SlideShare uma empresa Scribd logo
1 de 103
Baixar para ler offline
Numerical Methods - Finite Differences
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science,
Rajkot (Guj.)
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
∆y1 = y2 − y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
∆y1 = y2 − y1
.......
.......
∆yn−1 = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
∆y1 = y2 − y1
.......
.......
∆yn−1 = yn − yn−1
is called Forward difference operator.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first forward difference is ∆yn = yn+1 − yn
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first forward difference is ∆yn = yn+1 − yn
The second forward difference are defined as the difference of
the first differences.
∆2y0 = ∆(∆y0) = ∆(y1 − y0) = ∆y1 − ∆y0
= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0
∆2y1 = ∆y2 − ∆y1
∆2yi = ∆yi+1 − ∆yi
In general nth forward difference of f is defined by
∆n
yi = ∆n−1
yi+1 − ∆n−1
yi
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward Difference Table:
x y ∆y ∆2y ∆3y ∆4y ∆5y
x0 y0
∆y0
x1 y1 ∆2y0
∆y1 ∆3y0
x2 y2 ∆2y1 ∆4y0
∆y2 ∆3y1 ∆5y0
x3 y3 ∆2y2 ∆4y1
∆y3 ∆3y2
x4 y4 ∆2y3
∆y4
x5 y5
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The operator ∆ satisfies the following properties:
1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The operator ∆ satisfies the following properties:
1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x)
2 ∆[cf(x)] = c∆f(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The operator ∆ satisfies the following properties:
1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x)
2 ∆[cf(x)] = c∆f(x)
3 ∆m∆nf(x) = ∆m+nf(x), m, n are positive integers
4 Since ∆nyn is a constant, ∆n+1yn = 0 , ∆n+2yn = 0, . . .
i.e. (n + 1)th and higher differences are zero.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
y2 = y2 − y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
y2 = y2 − y1
.......
.......
yn = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
y2 = y2 − y1
.......
.......
yn = yn − yn−1
is called Backward difference operator.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first backward difference is yn = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first backward difference is yn = yn − yn−1
The second backward difference are obtain by the difference
of the first differences.
2y2 = ( y2) = (y2 − y1) = y2 − y1
= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0
2y3 = y3 − y2
2yn = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first backward difference is yn = yn − yn−1
The second backward difference are obtain by the difference
of the first differences.
2y2 = ( y2) = (y2 − y1) = y2 − y1
= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0
2y3 = y3 − y2
2yn = yn − yn−1
In general nth backward difference of f is defined by
n
yi = n−1
yi − n−1
yi−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward Difference Table:
x y y 2y 3y 4y 5y
x0 y0
y1
x1 y1
2y2
y2
3y3
x2 y2
2y3
4y4
y3
3y4
5y5
x3 y3
2y4
4y5
y4
3y5
x4 y4
2y5
y5
x5 y5
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
δ2y2 = δy5
2
− δy3
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
δ2y2 = δy5
2
− δy3
2
.......
δ3y3
2
= δ2y2 − δ2y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
δ2y2 = δy5
2
− δy3
2
.......
δ3y3
2
= δ2y2 − δ2y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central Difference Table:
x y δy δ2y δ3y δ4y δ5y
x0 y0
δy1
2
x1 y1 δ2y1
δy3
2
δ3y3
2
x2 y2 δ2y2 δ4y2
δy5
2
δ3y5
2
δ5y5
2
x3 y3 δ2y3 δ4y3
δy7
2
δ3y7
2
x4 y4 δ2y4
δy9
2
x5 y5
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
∆yx = yx+h − yx = f(x + h) − f(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
∆yx = yx+h − yx = f(x + h) − f(x)
yx = yx − yx−h = f(x) − f(x − h)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
∆yx = yx+h − yx = f(x + h) − f(x)
yx = yx − yx−h = f(x) − f(x − h)
δyx = yx+h
2
− yx−h
2
= f(x + h
2 ) − f(xh
2 )
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
2 ∆logf(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
2 ∆logf(x)
3 ∆(tan−1x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
2 ∆logf(x)
3 ∆(tan−1x)
4 ∆2cos2x
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
E−1yx = yx−h;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
E−1yx = yx−h;
Enyx = yx+nh;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
E−1yx = yx−h;
Enyx = yx+nh;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
3. Differential Operator D:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
3. Differential Operator D:
It is defined as
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
3. Differential Operator D:
It is defined as
Df(x) =
d
dx
f(x) = f (x);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
6 E = ehD
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
6 E = ehD
7 (1 + ∆)(1 − ) = 1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
6 E = ehD
7 (1 + ∆)(1 − ) = 1
8 ∆ − = ∆ = δ2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
13 ∆ =
1
2
δ2 + δ 1 +
δ2
4
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
13 ∆ =
1
2
δ2 + δ 1 +
δ2
4
14 µδ =
1
2
∆E−1 +
1
2
∆
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
13 ∆ =
1
2
δ2 + δ 1 +
δ2
4
14 µδ =
1
2
∆E−1 +
1
2
∆
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Suppose we want to evaluate yx when x = x0 + ph, where p is
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Suppose we want to evaluate yx when x = x0 + ph, where p is
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p
y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p
y0
= 1 + p∆ +
p(p − 1)
2!
∆2 +
p(p − 1)(p − 2)
3!
∆3 + ... y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p
y0
= 1 + p∆ +
p(p − 1)
2!
∆2 +
p(p − 1)(p − 2)
3!
∆3 + ... y0
yx = y0 + p∆y0 +
p(p − 1)
2!
∆2
y0 +
p(p − 1)(p − 2)
3!
∆3
y0 + ...
is called Newton’s forward interpolation formula.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. For the data construct the forward difference formula. Hence,
find f(0.5).
x -2 -1 0 1 2 3
f(x) 15 5 1 3 11 25
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. The population of the town in decennial census was as given
below estimate the population for the year 1895.
Year: 1891 1901 1911 1921 1931
Population(in thousand): 46 66 81 93 101
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Estimate the value of production for the year 1984 using
Newton’s forward method for the following data:
Year: 1976 1978 1980 1982
Production: 20 27 38 50
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near the end of a table, the
backward difference interpolation formula in used.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near the end of a table, the
backward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near the end of a table, the
backward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Suppose we want to evaluate yx when x = xn + ph, where p is
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p
yn
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p
yn
= 1 + p +
p(p + 1)
2!
2 +
p(p + 1)(p + 2)
3!
3 + ... yn
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p
yn
= 1 + p +
p(p + 1)
2!
2 +
p(p + 1)(p + 2)
3!
3 + ... yn
yx = yn + p yn +
p(p + 1)
2!
2
yn +
p(p + 1)(p + 2)
3!
3
yn + ...
is called Newton’s backward interpolation formula
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Using Newtons backward difference interpolation, interpolate at
x = 1 from the following data.
x 0.1 0.2 0.3 0.4 0.5 0.6
f(x) 1.699 1.073 0.375 0.443 1.429 2.631
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. The table gives the distance in nautical miles of the visible
horizon for the given heights in feet above the earth’s surface.
Find the value of y when x=390 ft.
Height(x): 100 150 200 250 300 350 400
Distance(y): 10.63 13.03 15.04 16.81 18.42 19.90 21.47
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
To estimate the value of a function near the middle a table, the
central difference interpolation formula in used.
Let yx = f(x) be a functional relation between x and y.
If x takes the values x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, . . . and
the corresponding values of y are y−2, y−1, y0, y1, y2 . . . then we
can form a central difference table as follows:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
x y
1st
difference
2nd
difference
3rd
difference
x0 − 2h y−2
∆y−2(= δy−3/2)
x0 − h y−1 ∆2y−2(= δ2y−1)
∆y−1(= δy−1/2) ∆3y−2(= δ3y−1/2)
x0 y0 ∆2y−1(= δ2y0) ∆
∆y0(= δy1/2) ∆3y−1(= δ3y1/2)
x0 + h y1 ∆2y0(= δ2y1)
∆y1(= δy3/2)
x0 + 2h y2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
The Stirling’s formula in forward difference notation is
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
The Stirling’s formula in forward difference notation is
yp = y0 + p
∆y0 + ∆y−1
2
+
p2
2!
∆2y−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
The Stirling’s formula in forward difference notation is
yp = y0 + p
∆y0 + ∆y−1
2
+
p2
2!
∆2y−1
+
p(p2 − 12)
3!
∆3y−1 + ∆3y−2
2
+
p2(p2 − 12)
4!
∆4y−2 + . . .
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex.
Using Stirling’s formula find y35
x: 10 20 30 40 50
y: 600 512 439 346 243
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. The function y is given in the table below:
Find y for x=0.0341
x: 0.01 0.02 0.03 0.04 0.05
y: 98.4342 48.4392 31.7775 23.4492 18.4542
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Pn(x) = y0 + p∆y0 +
p(p − 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−1+
(p + 1)p(p − 1)(p − 2)
4!
∆4
y−2 + ...
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Pn(x) = y0 + p∆y0 +
p(p − 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−1+
(p + 1)p(p − 1)(p − 2)
4!
∆4
y−2 + ...
Gauss’s Backward interpolation formula:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Pn(x) = y0 + p∆y0 +
p(p − 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−1+
(p + 1)p(p − 1)(p − 2)
4!
∆4
y−2 + ...
Gauss’s Backward interpolation formula:
Pn(x) = y0 + p∆y−1 +
p(p + 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−2+
(p + 2)(p + 1)p(p − 1)
4!
∆4
y−2 + ...
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Estimate the value of y(2.5) using Gauss’s forward formula given
that:
x: 1 2 3 4
y: 1 4 9 16
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Interpolate by means of Gauss’s backward formula the
population for the year 1936 given the following table:
Year : 1901 1911 1921 1931 1941 1951
Population(in 1000s): 12 15 20 27 39 52
Dr. N. B. Vyas Numerical Methods - Finite Differences

Mais conteúdo relacionado

Mais procurados

Lu decomposition
Lu decompositionLu decomposition
Lu decompositiongilandio
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsDiler4
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward differenceRaj Parekh
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation Meet Patel
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
stirling method maths
stirling method mathsstirling method maths
stirling method mathsharsh kothari
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolationayush raj
 
Gaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationGaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationStudent
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationSunny Chauhan
 
Euler's Method
Euler's MethodEuler's Method
Euler's Methoddmidgette
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Dr. Nirav Vyas
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleMuhammadUsmanIkram2
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolationVISHAL DONGA
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodMeet Nayak
 

Mais procurados (20)

Lu decomposition
Lu decompositionLu decomposition
Lu decomposition
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Diagonalization
DiagonalizationDiagonalization
Diagonalization
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
stirling method maths
stirling method mathsstirling method maths
stirling method maths
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
 
Bisection method
Bisection methodBisection method
Bisection method
 
Gaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationGaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equation
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Euler's Method
Euler's MethodEuler's Method
Euler's Method
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 

Semelhante a Interpolation with Finite differences

Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Dr. Nirav Vyas
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal intervalDr. Nirav Vyas
 
Econometrics homework help
Econometrics homework helpEconometrics homework help
Econometrics homework helpMark Austin
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfSantiagoGarridoBulln
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian IntegrationReza Rahimi
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Japheth Muthama
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JMJapheth Muthama
 
Numerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationNumerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationMohamed Ramadan
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus OlooPundit
 

Semelhante a Interpolation with Finite differences (20)

Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Unit iv
Unit ivUnit iv
Unit iv
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Taller 2
Taller 2 Taller 2
Taller 2
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
 
Econometrics homework help
Econometrics homework helpEconometrics homework help
Econometrics homework help
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
160280102021 c2 aem (2)
160280102021 c2 aem (2)160280102021 c2 aem (2)
160280102021 c2 aem (2)
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdf
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
10.4
10.410.4
10.4
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
AJMS_389_22.pdf
AJMS_389_22.pdfAJMS_389_22.pdf
AJMS_389_22.pdf
 
Numerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationNumerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equation
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 

Mais de Dr. Nirav Vyas

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressionsDr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture NotesDr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture NotesDr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesDr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesDr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 

Mais de Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Power series
Power seriesPower series
Power series
 

Último

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 

Último (20)

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 

Interpolation with Finite differences

  • 1. Numerical Methods - Finite Differences Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 2. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 3. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 4. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 5. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 ∆y1 = y2 − y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 6. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 ∆y1 = y2 − y1 ....... ....... ∆yn−1 = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 7. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 ∆y1 = y2 − y1 ....... ....... ∆yn−1 = yn − yn−1 is called Forward difference operator. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 8. Finite Differences The first forward difference is ∆yn = yn+1 − yn Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 9. Finite Differences The first forward difference is ∆yn = yn+1 − yn The second forward difference are defined as the difference of the first differences. ∆2y0 = ∆(∆y0) = ∆(y1 − y0) = ∆y1 − ∆y0 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0 ∆2y1 = ∆y2 − ∆y1 ∆2yi = ∆yi+1 − ∆yi In general nth forward difference of f is defined by ∆n yi = ∆n−1 yi+1 − ∆n−1 yi Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 10. Finite Differences Forward Difference Table: x y ∆y ∆2y ∆3y ∆4y ∆5y x0 y0 ∆y0 x1 y1 ∆2y0 ∆y1 ∆3y0 x2 y2 ∆2y1 ∆4y0 ∆y2 ∆3y1 ∆5y0 x3 y3 ∆2y2 ∆4y1 ∆y3 ∆3y2 x4 y4 ∆2y3 ∆y4 x5 y5 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 11. Finite Differences The operator ∆ satisfies the following properties: 1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 12. Finite Differences The operator ∆ satisfies the following properties: 1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x) 2 ∆[cf(x)] = c∆f(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 13. Finite Differences The operator ∆ satisfies the following properties: 1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x) 2 ∆[cf(x)] = c∆f(x) 3 ∆m∆nf(x) = ∆m+nf(x), m, n are positive integers 4 Since ∆nyn is a constant, ∆n+1yn = 0 , ∆n+2yn = 0, . . . i.e. (n + 1)th and higher differences are zero. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 14. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 15. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 16. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 y2 = y2 − y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 17. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 y2 = y2 − y1 ....... ....... yn = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 18. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 y2 = y2 − y1 ....... ....... yn = yn − yn−1 is called Backward difference operator. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 19. Finite Differences The first backward difference is yn = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 20. Finite Differences The first backward difference is yn = yn − yn−1 The second backward difference are obtain by the difference of the first differences. 2y2 = ( y2) = (y2 − y1) = y2 − y1 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0 2y3 = y3 − y2 2yn = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 21. Finite Differences The first backward difference is yn = yn − yn−1 The second backward difference are obtain by the difference of the first differences. 2y2 = ( y2) = (y2 − y1) = y2 − y1 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0 2y3 = y3 − y2 2yn = yn − yn−1 In general nth backward difference of f is defined by n yi = n−1 yi − n−1 yi−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 22. Finite Differences Backward Difference Table: x y y 2y 3y 4y 5y x0 y0 y1 x1 y1 2y2 y2 3y3 x2 y2 2y3 4y4 y3 3y4 5y5 x3 y3 2y4 4y5 y4 3y5 x4 y4 2y5 y5 x5 y5 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 23. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 24. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 25. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 26. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 27. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 δ2y2 = δy5 2 − δy3 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 28. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 δ2y2 = δy5 2 − δy3 2 ....... δ3y3 2 = δ2y2 − δ2y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 29. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 δ2y2 = δy5 2 − δy3 2 ....... δ3y3 2 = δ2y2 − δ2y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 30. Finite Differences Central Difference Table: x y δy δ2y δ3y δ4y δ5y x0 y0 δy1 2 x1 y1 δ2y1 δy3 2 δ3y3 2 x2 y2 δ2y2 δ4y2 δy5 2 δ3y5 2 δ5y5 2 x3 y3 δ2y3 δ4y3 δy7 2 δ3y7 2 x4 y4 δ2y4 δy9 2 x5 y5 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 31. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 32. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 33. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 34. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. ∆yx = yx+h − yx = f(x + h) − f(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 35. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. ∆yx = yx+h − yx = f(x + h) − f(x) yx = yx − yx−h = f(x) − f(x − h) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 36. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. ∆yx = yx+h − yx = f(x + h) − f(x) yx = yx − yx−h = f(x) − f(x − h) δyx = yx+h 2 − yx−h 2 = f(x + h 2 ) − f(xh 2 ) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 37. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 38. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex 2 ∆logf(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 39. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex 2 ∆logf(x) 3 ∆(tan−1x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 40. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex 2 ∆logf(x) 3 ∆(tan−1x) 4 ∆2cos2x Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 41. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 42. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 43. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 44. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 45. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 46. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 47. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 48. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 49. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 50. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; E−1yx = yx−h; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 51. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; E−1yx = yx−h; Enyx = yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 52. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; E−1yx = yx−h; Enyx = yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 53. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 54. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 55. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; 3. Differential Operator D: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 56. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; 3. Differential Operator D: It is defined as Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 57. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; 3. Differential Operator D: It is defined as Df(x) = d dx f(x) = f (x); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 58. Finite Differences Relation between the operators 1 ∆ = E − 1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 59. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 60. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 61. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 62. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 63. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 6 E = ehD Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 64. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 6 E = ehD 7 (1 + ∆)(1 − ) = 1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 65. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 6 E = ehD 7 (1 + ∆)(1 − ) = 1 8 ∆ − = ∆ = δ2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 66. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 67. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 68. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 69. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 70. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ 13 ∆ = 1 2 δ2 + δ 1 + δ2 4 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 71. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ 13 ∆ = 1 2 δ2 + δ 1 + δ2 4 14 µδ = 1 2 ∆E−1 + 1 2 ∆ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 72. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ 13 ∆ = 1 2 δ2 + δ 1 + δ2 4 14 µδ = 1 2 ∆E−1 + 1 2 ∆ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 73. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 74. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 75. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Suppose we want to evaluate yx when x = x0 + ph, where p is any real number. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 76. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Suppose we want to evaluate yx when x = x0 + ph, where p is any real number. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 77. Gregory - Newton Forward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 78. Gregory - Newton Forward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p y0 = 1 + p∆ + p(p − 1) 2! ∆2 + p(p − 1)(p − 2) 3! ∆3 + ... y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 79. Gregory - Newton Forward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p y0 = 1 + p∆ + p(p − 1) 2! ∆2 + p(p − 1)(p − 2) 3! ∆3 + ... y0 yx = y0 + p∆y0 + p(p − 1) 2! ∆2 y0 + p(p − 1)(p − 2) 3! ∆3 y0 + ... is called Newton’s forward interpolation formula. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 80. Example Ex. For the data construct the forward difference formula. Hence, find f(0.5). x -2 -1 0 1 2 3 f(x) 15 5 1 3 11 25 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 81. Example Ex. The population of the town in decennial census was as given below estimate the population for the year 1895. Year: 1891 1901 1911 1921 1931 Population(in thousand): 46 66 81 93 101 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 82. Example Ex. Estimate the value of production for the year 1984 using Newton’s forward method for the following data: Year: 1976 1978 1980 1982 Production: 20 27 38 50 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 83. Gregory - Newton Backward Interpolation Formula To estimate the value of a function near the end of a table, the backward difference interpolation formula in used. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 84. Gregory - Newton Backward Interpolation Formula To estimate the value of a function near the end of a table, the backward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 85. Gregory - Newton Backward Interpolation Formula To estimate the value of a function near the end of a table, the backward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Suppose we want to evaluate yx when x = xn + ph, where p is any real number. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 86. Gregory - Newton Backward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p yn Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 87. Gregory - Newton Backward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p yn = 1 + p + p(p + 1) 2! 2 + p(p + 1)(p + 2) 3! 3 + ... yn Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 88. Gregory - Newton Backward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p yn = 1 + p + p(p + 1) 2! 2 + p(p + 1)(p + 2) 3! 3 + ... yn yx = yn + p yn + p(p + 1) 2! 2 yn + p(p + 1)(p + 2) 3! 3 yn + ... is called Newton’s backward interpolation formula Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 89. Example Ex. Using Newtons backward difference interpolation, interpolate at x = 1 from the following data. x 0.1 0.2 0.3 0.4 0.5 0.6 f(x) 1.699 1.073 0.375 0.443 1.429 2.631 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 90. Example Ex. The table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earth’s surface. Find the value of y when x=390 ft. Height(x): 100 150 200 250 300 350 400 Distance(y): 10.63 13.03 15.04 16.81 18.42 19.90 21.47 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 91. Stirling’s Interpolation Formula To estimate the value of a function near the middle a table, the central difference interpolation formula in used. Let yx = f(x) be a functional relation between x and y. If x takes the values x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, . . . and the corresponding values of y are y−2, y−1, y0, y1, y2 . . . then we can form a central difference table as follows: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 92. Stirling’s Interpolation Formula x y 1st difference 2nd difference 3rd difference x0 − 2h y−2 ∆y−2(= δy−3/2) x0 − h y−1 ∆2y−2(= δ2y−1) ∆y−1(= δy−1/2) ∆3y−2(= δ3y−1/2) x0 y0 ∆2y−1(= δ2y0) ∆ ∆y0(= δy1/2) ∆3y−1(= δ3y1/2) x0 + h y1 ∆2y0(= δ2y1) ∆y1(= δy3/2) x0 + 2h y2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 93. Stirling’s Interpolation Formula The Stirling’s formula in forward difference notation is Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 94. Stirling’s Interpolation Formula The Stirling’s formula in forward difference notation is yp = y0 + p ∆y0 + ∆y−1 2 + p2 2! ∆2y−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 95. Stirling’s Interpolation Formula The Stirling’s formula in forward difference notation is yp = y0 + p ∆y0 + ∆y−1 2 + p2 2! ∆2y−1 + p(p2 − 12) 3! ∆3y−1 + ∆3y−2 2 + p2(p2 − 12) 4! ∆4y−2 + . . . Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 96. Example Ex. Using Stirling’s formula find y35 x: 10 20 30 40 50 y: 600 512 439 346 243 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 97. Example Ex. The function y is given in the table below: Find y for x=0.0341 x: 0.01 0.02 0.03 0.04 0.05 y: 98.4342 48.4392 31.7775 23.4492 18.4542 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 98. Central Difference Gauss’s Forward interpolation formula: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 99. Central Difference Gauss’s Forward interpolation formula: Pn(x) = y0 + p∆y0 + p(p − 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−1+ (p + 1)p(p − 1)(p − 2) 4! ∆4 y−2 + ... Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 100. Central Difference Gauss’s Forward interpolation formula: Pn(x) = y0 + p∆y0 + p(p − 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−1+ (p + 1)p(p − 1)(p − 2) 4! ∆4 y−2 + ... Gauss’s Backward interpolation formula: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 101. Central Difference Gauss’s Forward interpolation formula: Pn(x) = y0 + p∆y0 + p(p − 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−1+ (p + 1)p(p − 1)(p − 2) 4! ∆4 y−2 + ... Gauss’s Backward interpolation formula: Pn(x) = y0 + p∆y−1 + p(p + 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−2+ (p + 2)(p + 1)p(p − 1) 4! ∆4 y−2 + ... Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 102. Example Ex. Estimate the value of y(2.5) using Gauss’s forward formula given that: x: 1 2 3 4 y: 1 4 9 16 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 103. Example Ex. Interpolate by means of Gauss’s backward formula the population for the year 1936 given the following table: Year : 1901 1911 1921 1931 1941 1951 Population(in 1000s): 12 15 20 27 39 52 Dr. N. B. Vyas Numerical Methods - Finite Differences