SlideShare uma empresa Scribd logo
1 de 101
Baixar para ler offline
Projectile Motion
Projectile Motion
    y




           x
Projectile Motion
    y



        
            x
Projectile Motion
    y



        
            x
Projectile Motion
                     y       maximum range
                                   45

                         
                             x

Initial conditions
Projectile Motion
                     y            maximum range
                                        45

                         
                                  x

Initial conditions   when t = 0


          v
      
Projectile Motion
                         y            maximum range
                                            45

                             
                                      x

Initial conditions       when t = 0


          v          
                     y
      
              
              x
Projectile Motion
                         y                    maximum range
                                                    45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x
          v                         cos
                     
                     y           v
                                x  v cos
                                 
              
              x
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
                                    cos        sin 
          v          
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
                                    cos        sin 
          v          
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x                  x0
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
          v                         cos        sin 
                     
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x                  x0          y0
  0
x           g
         y
  0
x           g
         y
x  c1

  0
x           g
         y
x  c1
        y   gt  c2
         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
   c1  v cos
    x  v cos
    
  0
       x                      g
                           y
      x  c1
                          y   gt  c2
                           
when t  0, x  v cos
                          y  v sin 
                           
   c1  v cos              c2  v sin 
    x  v cos
                        y   gt  v sin 
                         
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
       c3  0
    x  vt cos
  0
       x                          g
                               y
      x  c1
                             y   gt  c2
                              
when t  0, x  v cos
                             y  v sin 
                              
   c1  v cos                 c2  v sin 
    x  v cos
                           y   gt  v sin 
                            

                               1 2
   x  vt cos  c3       y   gt  vt sin   c4
                               2
    when t  0, x  0           y0
       c3  0                   c4  0
    x  vt cos               1
                         y   gt 2  vt sin 
                              2
  0
       x                                   g
                                        y
      x  c1
                                       y   gt  c2
                                        
when t  0, x  v cos
                                       y  v sin 
                                        
   c1  v cos                           c2  v sin 
    x  v cos
                                     y   gt  v sin 
                                      
                                        1
   x  vt cos  c3                y   gt 2  vt sin   c4
                                        2
    when t  0, x  0                    y0
      c3  0                            c4  0
    x  vt cos                         1 2
                                  y   gt  vt sin 
                                        2
       Note: parametric coordinates of a parabola
  0
            x                                      g
                                                y
           x  c1
                                               y   gt  c2
                                                
     when t  0, x  v cos
                                               y  v sin 
                                                
        c1  v cos                              c2  v sin 
          x  v cos
                                             y   gt  v sin 
                                              
                                                1
         x  vt cos  c3                  y   gt 2  vt sin   c4
                                                2
          when t  0, x  0                      y0
            c3  0                              c4  0
          x  vt cos                           1 2
                                          y   gt  vt sin 
                                                2
               Note: parametric coordinates of a parabola
        x
t
     v cos 
  0
          x                                     g
                                             y
         x  c1
                                            y   gt  c2
                                             
   when t  0, x  v cos
                                            y  v sin 
                                             
      c1  v cos                             c2  v sin 
        x  v cos
                                          y   gt  v sin 
                                           
                                              1 2
       x  vt cos  c3                  y   gt  vt sin   c4
                                              2
        when t  0, x  0                      y0
          c3  0                              c4  0
        x  vt cos                          1 2
                                        y   gt  vt sin 
                                             2
           Note: parametric coordinates of a parabola
      x                gx 2     x sin 
t           y 2            
   v cos          2v cos  cos 
                            2


                   gx 2
             y   2 sec 2   x tan 
                   2v
  0
          x                                       g
                                               y
         x  c1
                                              y   gt  c2
                                               
   when t  0, x  v cos
                                              y  v sin 
                                               
      c1  v cos                               c2  v sin 
        x  v cos
                                            y   gt  v sin 
                                             
                                                1
       x  vt cos  c3                    y   gt 2  vt sin   c4
                                                2
        when t  0, x  0                        y0
          c3  0                                c4  0
        x  vt cos                           1 2
                                        y   gt  vt sin 
                                              2
           Note: parametric coordinates of a parabola
      x                gx 2     x sin 
t           y 2                             gx 2
   v cos          2v cos  cos          y   2  tan 2   1  x tan 
                            2

                                                2v
                   gx 2
             y   2 sec 2   x tan 
                   2v
Common Questions
Common Questions
(1) When does the particle hit the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                     roots of the quadratic
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
    i  find when y  0
                   
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                           roots of the quadratic
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
                                                   vertex of the parabola
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
     i  find when y  0
    ii  substitute into y
                          
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
   ii  substitute into y
                                    
                                     y
   iii  tan  
                  y
                 
                 x                             
                                               x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                           roots of the quadratic
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
                                                   vertex of the parabola
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0                      (i) find slope of the tangent
   ii  substitute into y
                             
                              y                        ii  m  tan
   iii  tan  
                  y
                 
                 x                        
                                          x
Summary
Summary
 A particle undergoing projectile motion obeys
Summary
 A particle undergoing projectile motion obeys
              0
            x           and            g
                                    y
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions
Summary
 A particle undergoing projectile motion obeys
               0
             x             and          g
                                     y

 with initial conditions

           x  v cos
                          and     y  v sin 
                                   
Summary
   A particle undergoing projectile motion obeys
                  0
                x            and             g
                                          y

   with initial conditions

              x  v cos
                            and        y  v sin 
                                        

e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                 3
        tan 1 to the ground. Determine;.
                 4
Summary
    A particle undergoing projectile motion obeys
                  0
                x             and             g
                                           y

    with initial conditions

              x  v cos
                             and        y  v sin 
                                         

 e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                  3
         tan 1 to the ground. Determine;.
                  4
a) greatest height obtained
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions                                       5
                                                                            3
                                                                     3
                                                          tan 1
                                                                     4
                                                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                            3
                                                                     3
                                                          tan 1
                                                                     4
                                                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                         5
                                                                          3
                     x  25 
                             4
                                                       tan 1
                                                                  3
                           5                                    4
                        20m/s                                 4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                         5
                                                                          3
                     x  25 
                             4
                                                       tan 1
                                                                  3
                           5                                    4
                        20m/s                                 4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                    y  v sin 
                                                         5
                                                                          3
                     x  25 
                             4
                                    y  25 
                                             3
                                                     tan 1
                                                                  3
                           5             5                    4
                        20m/s          15m/s                 4
  0
x          10
         y
  0
x          10
         y
x  c1

  0
x          10
         y
x  c1
        y  10t  c2
         
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20
   x  20
   
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3      y  5t 2  15t  c4
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
   c3  0
   x  20t
  0
    x                    10
                       y
   x  c1
                      y  10t  c2
                       
when t  0, x  20
                        y  15
                         
  c1  20                  c2  15
   x  20
                      y  10t  15
                       
  x  20t  c3        y  5t 2  15t  c4
 when t  0, x  0       y0
   c3  0               c4  0
   x  20t           y  5t 2  15t
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
           10t  15  0
                   3
              t
                   2
  0
          x                                  10
                                           y
         x  c1
                                          y  10t  c2
                                           
      when t  0, x  20
                                            y  15
                                             
        c1  20                                c2  15
          x  20
                                          y  10t  15
                                           
        x  20t  c3                      y  5t 2  15t  c4
       when t  0, x  0                     y0
         c3  0                             c4  0
         x  20t                         y  5t 2  15t
greatest height occurs when y  0
                                           3         3
                                                           2
                                                              3
           10t  15  0            when t  , y  5   15 
                                            2         2     2
                   3                               45
              t                                 
                   2                               4
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
         x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                              3         3
                                                             2
                                                                3
           10t  15  0             when t  , y  5   15 
                                               2        2     2
                   3                                 45
              t                                   
                   2                                 4
                                 1
           greatest height is 11 m above the ground
                                 4
b) range
b) range
  time of flight is 3 seconds
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
   range is 60m
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                           
             2                     2
                              10
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                    10 5
             2                     2                        10
                              10                    
                                                         20
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                    10 5
             2                     2                        10
                              10                    
         1
 tan                                                   20
         2
       2634
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                       10 5
             2                     2                             10
                              10                      
         1
 tan                                                     20
         2
       2634
                       1
                after second, velocity  10 5m/s and it is traveling at
                       2
                  an angle of 2634 to the horizontal
d) cartesian equation of the path
d) cartesian equation of the path

        x  20t
             x
        t
            20
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

         x  20t              y  5t 2  15t
                                          2
              x                      x   15 x 
         t                   y  5         
             20                      20      20 
                                  x 2 3x
                              y      
                                  80    4
Using the cartesian equation to solve the problem
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex
          2
      3          1
       4( )(0)
      4         80
       9
    
      16
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex             
          2                                       y
      3          1                                   4a
       4( )(0)
      4         80                                    9 20
                                                     
       9                                               16 1
    
      16                                             45
                                                   
                                                      4
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x     x
         t                    y  5   15 
             20                       20    20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex           
          2                                     y
      3          1                                 4a
       4( )(0)
      4         80                                  9 20
                                                   
       9                                             16 1
    
      16                                           45
                                                 
                                                    4
                                1
          greatest height is 11 m above the ground
                                4
b) range
b) range
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
b) range
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10
y      
   80     4                       2
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
roots are 0 and 60                   dy 1
                        when x  10, 
 range is 60m                       dx 2
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                     dy 1                   1
roots are 0 and 60      when x  10,              tan  
 range is 60m                       dx 2                   2
                                                         2634
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos 
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                 1
                                                         
                                                             2
1
b) range             c) velocity and direction of the ball after second
                                                                 2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80       4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                   1
                                       10                  
                                                              2
                                     1 2
                                       
                                     2     5
                                  10 5
1
b) range             c) velocity and direction of the ball after second
                                                                 2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80       4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                   1
                                       10                  
                                                              2
                                     1 2
                                       
                                     2     5
                                   10 5
                               1
                        after second, velocity  10 5m/s and it is
                               2
                       traveling at an angle of 26 34 to the horizontal
1
b) range                  c) velocity and direction of the ball after second
                                                                      2
      x 3x
        2                              1
                             when t  , x  10                x 2 3x
 y                                                     y        
      80     4                         2
                                                             80       4
     x       x                                       dy  x 3
    3                                                        
     4      20                                       dx 40 4
                                           dy 1                  1
roots are 0 and 60           when x  10,              tan  
  range is 60m                            dx 2                  2
                                     v
                                            x                 2634
                                         t cos                    5
                                                                        1
                                            10                  
Exercise 3G; 1ac, 2ac,                                             2
                                          1 2
4, 6, 8, 9, 11, 13, 16, 18                  
                                          2     5
 Exercise 3H; 2, 4, 6,                10 5
                                  1
       7, 10, 11           after second, velocity  10 5m/s and it is
                                  2
                          traveling at an angle of 26 34 to the horizontal

Mais conteúdo relacionado

Mais de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

12 x1 t07 01 projectile motion (2012)

  • 5. Projectile Motion y maximum range   45  x Initial conditions
  • 6. Projectile Motion y maximum range   45  x Initial conditions when t = 0 v 
  • 7. Projectile Motion y maximum range   45  x Initial conditions when t = 0 v  y   x
  • 8. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x v  cos  y v  x  v cos   x
  • 9. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x
  • 10. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x x0
  • 11. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y v  cos  sin   y v v  x  v cos  y  v sin    x x0 y0
  • 12.   0 x    g y
  • 13.   0 x    g y x  c1 
  • 14.   0 x    g y x  c1  y   gt  c2 
  • 15.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin  
  • 16.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos x  v cos 
  • 17.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin  
  • 18.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2
  • 19.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0
  • 20.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 x  vt cos
  • 21.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 y   gt 2  vt sin  2
  • 22.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola
  • 23.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x t v cos 
  • 24.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x gx 2 x sin  t y 2  v cos  2v cos  cos  2 gx 2 y   2 sec 2   x tan  2v
  • 25.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x gx 2 x sin  t y 2  gx 2 v cos  2v cos  cos  y   2  tan 2   1  x tan  2 2v gx 2 y   2 sec 2   x tan  2v
  • 27. Common Questions (1) When does the particle hit the ground?
  • 28. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0
  • 29. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle?
  • 30. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0
  • 31. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x
  • 32. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x
  • 33. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle?
  • 34. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0 
  • 35. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y
  • 36. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  vertex of the parabola ii  substitute into y
  • 37. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground?
  • 38. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0
  • 39. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y 
  • 40. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y   y iii  tan   y  x  x
  • 41. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  vertex of the parabola ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 (i) find slope of the tangent ii  substitute into y   y  ii  m  tan iii  tan   y  x  x
  • 43. Summary A particle undergoing projectile motion obeys
  • 44. Summary A particle undergoing projectile motion obeys   0 x and    g y
  • 45. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions
  • 46. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin  
  • 47. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4
  • 48. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained
  • 49. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions
  • 50. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions 5 3 3   tan 1 4 4
  • 51. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 3   tan 1 4 4
  • 52. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 x  25  4     tan 1 3 5 4  20m/s 4
  • 53. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3 x  25  4     tan 1 3 5 4  20m/s 4
  • 54. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3 x  25  4 y  25  3       tan 1 3 5 5 4  20m/s  15m/s 4
  • 55.   0 x   10 y
  • 56.   0 x   10 y x  c1 
  • 57.   0 x   10 y x  c1  y  10t  c2 
  • 58.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15 
  • 59.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 x  20 
  • 60.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15 
  • 61.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3
  • 62.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4
  • 63.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0
  • 64.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 x  20t
  • 65.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t
  • 66.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0 
  • 67.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0   10t  15  0 3 t 2
  • 68.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3 3 2  3  10t  15  0 when t  , y  5   15  2 2  2 3 45 t  2 4
  • 69.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3  3 2  3  10t  15  0 when t  , y  5   15  2 2  2 3 45 t  2 4 1  greatest height is 11 m above the ground 4
  • 71. b) range time of flight is 3 seconds
  • 72. b) range time of flight is 3 seconds when t  3, x  203  60
  • 73. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m
  • 74. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2
  • 75. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  2  2  10
  • 76. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  20
  • 77. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  1 tan   20 2   2634
  • 78. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  1 tan   20 2   2634 1  after second, velocity  10 5m/s and it is traveling at 2 an angle of 2634 to the horizontal
  • 79. d) cartesian equation of the path
  • 80. d) cartesian equation of the path x  20t x t 20
  • 81. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 82. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 83. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 84. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem
  • 85. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex
  • 86. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex 2 3 1     4( )(0) 4 80 9  16
  • 87. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex  2 y 3 1 4a     4( )(0) 4 80 9 20    9 16 1  16 45  4
  • 88. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x  x t y  5   15  20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex  2 y 3 1 4a     4( )(0) 4 80 9 20    9 16 1  16 45  4 1  greatest height is 11 m above the ground 4
  • 90. b) range  x 2 3x y  80 4 x x   3  4 20 
  • 91. b) range  x 2 3x y  80 4 x x   3  4 20  roots are 0 and 60  range is 60m
  • 92. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x y  80 4 x x   3  4 20  roots are 0 and 60  range is 60m
  • 93. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10 y  80 4 2 x x   3  4 20  roots are 0 and 60  range is 60m
  • 94. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 roots are 0 and 60  range is 60m
  • 95. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 roots are 0 and 60 dy 1 when x  10,   range is 60m dx 2
  • 96. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2   2634
  • 97. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos 
  • 98. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1  2
  • 99. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10   2 1 2  2 5  10 5
  • 100. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10   2 1 2  2 5  10 5 1  after second, velocity  10 5m/s and it is 2 traveling at an angle of 26 34 to the horizontal
  • 101. 1 b) range c) velocity and direction of the ball after second 2  x 3x 2 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10  Exercise 3G; 1ac, 2ac,  2 1 2 4, 6, 8, 9, 11, 13, 16, 18  2 5 Exercise 3H; 2, 4, 6,  10 5 1 7, 10, 11  after second, velocity  10 5m/s and it is 2 traveling at an angle of 26 34 to the horizontal