SlideShare uma empresa Scribd logo
1 de 52
Baixar para ler offline
Complex Numbers
Solving Quadratics
x2 1  0
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
In order to solve this equation we define a new number
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
In order to solve this equation we define a new number
i  1

or

i 2  1

i is an imaginary number
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
In order to solve this equation we define a new number
i  1

or

i 2  1

i is an imaginary number

x 2  1
x   1
x  i
All complex numbers (z) can be written as; z = x + iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3

Im z   5
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
3
e.g . ,  , e,4
4
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
3
e.g . ,  , e,4
4
(4) Every complex number z = x + iy, has a complex conjugate
z  x  iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
3
e.g . ,  , e,4
4
(4) Every complex number z = x + iy, has a complex conjugate
z  x  iy
z  2  7i
e.g . z  2  7i
Complex Numbers
x + iy
Complex Numbers
x + iy

Real Numbers
y=0
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers
Fractions

Integers

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers
Fractions

Integers
Naturals
Zero

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers
Fractions

Integers
Naturals
Zero

Negatives

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers

Pure
Imaginary Numbers
x  0, y  0

Fractions

Integers
Naturals
Zero

Negatives

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers

Pure
Imaginary Numbers
x  0, y  0

Fractions

Integers
Naturals
Zero

Negatives
NOTE: Imaginary numbers
cannot be ordered

Irrational Numbers
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
4  3i    8  2i 
 4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i

Division (Realising The Denominator)

4  3i 

 8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i

Division (Realising The Denominator)

4  3i 

 8  2i 

 8  2i   8  2i 
 32  8i  24i  6

64  4
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i

Division (Realising The Denominator)

4  3i 

 8  2i 

 8  2i   8  2i 
 32  8i  24i  6

64  4
 38  16i

68
 19 8

 i
34 34
Conjugate Basics
1

z1  z2  z1  z2
Conjugate Basics
1

z1  z2  z1  z2

 2

z1 z2  z1  z2

 z1  z1
 3   
 z2  z2
Conjugate Basics
1

z1  z2  z1  z2

 2

z1 z2  z1  z2

 z1  z1
 3   
 z2  z2

 4  zz  x 2  y 2
Conjugate Basics
1

z1  z2  z1  z2

 4  zz  x 2  y 2

 2

z1 z2  z1  z2

1 z
 5 
z zz

 z1  z1
 3   
 z2  z2
Conjugate Basics
1

z1  z2  z1  z2

 4  zz  x 2  y 2

 2

z1 z2  z1  z2

1 z
 5 
z zz

 z1  z1
 3   
 z2  z2
1
e.g.
 4  3i 
Conjugate Basics
1

z1  z2  z1  z2

 4  zz  x 2  y 2

 2

z1 z2  z1  z2

1 z
 5 
z zz

 z1  z1
 3   
 z2  z2
1
4  3i

e.g.
 4  3i  16  9
4
3

 i
25 25
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal

i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2

4x  6 y  8

9 x  6 y  6
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2

4x  6 y  8

9 x  6 y  6
5x
 14
14
x
5
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2
14
16
, y
x  
5
5

4x  6 y  8

9 x  6 y  6
5x
 14
14
x
5
ii  z  2iw  4  3i
2 z  iw  3  4i
ii  z  2iw  4  3i
2 z  iw  3  4i



z  2iw  4  3i
4 z  2iw  6  8i
ii  z  2iw  4  3i
2 z  iw  3  4i



z  2iw  4  3i
4 z  2iw  6  8i
 2  5i
3z

2 5
z  i
3 3
ii  z  2iw  4  3i
2 z  iw  3  4i

2 5
  i  2iw  4  3i
3 3
10 4
2iw   i
3 3
10 4
w 
6i 6
2 5
  i
3 3



z  2iw  4  3i
4 z  2iw  6  8i
 2  5i
3z

2 5
z  i
3 3
ii  z  2iw  4  3i
2 z  iw  3  4i



2 5
  i  2iw  4  3i
3 3
10 4
2iw   i
3 3
10 4
w 
6i 6
2 5
  i
3 3
2 5
2 5
w  i , z  i
3 3
3 3

z  2iw  4  3i
4 z  2iw  6  8i
 2  5i
3z

2 5
z  i
3 3
Cambridge: Exercise 1A; 1 to 10 ace etc, 11bd, 13 to 20
Patel: Exercise 4A; 28 ac

Mais conteúdo relacionado

Mais procurados

X2 T01 01 complex number definitions
X2 T01 01 complex number definitionsX2 T01 01 complex number definitions
X2 T01 01 complex number definitionsNigel Simmons
 
Complex function
Complex functionComplex function
Complex functionShrey Patel
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareAlan Dix
 
Nbhm m. a. and m.sc. scholarship test 2012 with answer key
Nbhm m. a. and m.sc. scholarship test 2012 with answer keyNbhm m. a. and m.sc. scholarship test 2012 with answer key
Nbhm m. a. and m.sc. scholarship test 2012 with answer keyMD Kutubuddin Sardar
 
Nbhm m. a. and m.sc. scholarship test september 20, 2014 with answer key
Nbhm m. a. and m.sc. scholarship test september 20, 2014 with answer keyNbhm m. a. and m.sc. scholarship test september 20, 2014 with answer key
Nbhm m. a. and m.sc. scholarship test september 20, 2014 with answer keyMD Kutubuddin Sardar
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graphRefat Ullah
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate PlaneRudy Alfonso
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltossialalsi
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answersleblance
 
Coordinate Geometry
Coordinate GeometryCoordinate Geometry
Coordinate GeometryManisha Keim
 

Mais procurados (16)

X2 T01 01 complex number definitions
X2 T01 01 complex number definitionsX2 T01 01 complex number definitions
X2 T01 01 complex number definitions
 
Complex function
Complex functionComplex function
Complex function
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
 
Nbhm m. a. and m.sc. scholarship test 2012 with answer key
Nbhm m. a. and m.sc. scholarship test 2012 with answer keyNbhm m. a. and m.sc. scholarship test 2012 with answer key
Nbhm m. a. and m.sc. scholarship test 2012 with answer key
 
Nbhm m. a. and m.sc. scholarship test september 20, 2014 with answer key
Nbhm m. a. and m.sc. scholarship test september 20, 2014 with answer keyNbhm m. a. and m.sc. scholarship test september 20, 2014 with answer key
Nbhm m. a. and m.sc. scholarship test september 20, 2014 with answer key
 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graph
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
 
Alg1 lesson 7-1
Alg1 lesson 7-1Alg1 lesson 7-1
Alg1 lesson 7-1
 
E029024030
E029024030E029024030
E029024030
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
 
3. apply distance and midpoint
3.  apply distance and midpoint3.  apply distance and midpoint
3. apply distance and midpoint
 
Algebra presentation
Algebra presentation Algebra presentation
Algebra presentation
 
Coordinate Geometry
Coordinate GeometryCoordinate Geometry
Coordinate Geometry
 
Tricky log graphs
Tricky log graphsTricky log graphs
Tricky log graphs
 

Destaque

Complex Number From Jayant for TV
Complex Number From Jayant for TVComplex Number From Jayant for TV
Complex Number From Jayant for TVJayant Singh
 
1603 plane sections of real and complex tori
1603 plane sections of real and complex tori1603 plane sections of real and complex tori
1603 plane sections of real and complex toriDr Fereidoun Dejahang
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex planeAmit Amola
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 

Destaque (7)

Complex Number From Jayant for TV
Complex Number From Jayant for TVComplex Number From Jayant for TV
Complex Number From Jayant for TV
 
1603 plane sections of real and complex tori
1603 plane sections of real and complex tori1603 plane sections of real and complex tori
1603 plane sections of real and complex tori
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
FPGA
FPGAFPGA
FPGA
 

Semelhante a X2 t01 01 arithmetic of complex numbers (2013)

Complex numbers- College Algebra
Complex numbers- College AlgebraComplex numbers- College Algebra
Complex numbers- College AlgebraFarhana Shaheen
 
1.3 Complex Numbers
1.3 Complex Numbers1.3 Complex Numbers
1.3 Complex Numberssmiller5
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3Jimbo Lamb
 
X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)Nigel Simmons
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equationsNigel Simmons
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1youmarks
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsNigel Simmons
 
1.3 Complex Numbers
1.3 Complex Numbers1.3 Complex Numbers
1.3 Complex Numberssmiller5
 
5.4 Complex Numbers
5.4 Complex Numbers5.4 Complex Numbers
5.4 Complex Numbershisema01
 

Semelhante a X2 t01 01 arithmetic of complex numbers (2013) (20)

Complex numbers- College Algebra
Complex numbers- College AlgebraComplex numbers- College Algebra
Complex numbers- College Algebra
 
1.3 Complex Numbers
1.3 Complex Numbers1.3 Complex Numbers
1.3 Complex Numbers
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
 
X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equations
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressions
 
1. complex numbers
1. complex numbers1. complex numbers
1. complex numbers
 
Chapter0
Chapter0Chapter0
Chapter0
 
1.3 Complex Numbers
1.3 Complex Numbers1.3 Complex Numbers
1.3 Complex Numbers
 
complex numbers
complex numberscomplex numbers
complex numbers
 
5.4 Complex Numbers
5.4 Complex Numbers5.4 Complex Numbers
5.4 Complex Numbers
 
Annie
AnnieAnnie
Annie
 

Mais de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Último

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Último (20)

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

X2 t01 01 arithmetic of complex numbers (2013)

  • 2. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions
  • 3. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number
  • 4. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number
  • 5. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  • 6. All complex numbers (z) can be written as; z = x + iy
  • 7. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  • 8. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  • 9. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  • 10. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  • 11. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  • 12. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  • 13. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  • 14. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy z  2  7i e.g . z  2  7i
  • 16. Complex Numbers x + iy Real Numbers y=0
  • 17. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0
  • 18. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Irrational Numbers
  • 19. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Irrational Numbers
  • 20. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  • 21. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 22. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Pure Imaginary Numbers x  0, y  0 Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 23. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Pure Imaginary Numbers x  0, y  0 Fractions Integers Naturals Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  • 24. Basic Operations As i a surd, the operations with complex numbers are the same as surds
  • 25. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  • 26. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  • 27. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  • 28. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  • 29. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 30. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i 
  • 31. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i    8  2i   8  2i   32  8i  24i  6  64  4
  • 32. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i    8  2i   8  2i   32  8i  24i  6  64  4  38  16i  68  19 8   i 34 34
  • 34. Conjugate Basics 1 z1  z2  z1  z2  2 z1 z2  z1  z2  z1  z1  3     z2  z2
  • 35. Conjugate Basics 1 z1  z2  z1  z2  2 z1 z2  z1  z2  z1  z1  3     z2  z2  4  zz  x 2  y 2
  • 36. Conjugate Basics 1 z1  z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2
  • 37. Conjugate Basics 1 z1  z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2 1 e.g.  4  3i 
  • 38. Conjugate Basics 1 z1  z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2 1 4  3i  e.g.  4  3i  16  9 4 3   i 25 25
  • 39. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2
  • 40. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2
  • 41. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i 
  • 42. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i
  • 43. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2
  • 44. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 4x  6 y  8  9 x  6 y  6
  • 45. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 4x  6 y  8  9 x  6 y  6 5x  14 14 x 5
  • 46. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 14 16 , y x   5 5 4x  6 y  8  9 x  6 y  6 5x  14 14 x 5
  • 47. ii  z  2iw  4  3i 2 z  iw  3  4i
  • 48. ii  z  2iw  4  3i 2 z  iw  3  4i  z  2iw  4  3i 4 z  2iw  6  8i
  • 49. ii  z  2iw  4  3i 2 z  iw  3  4i  z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  • 50. ii  z  2iw  4  3i 2 z  iw  3  4i 2 5   i  2iw  4  3i 3 3 10 4 2iw   i 3 3 10 4 w  6i 6 2 5   i 3 3  z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  • 51. ii  z  2iw  4  3i 2 z  iw  3  4i  2 5   i  2iw  4  3i 3 3 10 4 2iw   i 3 3 10 4 w  6i 6 2 5   i 3 3 2 5 2 5 w  i , z  i 3 3 3 3 z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  • 52. Cambridge: Exercise 1A; 1 to 10 ace etc, 11bd, 13 to 20 Patel: Exercise 4A; 28 ac