantum Yield - 2.23%
CO- 840 μmol g-1
cat
17
Part A: Photocatalytic reduction of carbon dioxide to methanol using ruthenium trinuclear
polyazine complex immobilized to graphene oxide under visible light irradiation
Synthesis of trinuclear ruthenium complex 1
Synthesis of Ru-phen-GO 2J. Mater. Chem. A, 2014, 2, 11246-11253
Step 1
Step 2
Chapter 3: Heterogenized Ruthenium based photocatalysts for conversion of
CO2 to methanol
18
ESI-Mass spectra of ruthenium trinuclear complex 1
(Expanded form)
ESI-Mass spectra of ruthenium trinuclear complex 1
XRD Pattern
SEM images of a) GO, b) Ru-phen-GO 2 and c) EDX
pattern of 2
J. Mater. Chem. A, 2014, 2, 11246-11253
M+
-2Cl-
+2H+
[M+
- 2PF6 + F-
]
(001)
(002)
19
XPS spectra of a) survey scan of Ru-phen-GO 2 and b) C(1s) and Ru (3d)
J. Mater. Chem. A, 2014, 2, 11246-11253
281.94
285.85
1621
1680
FTIR spectra of a) Ru-complex 1, b) GO and c) Ru-phen-GO 2
20
UV/Vis absorption spectra of a) Ru complex1, b) GO and
c) GO attached complex 2
Tauc plot for calculating band gap of GO
J. Mater. Chem. A, 2014, 2, 11246-11253
2.9–3.7 eV
21
Conversion of CO2
to methanol with time
a) using photocatalyst 2 and b) with GO
Recycling of the Ru-phen-GO catalyst for
photoreduction of CO2
to methanol
J. Mater. Chem. A, 2014, 2, 11246-11253
Methanol - 3977.57 ±5.60
μmol g-1
cat
DMF: Water: TEA- (3:1:1)
20 W LED
Photocatalytic CO2 reduction
Ru content-
fresh catalyst - 4.14%
After four recycling – 4.12%
e
e
e
e
e
CB
VB
e
2.9–3.7eV
MLCT
22
J. Mater. Chem. A, 2014, 2, 11246-11253
23
Part B: Visible light assisted photocatalytic reduction of CO2 using a graphene
oxide supported heteroleptic ruthenium complex
Synthesis of 2-thiophenylbenzimidazole ligand and heteroleptic Ruthenium (II) complex 1
Synthesis of GO-Ru catalyst 2Green Chem, 2015, 17, 1605-1609
Step 1
Step 2
24
ESI-HRMS of ruthenium complex 1
Green Chem, 2015, 17, 1605-1609
TEM images of a) GO, b) GO-Ru catalyst 2 and c) SAED
pattern of of GO-Ru catalyst 2
SEM images of a) GO, b) GO-Ru catalyst 2
and c) EDX pattern of 2
25
Green Chem, 2015, 17, 1605-1609
XRD Pattern: a) Ruthenium complex 1, b) GO and c) GO-Ru catalyst 2
UV/Vis absorption spectra of a) Ru complex 1, b)
GO, c) 5% RuCl3
/GO and d) GO-Ru catalyst 2
26
Cyclic voltametry of homogeneous Ru
complex 1
Green Chem, 2015, 17, 1605-1609
Tauc plots for calculating band gap of (a) ruthenium
complex 1 (b) GO (c) GO-Ru catalyst 2.
1.90 eV
2.29 eV 2.9-3.7 eV
1.15 eV
2.9 eV
difference in the HOMO–LUMO
(half wave potential, E1/2) – 1.915 eV
27
CO2
to methanol yield a) blank reaction,
b) using GO-COOH, c) GO, d) 5%
RuCl3
/GO, e) Ru complex equimolar
amount to GO-Ru catalyst 2 and f) GO-Ru
catalyst 2
Reuse experiments for catalyst 2
Green Chem, 2015, 17, 1605-1609
Photocatalytic CO2 reduction experiment
Ruthenium content –
Fresh catalyst - 5.15 wt%
After three recycling – 5.07 wt%
Methanol - 2050 μmol g−1
cat
DMF + Water - (4:1)
Quantum Yield- 0.180
No sacrificial donor
28
Plausible mechanism of photoreaction
Green Chem, 2015, 17, 1605-1609
Ru(HOMO–LUMO) → Ru*(HOMO+
+ LUMOe-) MLCT
Ru*(HOMO+
+ LUMOe-) → Ru*(HOMO+
+ LUMO) + e- (CB of GO)
Ru*(HOMO+
+ LUMO) + e- (derived from water splitting) → Ru(HOMO–LUMO)
6e- CB (GO) + CO2 + 6H+
(derived from water splitting) → CH3OH + H2O
29
Part C: In situ Ru/TiO2 hybrid nanocomposite catalyzed photo-reduction of
CO2 to methanol under visible light
Synthetic outline of the in situ Ru(bpy)3/TiO2 photocatalyst
Nanoscale 2015, 7, 15258-15267
30
SEM images of a) in situ TiO2
, b) in situ
Ru(bpy)3
/TiO2
, EDX pattern of c) In situ TiO2
, d) In
situ Ru(bpy)3
/TiO2
, elemental mapping of e) in situ
TiO2
and f) in situ TiO2
HR-TEM images of a) in
situ TiO2, b) in situ
Ru(bpy)3/TiO2, c) SAED
patterns of c) in situ TiO2
and d) in situ
Ru(bpy)3/TiO2
Nanoscale 2015, 7, 15258-15267
STEM Elemental
Mapping and HR-TEM
EDX Pattern of
Ru(bpy)3/TiO2 a)
showing image of area
scanned, b) Ti, c) O and
d) Ru
25–35 nm 25–35 nm 0.35 nm (101)
31
XRD patterns of a) Ru(bpy)3Cl2, b) in situ
TiO2 and c) in situ Ru(bpy)3/TiO2
Adsorption desorption patterns of a) in situ TiO2
and b) in situ
Ru(bpy)3
/TiO2
.
UV/Vis absorption spectra of a)
Ru(bpy)3Cl2, b) in situ Ru(bpy)3/TiO2 and
c) in situ TiO2
Nanoscale 2015, 7, 15258-15267
Anataase
tetragonal TiO2
JCPDS no. 21-1272
Rutile
JCPDS no. 88-1175
SBET -35.24 m2
g−1
rp - 7.58 nm rp – 9.37 nm
SBET – 26.96 m2
g−1
32
Tauc plot for calculation of band gap of a) Ru(bpy)3Cl2, b)
in situ TiO2 and c) in situ Ru(bpy)3/TiO2
Wide scan XPS spectra of in -situ TiO2 and in- situ
Ru(bpy)3/TiO2 a) Ti2p, b) O 1s and c) N 1s region
Nanoscale 2015, 7, 15258-15267
Ru complex 4.05 eV LLCT and 2.55 eV MLCT
TiO2 –3.15 eV
Insitu Ru(bpy)3@TiO2 – 2.65 eV
464.23
458.39
33
Methanol formation from CO2 photoreduction: a) blank
reaction, b) Ru(bpy)3Cl2 complex equimolar to in situ
Ru(bpy)3/TiO2, c) in situ TiO2, d) Ru-complex adsorbed on
P25 TiO2 and e) in situ Ru(bpy)3/TiO2
Nanoscale 2015, 7, 15258-15267
Catalyst recycling data for four cycles
Water + DMF (4:1)
1876 μmol g−1
cat,
Quantum Yield –
0.024 mol Einstein−1
Ru content –
Fresh catalyst – 1.38 wt%
After four recycling
1.34 wt %
Possible mechanism of the reaction
Synthetic scheme of rGO@CuZnO@Fe3O4 microspheres 4
34
Part A: Reduced graphene oxide wrapped core-shell structured magnetically separable
rGO@CuZnO@Fe3O4 microspheres for enhanced visible light CO2 reduction efficiency
Communicated
Chapter 4: Magnetically separable nanocomposites for CO2 reduction
20 mL (0.2 mg/mL)
iii) Hydrated
with water
35
FE-SEM images of a) Fe3O4 microspheres (1), b)
CuZnO@Fe3O4 microspheres (2), c) GO@CuZnO@Fe3O4
microspheres (3) and d) rGO@CuZnO@Fe3O4 microspheres
(4)
FE-SEM EDX patterns of a) Fe3O4 microspheres (1), b)
CuZnO@Fe3O4 microspheres (2), c) GO@CuZnO@Fe3O4
microspheres (3) and d) rGO@CuZnO@Fe O microspheres (4)
~ 300 nm200 to 250 nm
TEM images of a) Fe3O4
microsphere 1 b)
CuZnO@Fe3O4
microspheres 2, High
resolution TEM of c)
rGO@CuZnO@Fe3O4
microspheres 4 d) showing
at scale 10 nm e) at 2 nm
resolution showing d
spacing and f) SAED
pattern
STEM elemental mapping
of rGO@CuZnO@Fe3O4
microsphere 4 for a)
showing mapping scale
bar b) mapping for O c)
Cu d) C e) Fe f) Zn and g)
EDX pattern of selected
area in yellow highlighted
circle
36
Communicated
GO – 1.01
rGO - 0.41
GO@CuZnO@Fe3O4 - 1.13
rGO@CuZnO@Fe3O4 - 0.87
ID/IG
ZnO 325 cm-1
A1
664 cm-1
Fe3O4 A1g
Fe3O4 face centered cubic inverse spinal
- JCPDS No. 19-0629
ZnO hexagonal wurtzite - JCPDS No. 36-1451
XRD diffractogram
Raman spectra
GO@CuZnO@Fe3O4 3 rGO@CuZnO@Fe3O4 4
Elements
C1s
O1s
N1s
Fe2p
Si2p
Zn2p
Binding
energy(eV)
285
530
400
710
103
1022
At%
56.16
28.86
3.05
7.34
3.05
1.54
Elements
C1s
O1s
N1s
Fe2p
Si2p
Zn2p
Binding
energy(eV)
285
530
400
710
103
1022
At%
48.50
36.00
3.53
3.98
4.01
3.98
XPS specturm
Elemental composition
37
Wide scan
C1s high resolution XPS spectra of a) GO@CuZnO@Fe3O4 and b) rGO@CuZnO@Fe3O4,
c) Fe2p and d) Zn2p of rGO@CuZnO@Fe3O4
Communicated
1043.1 eV
1022.0 eV
38
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
200 300 400 500 600 700 800
Absorbance/a.u.
Photon Wavelength/ nm
Fe3O4
CuZnO@Fe3O4
ZnO
a)
0
1
2
0
1
2
200 300 400 500 600 700 800
Absorbance/a.u.
Photon Wavelength / nmc)
GO
GO@CuZnO@Fe3O4
rGO@CuZnO@Fe3O4
rGO
0
100
200
300
400
500
600
700
0 2 4 6 8 10 12 14
Absorbance(400-800nm)/a.u.
GO ZnO GO@CuZnO CuZnO rGO@CuZnO Fe3O4 rGO
d)
GO ZnO GO@CuZnO CuZnO rGO@CuZnO Fe3O4 rGO
@Fe3O4 @Fe3O4 @Fe3O4d)
Fig. a) and c): absorbance curves of a) Fe3O4 microspheres (2), ZnO, CuZnO@ Fe3O4 microspheres (2); b) GO, rGO,
GO@CuZnO@ Fe3O4 microspheres (3) and rGO@CuZnO@ Fe3O4 microspheres (4); c) Total absorbance measured
between 400 and 800 nm for all the samples
Communicated
b)
c)
39
CO2 conversion to methanol for a) Blank reaction, b) Fe3O4
microspheres (1), c) CuZnO@Fe3O4 microspheres (2), d)
GO@CuZnO@Fe3O4 microspheres (3) and f) rGO@CuZnO@Fe3O4
microspheres (4)
Methanol –
2656 µmol g-1
cat
Recycling experiments by using rGO@CuZnO@Fe3O4
Hydrogen as byproduct
CuZnO@Fe3O4 2, - 16.2 µmol g-1
cat
GO@CuZnO@Fe3O4 3 - 28.5 µmol g-1
cat
rGO@CuZnO@Fe3O4 4 - 45.5 µmol g-1
cat
40
Part B: Photo-induced reduction of CO2 using magnetically separable Ru-
CoPc@TiO2@SiO2@Fe3O4 catalyst under visible light irradiation
Dalton Trans, 2015, 44, 4546-4553 Synthesis of catalyst
41
FESEM images of a) Fe3O4, b)
SiO2@Fe3O4, c) TiO2@SiO2@Fe3O4 1, d)
Ru-CoPc@TiO2@SiO2@Fe3O4 6, e) EDX
of 1, f) EDX of SiO2@Fe3O4, g) EDX of
TiO2@SiO2@Fe3O4 and h) EDX of 6
Dalton Trans, 2015, 44, 4546-4553
TEM Image of a-b) Ru-CoPc@TiO2
@SiO2
@Fe3
O4
6, c) SAED
pattern of 6
42
UV-Vis spectra of a) CoPcS, b)
CoPc@TiO2
@SiO2
@Fe3
O4
, c)
TiO2
@SiO2
@Fe3
O4
and d) Ru-
CoPc@TiO2
@SiO2
@Fe3
O4
6
DT-TGA curve of
Ru-CoPc@TiO2
@SiO2
@Fe3
O4
6
Dalton Trans, 2015, 44, 4546-4553
43
Graph for methanol yield
Dalton Trans, 2015, 44, 4546-4553
Magnetic separable
Methanol-
2570.18
μmol g-1
cat
Water + TEA
(4:1)
Fresh catalyst
Co- 1.26%
Ru- 1.17%
After recycling
Co-0.98 wt%
Ru-0.94 wt%)
Plausible mechanism
44
Chapter 5: Metallic clusters as efficient photocatalysts for conversion of CO2 to
methanol
Schematic representation of octahedral
molybdnum cluster La
=Apical ligand
Li
=inner ligand.
 Metal cluster is a multimettalic oxide or halides aggregates with
general formula [Mo6X14]2-
 Metal clusters due to presence of multi-metallic centers can
undergo multi-electron redox process which is an essential
requirement for reduction of carbon dioxide to higher hydrocarbons.
The main drawback of metal clusters are their homogeneous
nature and non-recyclability.
 They strongly absorbs in visible region near 500 nm
 The halogen hydroxy or ligands situated on apical
position are labile and can be replaced with donor ligands
like pyridine derivatives, etc.
45
Part A: Photoreduction of CO2 to methanol with hexanuclear molybdenum
[Mo6Br14]2-
cluster units under visible light irradiation
Schematic representation of the [Mo6
Bri
8
La
6
]2-
cluster unit
RSC Adv., 2014, 4, 10420-10423
CO2 photoreduction experiment
Methanol Yield by using Cs2[Mo6Br14] and
Cs Mo cluster - 6679
TBA Mo cluster - 5550
46
Part B: Hexamolybdenum Clusters supported on Graphene Oxide: Visible-Light
Induced Photocatalyst for Reduction of Carbon Dioxide into Methanol
A schematic illustration of (a) GO nanosheet decorated with various oxygen functionalities
(b) immobilization of Cs2Mo6Bri
8Bra
6 / (TBA)2Mo6Bri
8Bra
6 clusters on the GO nano-sheets,
and (c) molecular structure of Mo6 cluster representing position of inner and apical ligands
Synthesis of graphene oxide supported Mo-cluster
=
50 mg clusters
water and ethanol(2:1)
50 mL GO (2.24 mg/mL)
46Carbon, 2015, 94, 91 –100
(a) GO nanosheets (b) GO-Cs2Mo6Bri
8Bra
x and (c)
GO-(TBA)2Mo6Bri
8Bra
x composites.
FESEM micrographs and element
mapping
(a) GO-Cs2Mo6Bri
8Bra
x (b) GO-(TBA)2Mo6Bri
8Bra
x
HRTEM images
47
Carbon, 2015, 94, 91 –100
(a) GO, Cs2Mo6Bri
8Bra
x clusters and GO- Cs2Mo6Bri
8Bra
x composite; and (b) GO,
(TBA)2Mo6Bri
8Bra
6 clusters and GO-(TBA)2Mo6Bri
8Bra
6 composite.
FTIR spectra
48
Carbon, 2015, 94, 91 –100
High resolution C 1s XPS spectra
49
Carbon, 2015, 94, 91 –100
Cs 3d XPS spectra Cs 3d5/2 (a) Cs 3d5/2
(b) Mo 3d
50
Carbon, 2015, 94, 91 –100
(c) Br 3d regions
(d) Br 3d region
Cluster
Br/Mo Found = 2.6
theoretical value= 2.33
After immobilization
Br/Mo Found =1.6
theoretical = (1.33).
51
Carbon, 2015, 94, 91 –100
DT-TGA patterns
52
Carbon, 2015, 94, 91 –100
UV-visible spectra
Tauc plot for band gap calculation
53
Carbon, 2015, 94, 91 –100
0.9 eV
GO- Cs2Mo6Bri
8Bra
x
1.25 eV
GO- (TBA)2Mo6Bri
8Bra
x
Methanol Yield from different components
54
Carbon, 2015, 94, 91 –100
Recycling experiments using
(a) GO- (TBA)2
Mo6
Bri
8
Bra
x
and (b) GO- Cs2
Mo6
Bri
8
Bra
x
.
Plausible mechanism of photoreduction of CO2
into methanol catalyzed
by GO-hexamolybdenum composite
55
Carbon, 2015, 94, 91 –100
E0
=E0
(pH0) – 0.06 (pH)
56
Part C: Octahedral Rhenium K4[Re6S8(CN)6] and Cu(OH)2 cluster modified TiO2
for the Photoreduction of CO2 under Visible Light Irradiation
Schematic representation of the
[Re6S8(CN)6]4–
cluster unit
Applied Catalysis A 2015, 499, 32–38
Synthesis of photocatalyst
Step 1: First Cu(OH)2 modified P25 TiO2 was synthesized
P25 TiO2
4.0 g
Dispersed in 0.25 M
NaOH (250 mL)
100 ml of 0.0077 M
Cu(NO3)2drop-wise with
vigorous stirring
Cu(OH)2/TiO2
Cu(OH)2/TiO2
Step 2: Then Re clusters was attached to Cu(OH)2/TiO2
Re-cluster@Cu(OH)2/TiO2
K4[Re6S8(CN)6]
1 g
200 mg
Reflux in DMF, 24 h
Cu – 1.68 wt%
Re – 1.65 wt%
Energy Environ. Sci. 2011, 4, 1364–1371.
Covalent immobilization via Re-CN-M bridges
57N2
adsorption-desorption isotherm and Pore size distribution
Applied Catalysis A 2015, 499, 32–38
SEM images of a) Cu(OH)2/TiO2, b) Re-
cluster@Cu(OH)2/TiO2, and EDX spectra
Elemental mapping of Re-cluster@Cu(OH)2/TiO2 for a) Ti
and b) Re
100-250nm
100-250nm
SBET- 40.91 m2
g−1
rp- 11.87 nm
Vp - 0.1215 cm3
g−1
SBET- 8.96 m2
g−1
rp- 83.51 nm
Vp - 0.1871 cm3
g−1
Type IV Type II
58
Tauc plots for optical band gap determination of a) K4[Re6S8(CN)6], b) Cu(OH)2/TiO2 and
c) Re-cluster@ Cu(OH)2/TiO2
Applied Catalysis A 2015, 499, 32–38
TGA of a) K4
[Re6
S8
(CN)6
], b) Cu(OH)2
/TiO2
and c) Re-
cluster/Cu(OH)2
/TiO2
UV/Vis absorption spectra of a) K4[Re6S8(CN)6], b) Re-
cluster@Cu(OH)2/TiO2 and c) Cu(OH)2/TiO2 and d) TiO2
2.50 eV
2.69 eV,
3.11 eV 2.43 eV
59Possible mechanism of the reaction
Applied Catalysis A 2015, 499, 32–38
CO2 conversion to methanol using a) Re-cluster@ Cu(OH)2/TiO2 , b) Re cclusters
at same equimolar amount and c) Cu(OH)2/TiO2
Methanol - 149 μmol/0.1 g cat
Gaseous analysis- CO2 (99.24%, 1772.14
μmol), H2(0.68%, 12.14 μmol) and CO
(0.08%, 1.43 μmol
TEOA sacrificial donor
60
List of Publications
1. P. Kumar, S. Varma and S. L. Jain, J. Mater. Chem. A, 2014, 2, 4514–4519.
2. P. Kumar, A. Kumar, B. Sreedhar, B. Sain, S. S. Ray and S. L. Jain, Chem. Eur. J. 2014, 20, 6154-61611.
3. P. Kumar, S. Kumar, S. Cordier, S. Paofai, R. Boubherroub and S. L. Jain, RSC Adv., 2014, 4, 10420.
4. P. Kumar, B. Sain and S. L. Jain, J. Mater. Chem. A, 2014, 2, 11246-11253.
5. P. Kumar, A. Bansiwal, N. Labhsetwar and S. L. Jain, Green Chem, 2015, 17, 1605-1609.
6. P. Kumar, H. P. Mungse, S. Cordier, R. Boukherroub, O P. Khatri, and S. L. Jain, Carbon, 2015, 94, 91 –100.
7. P. Kumar, H. P. Mungse, O. P. Khatri and S. L. Jain, RSC Adv., 2015,5, 54929-54935.
8. P. Kumar, N. G Naumov, R. Boukherroub, S. L Jain, Appl. Catal. A 2015, 499, 32–38.
9. P. Kumar, R. K. Chauhan, B. Sain, and S. L. Jain, Dalton Trans, 2015, 44, 4546-4553.
10. P. Kumar, A. Kumar, C. Joshi, R. Singh, S. Saran, S. L. Jain, RSC Adv., 2015, 5, 42414-42421.
11. P. Kumar, G. Singh, D. Tripathi and S. L. Jain, RSC Adv., 2014, 4, 50331-50337.
12. P. Kumar, K. Gill, S. Kumar, S. K Ganguly, S. L. Jain, J. Mol. Catal. A 2015, 401, 48–54.
13. P. Kumar, C. Joshi, N. Labhsetwar, R. Boukherroub and S. L. Jain, Nanoscale, 2015, 7, 15258-15267.
14. P. Kumar, C. Joshi, A. Barras, B. Sieber, A. Addad, L. Boussekey, S. Szunerits, R. Boukherroub and S. L. Jain, appl.
Catal. B 2017, 205, 654-665
15. P. Kumar, C. Joshi, A. K. Srivastava, P. Gupta, R. Boukherroub and S. L. Jain, ACS Sus. Chem. Eng. 2016, 4, 69-75
16. A. Kumar, P. Kumar, C. Joshi, S. Ponnada, A. K. Pathak, A. Ali, B. Sreedhar and S. L. Jain, Green Chem.
2016, 18, 2514-2521.
17. S. Kumar, P. Kumar and S. L. Jain, J. Mater. Chem. A, 2014, 2, 18861-18866.
18. S. Kumar, P. Kumar, and S. L. Jain, RSC Adv., 2013, 3, 24013-24016.
19. D. Chauhan, P. Kumar, C. Joshi, N. Labhsetwar, S. K. Ganguly and S. L. Jain, New J. Chem., 2015, 39, 6193-6200.
20. A. Bansal, P. Kumar, C. D. Sharma, S. S. Ray, S. L. Jain, J. Pol. Sci. A, 2015, 53, 2739-2746.
21. R. Gusain, P. Kumar, O. P. Sharma, S. L. Jain, O. P. Khatri, Appl. Cat. B 2015, 181, 352-362.
22. V. Panwar, P. Kumar, A. Bansal, S. S Ray, S. L Jain, Appl. Cat. A, 2015, 498, 25–31.
23. V. Panwar, P. Kumar, S. S Ray, S. L Jain, Tetrahedron letters, 2015, 56, 3948–3953.
24. C. Joshi, P. Kumar, B. Behera, A. Barras, S. Szunerits, R. Boukherroub and S. L. Jain, RSC Adv. 2015, 5, 100011-
100017.
25. A. Bansal, A. Kumar, P. Kumar, S. Bojja, A. K. Chatterjee, S. S. Ray, S. L. Jain, RSC Adv. 2015, 5, 21189-21196
61
Book Chapter
1. P. Kumar, S. L. Jain and R. Boukherroub, Graphene-based nanocomposite materials for the photoreduction of carbon
dioxide into valuable organic compounds, Innovations in Nanomaterials , Nova Science Publishers, Inc. USA. (Editors: Al-
Nakib Chowdhury, Joe Shapter, and Abu Bin Imran. ISBN: 978-1-63483-572-5.
2. P. Kumar, A. Kumar, C. Joshi, R. Boukherroub, S. L. Jain,
Graphene-semiconductor hybrid photocatalysts and their
application in solar fuel production, Graphene Composites, WILEY-Scrivener Publisher, USA.
Awards
Awarded with Raman-Charpak fellowship to visited ‘Institut de Recherche Interdisciplinaire (IRI, USR 3078 CNRS),
Université Lille 1, France’ for six month under the supervision of Dr. Rabah Boukherroub (Group Director)
1. Pawan Kumar, Bir Sain, and Suman L. Jain, Magnetically separable Fe3
O4
@SiO2
@TiO2
functionalized by Co-Ru
complexes for the visible light induced photoreduction of CO2
., Research Scholars Day, 16-17 Dec 2013, IIST
Thiruvananthpurum, India (working under umbrella of Indian Space Research Organization).
2. Pawan Kumar, Bir Sain, Suman L. Jain, Visible light driven photoreduction of carbon dioxide to methanol using
trinuclear ruthenium complex immobilized to graphene oxide, National conference on nanotechnology and renewable
energy, 28-29 Apr 2014, Jamia Millia Islamia, New Delhi, India.
3. Pawan Kumar, Chetan Joshi and Suman L. Jain, Visible light assisted photocatalytic reduction of CO2 using
graphene oxide supported heteroleptic ruthenium complex, International conference on sustainable energy and
technologies(ICSET 2014), 11-13 Dec 2014, PSG College of Technology, Coimbatore, India (International host-
University of Exeter, UK, University of Oslo, Norway, IFE Norway)
Poster Presentation
Pawan Kumar, Bir Sain, and Suman L. Jain, Development of visible light active photocatalysts for reduction of CO2
to C1
chemicals, First International Seminar on Nanotechnology in Conventional and Alternate Energy Systems, 12-
13 Aug 2013, University of Petroleum and Energy Studies, Dehradun, India .
Workshop
Advanced Material Processing and characterization, 17-22 Aug 2014, organized by Dept. of Materials Science and
Engineering, Indian Institute of Technology, Kanpur
Oral talk in conference
62
Thanks

Mais conteúdo relacionado

Mais procurados

Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...
Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...
Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...
Economic Research Institute for ASEAN and East Asia
 
Co2 sequestration using ionic liquids.
Co2 sequestration using ionic liquids.Co2 sequestration using ionic liquids.
Co2 sequestration using ionic liquids.
Aakruti Makode
 
Water splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiationWater splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiation
Muhammad Mudassir
 

Mais procurados (20)

CO2 to Chemicals : An Overview
CO2 to Chemicals : An Overview CO2 to Chemicals : An Overview
CO2 to Chemicals : An Overview
 
Photocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxidePhotocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxide
 
14 ch60r29 hydrogen production
14 ch60r29 hydrogen production14 ch60r29 hydrogen production
14 ch60r29 hydrogen production
 
Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...
Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...
Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...
 
Roll of nanomaterials in water treatment as photocatalysts copy
Roll of nanomaterials in water treatment as photocatalysts   copyRoll of nanomaterials in water treatment as photocatalysts   copy
Roll of nanomaterials in water treatment as photocatalysts copy
 
Electrochemical CO2 reduction in acidic electrolyte.pptx
Electrochemical CO2 reduction in acidic electrolyte.pptxElectrochemical CO2 reduction in acidic electrolyte.pptx
Electrochemical CO2 reduction in acidic electrolyte.pptx
 
reducation of co2 and its application to environment.
reducation of co2 and its application to environment. reducation of co2 and its application to environment.
reducation of co2 and its application to environment.
 
Photocatalytic Performance of TiO2 as a Catalyst
Photocatalytic Performance of TiO2 as a CatalystPhotocatalytic Performance of TiO2 as a Catalyst
Photocatalytic Performance of TiO2 as a Catalyst
 
Carbon dioxide reduction
Carbon dioxide reductionCarbon dioxide reduction
Carbon dioxide reduction
 
Misconceptions in Photocatalysis
Misconceptions in PhotocatalysisMisconceptions in Photocatalysis
Misconceptions in Photocatalysis
 
Pawan Homogeneous catalyst for CO2 reduction
Pawan Homogeneous catalyst for CO2 reductionPawan Homogeneous catalyst for CO2 reduction
Pawan Homogeneous catalyst for CO2 reduction
 
Electrochermical CO2 reduction reaction.pptx
Electrochermical CO2 reduction reaction.pptxElectrochermical CO2 reduction reaction.pptx
Electrochermical CO2 reduction reaction.pptx
 
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
 
degradation of pollution and photocatalysis
degradation of pollution and photocatalysisdegradation of pollution and photocatalysis
degradation of pollution and photocatalysis
 
66
6666
66
 
Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...
Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...
Development of Carbon Capture, Utilization, and Storage (CCUS) in the United ...
 
Hydrogen generation
Hydrogen generationHydrogen generation
Hydrogen generation
 
metal organic framework-carbon capture and sequestration
metal organic framework-carbon capture and sequestrationmetal organic framework-carbon capture and sequestration
metal organic framework-carbon capture and sequestration
 
Co2 sequestration using ionic liquids.
Co2 sequestration using ionic liquids.Co2 sequestration using ionic liquids.
Co2 sequestration using ionic liquids.
 
Water splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiationWater splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiation
 

Semelhante a Pawan CO2 REDUCTION PPT

Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Pawan Kumar
 
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Pawan Kumar
 
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Pawan Kumar
 
nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry
Ankit Grover
 
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Pawan Kumar
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)
52900339
 

Semelhante a Pawan CO2 REDUCTION PPT (20)

Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
 
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
 
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
 
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
 
Final MS Presentation.pptx
Final MS Presentation.pptxFinal MS Presentation.pptx
Final MS Presentation.pptx
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
 
Core–shell structured reduced graphene oxide wrapped magneticallyseparable rG...
Core–shell structured reduced graphene oxide wrapped magneticallyseparable rG...Core–shell structured reduced graphene oxide wrapped magneticallyseparable rG...
Core–shell structured reduced graphene oxide wrapped magneticallyseparable rG...
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
 
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
 
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Act...
 
Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...
Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...
Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...
 
IRJET- Co2 Mitigation
IRJET- Co2 MitigationIRJET- Co2 Mitigation
IRJET- Co2 Mitigation
 
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for C...
 
nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry
 
Cobalt phthalocyanine on graphene oxide for CO2 activation
Cobalt phthalocyanine on graphene oxide for CO2 activationCobalt phthalocyanine on graphene oxide for CO2 activation
Cobalt phthalocyanine on graphene oxide for CO2 activation
 
Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...
Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...
Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...
 
Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...
Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...
Reduced graphene oxide–CuO nanocomposites for photocatalyticconversion of CO2...
 
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)
 

Mais de Pawan Kumar

Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Pawan Kumar
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Pawan Kumar
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Pawan Kumar
 
Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...
Pawan Kumar
 
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pawan Kumar
 
Multifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisMultifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysis
Pawan Kumar
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Pawan Kumar
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Pawan Kumar
 
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Pawan Kumar
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Pawan Kumar
 

Mais de Pawan Kumar (20)

Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
 
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
Isolated Iridium Sites on Potassium-Doped Carbon-nitride wrapped Tellurium Na...
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
 
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
Solar-Driven Cellulose Photorefining into Arabinose over Oxygen-Doped Carbon ...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...
 
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
 
Multifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisMultifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysis
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
 
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
 
Bioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationBioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidation
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
 

Último

Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 

Último (20)

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdf
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 

Pawan CO2 REDUCTION PPT

  • 1. 1
  • 2.  All human activities currently generate about 37 Gt of CO2 emissions. At the current rate of increase in atmospheric CO2 concentration, the average global temperature will increase some 6 °C up to end of century. Several methods for mitigation of CO2 has been developed like conversion of CO2 to chemicals such as carbonates polycarbonates polyols etc but all the procedures are energy intensive and require heat as source of activation energy. Sunlight is inexhaustible source of energy. If we can capture 10% of the solar energy falling on 0.3% of the land surface it will be suffice for meeting our energy demand in 2050. Photocatalytic conversion of carbon dioxide into valuable products can provide energy in a sustainable way with leveling off the concentration of CO2 in our environment. 2 Chapter 1: photoreduCtion of Co2 to fuel and ChemiCals: an overview
  • 3. 3 CO2 + 2H+ + 2e- → CO + H2 O E0 = -0.53 V …………….(1) CO2 + 2H+ + 2e- → HCOOH E0 = -0.61 V …………….(2) CO2 + 4H+ + 4e- → HCHO + H2 O E0 = -0.48 V……………..(3) CO2 + 6H+ + 6e- → CH3 OH + H2 O E0 = -0.38 V……………..(4) CO2 + 8H+ + 8e- → CH4 + 2H2 O E0 = -0.24 V……………..(5) CO2 + e- → CO2 -o E0 = -1.90 V……………..(6) Why CO2 photoreduction is difficult ? The reduction of CO2 to CO2 .- by one electron is unfavorable because reduction potential is high due to bent structure of CO2 .- Rapid reduction require overpotential of up to -0.6 V . Potentials for the reduction of CO2 to various products and potentials for the oxidation of H2O to various products (at pH 7 in aqueous solution versus NHE, 25 o C, 1 atmosphere gas pressure, and 1 M for the other solutes) Chem. Soc. Rev., 2009, 38, 89–99 Basic requirements for CO2 photo-reduction process
  • 4. 4 Mechanism and pathways for photocatalytic oxidation and reduction processes on the surface of heterogeneous photocatalyst. Chem. Rev. 1995, 95, 735 – 758 Semiconductor materials as heterogeneous photocatalyst:  Semiconductor materials like TiO2, ZnO, CdS, etc have been extensively used as photocatalysts for CO2 reduction.  Among them, TiO2 owing to its low cost, nontoxicity and suitable band position has been widely studied.  Other nanostructured materials like Zn2GeO4, SrNb2O6, npg-C3N4 etc can also be used for the reduction of CO2
  • 5. 5Schematics of electron and hole capture by metal doped semiconductor Catalysts 2013, 3(1), 189-218 Doping can improve photocatalytic performance N doping can shift position of valance band upward Band gap and band edge position of some semiconductors Energy Conversion and Management 76 (2013) 194– 214 • Due to large band gap most of semiconductors works in UV light • UV is only 5% in solar spectrum • Electron hole pair recombination rate is higher so conversion efficiency is very low
  • 6. But the main challenges are: Less robust! Non-recoverable. Requires tertiary amines as sacrificial donor.6 Homogeneous metal complexes as photocatalyst  Transition metal complexes may provide alternative pathway by forming metal CO2 hybrid bond.  Macrocyclic metal complexes like : phthalocyanines, ruthenium bipyridyl, rhenium and iridium complexes are more attractive due to their wide spectrum of absorption. By changing ligands, catalyst can also be tuned for desired product like methanol. Inorg. Chem., 2012, 51, 890−899
  • 7. 7 Advantages: Make the catalyst recoverable and recyclable Visible light active.  Show increased efficiency if anchored to photoactive supports.  More robust. Can be tuned for desired products.  No need of sacrificial donor. Immobilization of homogeneous photocatalysts or photosensitizers to various photoactive supports. How immobilized system works ?  After absorbing visible light homogeneous catalyst transfer electrons to conduction band of active supporting materials.  These electrons in conduction band is used for reduction of CO2.  Due to continuous pumping of electrons the electron hole recombination rate get decreased Mechanism of sensitization of semiconductors with metal complexes for reduction of CO2
  • 8. 8 Part A: Cobalt phthalocyanine immobilized on graphene oxide: an efficient visible active catalyst for the photoreduction of carbon dioxide Chapter 2: Phthalocyanine-semiconductor hybrids for photoreduction of CO2 Chem. Eur. J. 2014, 20, 6154-61611 GO GO-COOH GO-COCl GO-CoPc 1. Synthesis of GO-CoPc photocatalyst.
  • 9. 9 TEM image of a) GO, b) GO-CoPc, c) GO-COOH and d) SAED pattern of GO-CoPc XRD of a) GO and b) GO-CoPc. FT-IR of a) CoPc, b) GO and c) GO-CoPc Chem. Eur. J. 2014, 20, 6154-61611 UV/Vis spectra of a) CoPc; b) GO; and c) GO-CoPc. (001) (002) S band Q band
  • 10. 10 N1s XPS of a) CoPc and b) GO-CoPc TGA pattern of; a) GO; b) GO-CoPc Chem. Eur. J. 2014, 20, 6154-61611 Step 1: Borosil vessel charged with water and triethylamine (45 mL/5 mL) Step 2: Purged with N2 than saturated with CO2 Step 3: Added 100 mg catalyst and irradiated with 20 W white cold LED light λ >400 nm. Intensity on vessel- 85 W/m2 Step 4: Sample withdrawn after fixed intervals and analyzed with GC-FID and HPLC. Step 5: Blank experiments were carried out to confirm that the product was originated from the CO2 reduction Photocatalytic CO2 reduction experiment 398.95 - C– N 400.43 – NH2 401.58 - C=N 400.69 – NH
  • 11. 11 Table: Photoreduction of carbon dioxide to methanol Chem. Eur. J. 2014, 20, 6154-61611 Calibration curve for quantitative determination of methanol Methanol conversion rate for a) GO, b) GO:Co- Pc (1:1) and c) GO-CoPc Recycling Experiment Cobalt content Fresh catalyst- 1.13 wt% After one recycling – 1.05 wt% Methanol- 3781.8881 μmol g-1 cat Gaseous analysis- 99.17% CO2 0.82% CO Varian CP-3800, having 30 m long Stabilwax® w/Integra-Guard® column) at flow rate 0.5 mL min−1 , injector temp., 250 °C, and FID detector temp., 275 °C
  • 12. 12 Possible Mechanistic Pathway of CO2 reduction Chem. Eur. J. 2014, 20, 6154-61611 CoPc + Visible light = CoPc* (excited Singlet state) CoPc* = CoPc+ + e- GO (electron transfer in CB) CoPc+ + TEA = CoPc + TEA o+ e- GO (electron in CB) + CO2 + H+ = CH3 OH
  • 13. 13 Part B: Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2) for photoreduction of CO2 in visible light Synthesis of SnPc@CeO2 catalyst RSC Adv., 2015, 5, 42414-42421
  • 14. 14 SEM images of a) uncalcined CeO2 b) meso-CeO2 and c) SnPc@CeO2 and EDX pattern of d) uncalcined CeO2 e) meso-CeO2 and f) SnPc@CeO2 TEM images of a) meso-CeO2 b) SnPc@CeO2 and c) SAED pattern of SnPc@CeO2 UV/Vis absorption spectra of a) SnPcCl2 b) meso-CeO2 c) SnPc@CeO2RSC Adv., 2015, 5, 42414-42421 O-2p to Ce-4f transition Broad Q band- aggregated form Sharp Q band- monomeric form 5–10 nm
  • 15. 15 FT-IR Spectra of a) SnPcCl2 b) meso-CeO2 c) SnPc@CeO2 XRD diffraction Pattern of a) meso-CeO2 b) SnPc@CeO2 N2 adsorption desorption isotherm and pore size distribution of (a) meso-CeO2 and (b) SnPc@CeO2RSC Adv., 2015, 5, 42414-42421 fcc cubic space group Fm3m (225) structure JCPDS card no. 34-0394 SBET-75.92 m2 g-1 SBET- 20.52 m2 g-1
  • 16. 16 DT-TGA thermogram of a) SnPcCl2 b) meso-CeO2 c) SnPc@CeO2 Photocatalytic methanol formation versus time by using a) Blank reaction b) meso-CeO2 and c) SnPcCl2 equimolar amount as in SnPc@CeO2 and d) SnPc@CeO2 Methanol yield after repurging CO2 Reuse experiments of photocatalytic CO2 reduction by using SnPc@CeO2 catalyst DMF + water + TEA (3 : 1 : 1) Photoreduction experiment tin content: fresh catalyst 0.38 wt% After 5 recycling- 0.34 wt% Methanol – 2342 μmol g-1 cat Quantum Yield - 2.23% CO- 840 μmol g-1 cat
  • 17. 17 Part A: Photocatalytic reduction of carbon dioxide to methanol using ruthenium trinuclear polyazine complex immobilized to graphene oxide under visible light irradiation Synthesis of trinuclear ruthenium complex 1 Synthesis of Ru-phen-GO 2J. Mater. Chem. A, 2014, 2, 11246-11253 Step 1 Step 2 Chapter 3: Heterogenized Ruthenium based photocatalysts for conversion of CO2 to methanol
  • 18. 18 ESI-Mass spectra of ruthenium trinuclear complex 1 (Expanded form) ESI-Mass spectra of ruthenium trinuclear complex 1 XRD Pattern SEM images of a) GO, b) Ru-phen-GO 2 and c) EDX pattern of 2 J. Mater. Chem. A, 2014, 2, 11246-11253 M+ -2Cl- +2H+ [M+ - 2PF6 + F- ] (001) (002)
  • 19. 19 XPS spectra of a) survey scan of Ru-phen-GO 2 and b) C(1s) and Ru (3d) J. Mater. Chem. A, 2014, 2, 11246-11253 281.94 285.85 1621 1680 FTIR spectra of a) Ru-complex 1, b) GO and c) Ru-phen-GO 2
  • 20. 20 UV/Vis absorption spectra of a) Ru complex1, b) GO and c) GO attached complex 2 Tauc plot for calculating band gap of GO J. Mater. Chem. A, 2014, 2, 11246-11253 2.9–3.7 eV
  • 21. 21 Conversion of CO2 to methanol with time a) using photocatalyst 2 and b) with GO Recycling of the Ru-phen-GO catalyst for photoreduction of CO2 to methanol J. Mater. Chem. A, 2014, 2, 11246-11253 Methanol - 3977.57 ±5.60 μmol g-1 cat DMF: Water: TEA- (3:1:1) 20 W LED Photocatalytic CO2 reduction Ru content- fresh catalyst - 4.14% After four recycling – 4.12%
  • 23. 23 Part B: Visible light assisted photocatalytic reduction of CO2 using a graphene oxide supported heteroleptic ruthenium complex Synthesis of 2-thiophenylbenzimidazole ligand and heteroleptic Ruthenium (II) complex 1 Synthesis of GO-Ru catalyst 2Green Chem, 2015, 17, 1605-1609 Step 1 Step 2
  • 24. 24 ESI-HRMS of ruthenium complex 1 Green Chem, 2015, 17, 1605-1609 TEM images of a) GO, b) GO-Ru catalyst 2 and c) SAED pattern of of GO-Ru catalyst 2 SEM images of a) GO, b) GO-Ru catalyst 2 and c) EDX pattern of 2
  • 25. 25 Green Chem, 2015, 17, 1605-1609 XRD Pattern: a) Ruthenium complex 1, b) GO and c) GO-Ru catalyst 2 UV/Vis absorption spectra of a) Ru complex 1, b) GO, c) 5% RuCl3 /GO and d) GO-Ru catalyst 2
  • 26. 26 Cyclic voltametry of homogeneous Ru complex 1 Green Chem, 2015, 17, 1605-1609 Tauc plots for calculating band gap of (a) ruthenium complex 1 (b) GO (c) GO-Ru catalyst 2. 1.90 eV 2.29 eV 2.9-3.7 eV 1.15 eV 2.9 eV difference in the HOMO–LUMO (half wave potential, E1/2) – 1.915 eV
  • 27. 27 CO2 to methanol yield a) blank reaction, b) using GO-COOH, c) GO, d) 5% RuCl3 /GO, e) Ru complex equimolar amount to GO-Ru catalyst 2 and f) GO-Ru catalyst 2 Reuse experiments for catalyst 2 Green Chem, 2015, 17, 1605-1609 Photocatalytic CO2 reduction experiment Ruthenium content – Fresh catalyst - 5.15 wt% After three recycling – 5.07 wt% Methanol - 2050 μmol g−1 cat DMF + Water - (4:1) Quantum Yield- 0.180 No sacrificial donor
  • 28. 28 Plausible mechanism of photoreaction Green Chem, 2015, 17, 1605-1609 Ru(HOMO–LUMO) → Ru*(HOMO+ + LUMOe-) MLCT Ru*(HOMO+ + LUMOe-) → Ru*(HOMO+ + LUMO) + e- (CB of GO) Ru*(HOMO+ + LUMO) + e- (derived from water splitting) → Ru(HOMO–LUMO) 6e- CB (GO) + CO2 + 6H+ (derived from water splitting) → CH3OH + H2O
  • 29. 29 Part C: In situ Ru/TiO2 hybrid nanocomposite catalyzed photo-reduction of CO2 to methanol under visible light Synthetic outline of the in situ Ru(bpy)3/TiO2 photocatalyst Nanoscale 2015, 7, 15258-15267
  • 30. 30 SEM images of a) in situ TiO2 , b) in situ Ru(bpy)3 /TiO2 , EDX pattern of c) In situ TiO2 , d) In situ Ru(bpy)3 /TiO2 , elemental mapping of e) in situ TiO2 and f) in situ TiO2 HR-TEM images of a) in situ TiO2, b) in situ Ru(bpy)3/TiO2, c) SAED patterns of c) in situ TiO2 and d) in situ Ru(bpy)3/TiO2 Nanoscale 2015, 7, 15258-15267 STEM Elemental Mapping and HR-TEM EDX Pattern of Ru(bpy)3/TiO2 a) showing image of area scanned, b) Ti, c) O and d) Ru 25–35 nm 25–35 nm 0.35 nm (101)
  • 31. 31 XRD patterns of a) Ru(bpy)3Cl2, b) in situ TiO2 and c) in situ Ru(bpy)3/TiO2 Adsorption desorption patterns of a) in situ TiO2 and b) in situ Ru(bpy)3 /TiO2 . UV/Vis absorption spectra of a) Ru(bpy)3Cl2, b) in situ Ru(bpy)3/TiO2 and c) in situ TiO2 Nanoscale 2015, 7, 15258-15267 Anataase tetragonal TiO2 JCPDS no. 21-1272 Rutile JCPDS no. 88-1175 SBET -35.24 m2 g−1 rp - 7.58 nm rp – 9.37 nm SBET – 26.96 m2 g−1
  • 32. 32 Tauc plot for calculation of band gap of a) Ru(bpy)3Cl2, b) in situ TiO2 and c) in situ Ru(bpy)3/TiO2 Wide scan XPS spectra of in -situ TiO2 and in- situ Ru(bpy)3/TiO2 a) Ti2p, b) O 1s and c) N 1s region Nanoscale 2015, 7, 15258-15267 Ru complex 4.05 eV LLCT and 2.55 eV MLCT TiO2 –3.15 eV Insitu Ru(bpy)3@TiO2 – 2.65 eV 464.23 458.39
  • 33. 33 Methanol formation from CO2 photoreduction: a) blank reaction, b) Ru(bpy)3Cl2 complex equimolar to in situ Ru(bpy)3/TiO2, c) in situ TiO2, d) Ru-complex adsorbed on P25 TiO2 and e) in situ Ru(bpy)3/TiO2 Nanoscale 2015, 7, 15258-15267 Catalyst recycling data for four cycles Water + DMF (4:1) 1876 μmol g−1 cat, Quantum Yield – 0.024 mol Einstein−1 Ru content – Fresh catalyst – 1.38 wt% After four recycling 1.34 wt % Possible mechanism of the reaction
  • 34. Synthetic scheme of rGO@CuZnO@Fe3O4 microspheres 4 34 Part A: Reduced graphene oxide wrapped core-shell structured magnetically separable rGO@CuZnO@Fe3O4 microspheres for enhanced visible light CO2 reduction efficiency Communicated Chapter 4: Magnetically separable nanocomposites for CO2 reduction 20 mL (0.2 mg/mL) iii) Hydrated with water
  • 35. 35 FE-SEM images of a) Fe3O4 microspheres (1), b) CuZnO@Fe3O4 microspheres (2), c) GO@CuZnO@Fe3O4 microspheres (3) and d) rGO@CuZnO@Fe3O4 microspheres (4) FE-SEM EDX patterns of a) Fe3O4 microspheres (1), b) CuZnO@Fe3O4 microspheres (2), c) GO@CuZnO@Fe3O4 microspheres (3) and d) rGO@CuZnO@Fe O microspheres (4) ~ 300 nm200 to 250 nm TEM images of a) Fe3O4 microsphere 1 b) CuZnO@Fe3O4 microspheres 2, High resolution TEM of c) rGO@CuZnO@Fe3O4 microspheres 4 d) showing at scale 10 nm e) at 2 nm resolution showing d spacing and f) SAED pattern STEM elemental mapping of rGO@CuZnO@Fe3O4 microsphere 4 for a) showing mapping scale bar b) mapping for O c) Cu d) C e) Fe f) Zn and g) EDX pattern of selected area in yellow highlighted circle
  • 36. 36 Communicated GO – 1.01 rGO - 0.41 GO@CuZnO@Fe3O4 - 1.13 rGO@CuZnO@Fe3O4 - 0.87 ID/IG ZnO 325 cm-1 A1 664 cm-1 Fe3O4 A1g Fe3O4 face centered cubic inverse spinal - JCPDS No. 19-0629 ZnO hexagonal wurtzite - JCPDS No. 36-1451 XRD diffractogram Raman spectra
  • 37. GO@CuZnO@Fe3O4 3 rGO@CuZnO@Fe3O4 4 Elements C1s O1s N1s Fe2p Si2p Zn2p Binding energy(eV) 285 530 400 710 103 1022 At% 56.16 28.86 3.05 7.34 3.05 1.54 Elements C1s O1s N1s Fe2p Si2p Zn2p Binding energy(eV) 285 530 400 710 103 1022 At% 48.50 36.00 3.53 3.98 4.01 3.98 XPS specturm Elemental composition 37 Wide scan C1s high resolution XPS spectra of a) GO@CuZnO@Fe3O4 and b) rGO@CuZnO@Fe3O4, c) Fe2p and d) Zn2p of rGO@CuZnO@Fe3O4 Communicated 1043.1 eV 1022.0 eV
  • 38. 38 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 200 300 400 500 600 700 800 Absorbance/a.u. Photon Wavelength/ nm Fe3O4 CuZnO@Fe3O4 ZnO a) 0 1 2 0 1 2 200 300 400 500 600 700 800 Absorbance/a.u. Photon Wavelength / nmc) GO GO@CuZnO@Fe3O4 rGO@CuZnO@Fe3O4 rGO 0 100 200 300 400 500 600 700 0 2 4 6 8 10 12 14 Absorbance(400-800nm)/a.u. GO ZnO GO@CuZnO CuZnO rGO@CuZnO Fe3O4 rGO d) GO ZnO GO@CuZnO CuZnO rGO@CuZnO Fe3O4 rGO @Fe3O4 @Fe3O4 @Fe3O4d) Fig. a) and c): absorbance curves of a) Fe3O4 microspheres (2), ZnO, CuZnO@ Fe3O4 microspheres (2); b) GO, rGO, GO@CuZnO@ Fe3O4 microspheres (3) and rGO@CuZnO@ Fe3O4 microspheres (4); c) Total absorbance measured between 400 and 800 nm for all the samples Communicated b) c)
  • 39. 39 CO2 conversion to methanol for a) Blank reaction, b) Fe3O4 microspheres (1), c) CuZnO@Fe3O4 microspheres (2), d) GO@CuZnO@Fe3O4 microspheres (3) and f) rGO@CuZnO@Fe3O4 microspheres (4) Methanol – 2656 µmol g-1 cat Recycling experiments by using rGO@CuZnO@Fe3O4 Hydrogen as byproduct CuZnO@Fe3O4 2, - 16.2 µmol g-1 cat GO@CuZnO@Fe3O4 3 - 28.5 µmol g-1 cat rGO@CuZnO@Fe3O4 4 - 45.5 µmol g-1 cat
  • 40. 40 Part B: Photo-induced reduction of CO2 using magnetically separable Ru- CoPc@TiO2@SiO2@Fe3O4 catalyst under visible light irradiation Dalton Trans, 2015, 44, 4546-4553 Synthesis of catalyst
  • 41. 41 FESEM images of a) Fe3O4, b) SiO2@Fe3O4, c) TiO2@SiO2@Fe3O4 1, d) Ru-CoPc@TiO2@SiO2@Fe3O4 6, e) EDX of 1, f) EDX of SiO2@Fe3O4, g) EDX of TiO2@SiO2@Fe3O4 and h) EDX of 6 Dalton Trans, 2015, 44, 4546-4553 TEM Image of a-b) Ru-CoPc@TiO2 @SiO2 @Fe3 O4 6, c) SAED pattern of 6
  • 42. 42 UV-Vis spectra of a) CoPcS, b) CoPc@TiO2 @SiO2 @Fe3 O4 , c) TiO2 @SiO2 @Fe3 O4 and d) Ru- CoPc@TiO2 @SiO2 @Fe3 O4 6 DT-TGA curve of Ru-CoPc@TiO2 @SiO2 @Fe3 O4 6 Dalton Trans, 2015, 44, 4546-4553
  • 43. 43 Graph for methanol yield Dalton Trans, 2015, 44, 4546-4553 Magnetic separable Methanol- 2570.18 μmol g-1 cat Water + TEA (4:1) Fresh catalyst Co- 1.26% Ru- 1.17% After recycling Co-0.98 wt% Ru-0.94 wt%) Plausible mechanism
  • 44. 44 Chapter 5: Metallic clusters as efficient photocatalysts for conversion of CO2 to methanol Schematic representation of octahedral molybdnum cluster La =Apical ligand Li =inner ligand.  Metal cluster is a multimettalic oxide or halides aggregates with general formula [Mo6X14]2-  Metal clusters due to presence of multi-metallic centers can undergo multi-electron redox process which is an essential requirement for reduction of carbon dioxide to higher hydrocarbons. The main drawback of metal clusters are their homogeneous nature and non-recyclability.  They strongly absorbs in visible region near 500 nm  The halogen hydroxy or ligands situated on apical position are labile and can be replaced with donor ligands like pyridine derivatives, etc.
  • 45. 45 Part A: Photoreduction of CO2 to methanol with hexanuclear molybdenum [Mo6Br14]2- cluster units under visible light irradiation Schematic representation of the [Mo6 Bri 8 La 6 ]2- cluster unit RSC Adv., 2014, 4, 10420-10423 CO2 photoreduction experiment Methanol Yield by using Cs2[Mo6Br14] and Cs Mo cluster - 6679 TBA Mo cluster - 5550
  • 46. 46 Part B: Hexamolybdenum Clusters supported on Graphene Oxide: Visible-Light Induced Photocatalyst for Reduction of Carbon Dioxide into Methanol A schematic illustration of (a) GO nanosheet decorated with various oxygen functionalities (b) immobilization of Cs2Mo6Bri 8Bra 6 / (TBA)2Mo6Bri 8Bra 6 clusters on the GO nano-sheets, and (c) molecular structure of Mo6 cluster representing position of inner and apical ligands Synthesis of graphene oxide supported Mo-cluster = 50 mg clusters water and ethanol(2:1) 50 mL GO (2.24 mg/mL) 46Carbon, 2015, 94, 91 –100
  • 47. (a) GO nanosheets (b) GO-Cs2Mo6Bri 8Bra x and (c) GO-(TBA)2Mo6Bri 8Bra x composites. FESEM micrographs and element mapping (a) GO-Cs2Mo6Bri 8Bra x (b) GO-(TBA)2Mo6Bri 8Bra x HRTEM images 47 Carbon, 2015, 94, 91 –100
  • 48. (a) GO, Cs2Mo6Bri 8Bra x clusters and GO- Cs2Mo6Bri 8Bra x composite; and (b) GO, (TBA)2Mo6Bri 8Bra 6 clusters and GO-(TBA)2Mo6Bri 8Bra 6 composite. FTIR spectra 48 Carbon, 2015, 94, 91 –100
  • 49. High resolution C 1s XPS spectra 49 Carbon, 2015, 94, 91 –100
  • 50. Cs 3d XPS spectra Cs 3d5/2 (a) Cs 3d5/2 (b) Mo 3d 50 Carbon, 2015, 94, 91 –100
  • 51. (c) Br 3d regions (d) Br 3d region Cluster Br/Mo Found = 2.6 theoretical value= 2.33 After immobilization Br/Mo Found =1.6 theoretical = (1.33). 51 Carbon, 2015, 94, 91 –100
  • 53. UV-visible spectra Tauc plot for band gap calculation 53 Carbon, 2015, 94, 91 –100 0.9 eV GO- Cs2Mo6Bri 8Bra x 1.25 eV GO- (TBA)2Mo6Bri 8Bra x
  • 54. Methanol Yield from different components 54 Carbon, 2015, 94, 91 –100 Recycling experiments using (a) GO- (TBA)2 Mo6 Bri 8 Bra x and (b) GO- Cs2 Mo6 Bri 8 Bra x .
  • 55. Plausible mechanism of photoreduction of CO2 into methanol catalyzed by GO-hexamolybdenum composite 55 Carbon, 2015, 94, 91 –100 E0 =E0 (pH0) – 0.06 (pH)
  • 56. 56 Part C: Octahedral Rhenium K4[Re6S8(CN)6] and Cu(OH)2 cluster modified TiO2 for the Photoreduction of CO2 under Visible Light Irradiation Schematic representation of the [Re6S8(CN)6]4– cluster unit Applied Catalysis A 2015, 499, 32–38 Synthesis of photocatalyst Step 1: First Cu(OH)2 modified P25 TiO2 was synthesized P25 TiO2 4.0 g Dispersed in 0.25 M NaOH (250 mL) 100 ml of 0.0077 M Cu(NO3)2drop-wise with vigorous stirring Cu(OH)2/TiO2 Cu(OH)2/TiO2 Step 2: Then Re clusters was attached to Cu(OH)2/TiO2 Re-cluster@Cu(OH)2/TiO2 K4[Re6S8(CN)6] 1 g 200 mg Reflux in DMF, 24 h Cu – 1.68 wt% Re – 1.65 wt% Energy Environ. Sci. 2011, 4, 1364–1371. Covalent immobilization via Re-CN-M bridges
  • 57. 57N2 adsorption-desorption isotherm and Pore size distribution Applied Catalysis A 2015, 499, 32–38 SEM images of a) Cu(OH)2/TiO2, b) Re- cluster@Cu(OH)2/TiO2, and EDX spectra Elemental mapping of Re-cluster@Cu(OH)2/TiO2 for a) Ti and b) Re 100-250nm 100-250nm SBET- 40.91 m2 g−1 rp- 11.87 nm Vp - 0.1215 cm3 g−1 SBET- 8.96 m2 g−1 rp- 83.51 nm Vp - 0.1871 cm3 g−1 Type IV Type II
  • 58. 58 Tauc plots for optical band gap determination of a) K4[Re6S8(CN)6], b) Cu(OH)2/TiO2 and c) Re-cluster@ Cu(OH)2/TiO2 Applied Catalysis A 2015, 499, 32–38 TGA of a) K4 [Re6 S8 (CN)6 ], b) Cu(OH)2 /TiO2 and c) Re- cluster/Cu(OH)2 /TiO2 UV/Vis absorption spectra of a) K4[Re6S8(CN)6], b) Re- cluster@Cu(OH)2/TiO2 and c) Cu(OH)2/TiO2 and d) TiO2 2.50 eV 2.69 eV, 3.11 eV 2.43 eV
  • 59. 59Possible mechanism of the reaction Applied Catalysis A 2015, 499, 32–38 CO2 conversion to methanol using a) Re-cluster@ Cu(OH)2/TiO2 , b) Re cclusters at same equimolar amount and c) Cu(OH)2/TiO2 Methanol - 149 μmol/0.1 g cat Gaseous analysis- CO2 (99.24%, 1772.14 μmol), H2(0.68%, 12.14 μmol) and CO (0.08%, 1.43 μmol TEOA sacrificial donor
  • 60. 60 List of Publications 1. P. Kumar, S. Varma and S. L. Jain, J. Mater. Chem. A, 2014, 2, 4514–4519. 2. P. Kumar, A. Kumar, B. Sreedhar, B. Sain, S. S. Ray and S. L. Jain, Chem. Eur. J. 2014, 20, 6154-61611. 3. P. Kumar, S. Kumar, S. Cordier, S. Paofai, R. Boubherroub and S. L. Jain, RSC Adv., 2014, 4, 10420. 4. P. Kumar, B. Sain and S. L. Jain, J. Mater. Chem. A, 2014, 2, 11246-11253. 5. P. Kumar, A. Bansiwal, N. Labhsetwar and S. L. Jain, Green Chem, 2015, 17, 1605-1609. 6. P. Kumar, H. P. Mungse, S. Cordier, R. Boukherroub, O P. Khatri, and S. L. Jain, Carbon, 2015, 94, 91 –100. 7. P. Kumar, H. P. Mungse, O. P. Khatri and S. L. Jain, RSC Adv., 2015,5, 54929-54935. 8. P. Kumar, N. G Naumov, R. Boukherroub, S. L Jain, Appl. Catal. A 2015, 499, 32–38. 9. P. Kumar, R. K. Chauhan, B. Sain, and S. L. Jain, Dalton Trans, 2015, 44, 4546-4553. 10. P. Kumar, A. Kumar, C. Joshi, R. Singh, S. Saran, S. L. Jain, RSC Adv., 2015, 5, 42414-42421. 11. P. Kumar, G. Singh, D. Tripathi and S. L. Jain, RSC Adv., 2014, 4, 50331-50337. 12. P. Kumar, K. Gill, S. Kumar, S. K Ganguly, S. L. Jain, J. Mol. Catal. A 2015, 401, 48–54. 13. P. Kumar, C. Joshi, N. Labhsetwar, R. Boukherroub and S. L. Jain, Nanoscale, 2015, 7, 15258-15267. 14. P. Kumar, C. Joshi, A. Barras, B. Sieber, A. Addad, L. Boussekey, S. Szunerits, R. Boukherroub and S. L. Jain, appl. Catal. B 2017, 205, 654-665 15. P. Kumar, C. Joshi, A. K. Srivastava, P. Gupta, R. Boukherroub and S. L. Jain, ACS Sus. Chem. Eng. 2016, 4, 69-75 16. A. Kumar, P. Kumar, C. Joshi, S. Ponnada, A. K. Pathak, A. Ali, B. Sreedhar and S. L. Jain, Green Chem. 2016, 18, 2514-2521. 17. S. Kumar, P. Kumar and S. L. Jain, J. Mater. Chem. A, 2014, 2, 18861-18866. 18. S. Kumar, P. Kumar, and S. L. Jain, RSC Adv., 2013, 3, 24013-24016. 19. D. Chauhan, P. Kumar, C. Joshi, N. Labhsetwar, S. K. Ganguly and S. L. Jain, New J. Chem., 2015, 39, 6193-6200. 20. A. Bansal, P. Kumar, C. D. Sharma, S. S. Ray, S. L. Jain, J. Pol. Sci. A, 2015, 53, 2739-2746. 21. R. Gusain, P. Kumar, O. P. Sharma, S. L. Jain, O. P. Khatri, Appl. Cat. B 2015, 181, 352-362. 22. V. Panwar, P. Kumar, A. Bansal, S. S Ray, S. L Jain, Appl. Cat. A, 2015, 498, 25–31. 23. V. Panwar, P. Kumar, S. S Ray, S. L Jain, Tetrahedron letters, 2015, 56, 3948–3953. 24. C. Joshi, P. Kumar, B. Behera, A. Barras, S. Szunerits, R. Boukherroub and S. L. Jain, RSC Adv. 2015, 5, 100011- 100017. 25. A. Bansal, A. Kumar, P. Kumar, S. Bojja, A. K. Chatterjee, S. S. Ray, S. L. Jain, RSC Adv. 2015, 5, 21189-21196
  • 61. 61 Book Chapter 1. P. Kumar, S. L. Jain and R. Boukherroub, Graphene-based nanocomposite materials for the photoreduction of carbon dioxide into valuable organic compounds, Innovations in Nanomaterials , Nova Science Publishers, Inc. USA. (Editors: Al- Nakib Chowdhury, Joe Shapter, and Abu Bin Imran. ISBN: 978-1-63483-572-5. 2. P. Kumar, A. Kumar, C. Joshi, R. Boukherroub, S. L. Jain, Graphene-semiconductor hybrid photocatalysts and their application in solar fuel production, Graphene Composites, WILEY-Scrivener Publisher, USA. Awards Awarded with Raman-Charpak fellowship to visited ‘Institut de Recherche Interdisciplinaire (IRI, USR 3078 CNRS), Université Lille 1, France’ for six month under the supervision of Dr. Rabah Boukherroub (Group Director) 1. Pawan Kumar, Bir Sain, and Suman L. Jain, Magnetically separable Fe3 O4 @SiO2 @TiO2 functionalized by Co-Ru complexes for the visible light induced photoreduction of CO2 ., Research Scholars Day, 16-17 Dec 2013, IIST Thiruvananthpurum, India (working under umbrella of Indian Space Research Organization). 2. Pawan Kumar, Bir Sain, Suman L. Jain, Visible light driven photoreduction of carbon dioxide to methanol using trinuclear ruthenium complex immobilized to graphene oxide, National conference on nanotechnology and renewable energy, 28-29 Apr 2014, Jamia Millia Islamia, New Delhi, India. 3. Pawan Kumar, Chetan Joshi and Suman L. Jain, Visible light assisted photocatalytic reduction of CO2 using graphene oxide supported heteroleptic ruthenium complex, International conference on sustainable energy and technologies(ICSET 2014), 11-13 Dec 2014, PSG College of Technology, Coimbatore, India (International host- University of Exeter, UK, University of Oslo, Norway, IFE Norway) Poster Presentation Pawan Kumar, Bir Sain, and Suman L. Jain, Development of visible light active photocatalysts for reduction of CO2 to C1 chemicals, First International Seminar on Nanotechnology in Conventional and Alternate Energy Systems, 12- 13 Aug 2013, University of Petroleum and Energy Studies, Dehradun, India . Workshop Advanced Material Processing and characterization, 17-22 Aug 2014, organized by Dept. of Materials Science and Engineering, Indian Institute of Technology, Kanpur Oral talk in conference