SlideShare uma empresa Scribd logo
1 de 31
Baixar para ler offline
Jet Propulsion Laboratory!
 California Institute of Technology
 National Aeronautics and Space Administration




Opportunities and Development of Atomic Systems
         and Quantum Devices in Space



                                           Nan Yu	

                                               	

                                 Jet Propulsion Laboratory	

                              California Institute of Technology	

                                Pasadena, California 91109	





                                                       Copyright 2011 California Institute of Technology
                                                               Government Sponsorship Acknowledged      	

                                                                                                       [1]
Jet Propulsion Laboratory!
   California Institute of Technology
   National Aeronautics and Space Administration
                                                    Quantum Mechanics and Space


Space exploration has a dual role:	

    –  As a challenging endeavor, extremely sensitive instrumentation is
    required with features of performance, low power, low mass, and low
    cost.	

    –  As a benign environment (micro gravity, low vibration, high isolation,
    space and time spans, etc.) it offers the opportunity to perform exacting
    tests of physics.	

                                       Space environment for
                                     tests of quantum world and
                                         fundamental physics


                  QM	

                                             Space	

                                     Space based measurements
                                   enhanced by quantum technology



                                                                                  [2]
Jet Propulsion Laboratory!
    California Institute of Technology
    National Aeronautics and Space Administration
                                                     Quantum Properties for Technology

•  The fundamentally quantum phenomena of quantum coherence
   and interferences, wave-particle duality, entanglement,
   quantum photon statistics allow the realization of sensors
   with unprecedented capability
•  Areas such as free cold atom based technology, are
   particularly suitable for space application



                    •  Ultra-stable clocks - timekeeping, navigation, fundamental physics tests
                    •  Atom interferometer inertial sensors - gravity mapping for Earth science,
                       gravity survey for planetary science, autonomous inertial navigation, tests
                       of fundamental physics, drag-free control, pointing and guidance control
                    •  BEC and quantum degenerate gas - enhancement for cold atom
                       interferometers, tests for fundamental physics, quantum system modeling
                    •  Entangled photon source and correlation properties - quantum
                       communication, secure communication, imaging and computation




                                                                                                [3]
Jet Propulsion Laboratory!
 California Institute of Technology
         Space   for Fundamental Physics and Applications
 National Aeronautics and Space Administration


Precision Measurement Technology
-  Laser cooling and atom trapping
-  Atom optics
-  Ultra-stable lasers                                        Fundamental Physics and Applications
-  Self-referenced optical frequency comb                     - Relativity theories
-  Atomic clocks                                              - Standard Model
-  Atomic sensors                                             - Equivalence Principle
                                                              - Gravity physics
                                                              - Cosmology and quantum decoherence
  Unique space environment                                    - Gravitational wave detection
       Global access                                          - Earth and planetary gravity measurements
       Free from atmospheric interference                     - Astrophysics observations
       Microgravity                                           - Communication
       Low vibration                                          - Navigation
       Large spatial extent                                   - Geodesy
       Large gravitational field variation                    - Global timekeeping

       Inertial frame


 Jet Propulsion Laboratory!
 California Institute of Technology
                 (4)	

 National Aeronautics and Space Administration
                                                                                                     [4]
Jet Propulsion Laboratory!
California Institute of Technology
                                                 Optical Clocks – Next Generation High
National Aeronautics and Space Administration
      Accuracy Clocks of Cold Atoms




                                     NIST	

                                                                            30 cm	

                                                                  NIST	




                                                   (5)	

                                                                                       [5]
Jet Propulsion Laboratory!
California Institute of Technology
National Aeronautics and Space Administration
                                                                                                  Space clock size vs. performance



                                                                                      ?2,66"3P-1HQ2KP1"-3XK"                        Long-term
                                                    Graphic!                                                                         Stability 
                                                  #;#%
                                                                 =?5-                                                                and 
                                                                                                =@AB0??5-                           Accuracy  	

                                                                =,636K.CD8#!#%EF,GFH3I:
           56.47/H,4R.P,6/HKVQKP4G-1,D3631G




                                                                =?CD8#!#%EF,GFH3I:       =0J+,-KH
                                                  #;#




                                                                                                                                     J39W46.47LKH/.H2,P4K
                                                                              =,636K.,--3NKJ+,-KH

                                                                                      04K-J+,-KH8O??:
                                                  #;#'                                                        B0?0E?0A
                                                                                                                             ;?0
                                                            J9?L,4K56.478M@:
                                                                                                                       J+,-KH-

                                                  #;#(
                                                                                                               H.L.-KF;=;3.P                               ST-­‐QUEST	
  or	
  
                                                                                                               46.47                                          ISS	
  op,cal	
  clock	
  
                                                                +3P3,1QHK?L,4KALR4,656.47                  8)!79T(!U:                                    (100kg,	
  100W)	
  
                                                                8S#!631KH-T$!U:
                                                  #;#)
                                                           !        #!       $!     %!     !     '!       (!      )!      *!
                                                                           +,--./01.23456.47879:
                                                                     (Based on chart from J. Prestage)
                                                                                                     	





                                                                                                                                                                                            [6]
Jet Propulsion Laboratory!
California Institute of Technology
               JPL linear ion trap clock development
National Aeronautics and Space Administration




  LITS clock technology	

                                               Ground LITS clock	





                                                 J. Prestage et al.	





                                                                           Tjoelker et al.	





                                                                                                [7]
Jet Propulsion Laboratory!
California Institute of Technology
                              Long-term stability of linear ion trap clock
National Aeronautics and Space Administration




   LITS9-­‐UTC	
  




   UTC(NIST)-­‐UTC	
  




     UTC(PTB)-­‐UTC	
  




   UTC(USNO)-­‐UTC	
  

     •  9 month comparison: MJD 54023 to MJD 54296	

                (Robert Tjoelker and Eric Burt)	

              - LITS-9 operating continuously - no intervention	

     •  Relative drift (to primary standards  TTBIPM)               +2.7(0.4)x10-17/day 	


                                                                                                            [8]
Jet Propulsion Laboratory!
  California Institute of Technology
              Miniaturization of linear trapped ion clocks
  National Aeronautics and Space Administration




J. Prestage
          	

             Ground LITS clock	




                                                                                             [9]
Jet Propulsion Laboratory!
    California Institute of Technology
    National Aeronautics and Space Administration
                                                     Deep Space Atomic Clock – Technology Demo



                                                                         The Deep Space Atomic Clock
                                                                         demonstration mission will fly and
                                                                         validate a miniaturized mercury-ion
                                                                         atomic clock that is 10-times more
                                                                         accurate than today’s systems. This
                                                                         project will demonstrate ultra-
                                                                         precision timing in space and its
                                                                         benefits for one-way radio navigation.
                                                                         The investigation will fly as a hosted
                                                                         payload on an Iridium spacecraft and
                                                                         make use of GPS signals to
                                                                         demonstrate precision orbit
                                                                         determination and confirm the clock's
                                                                         performance. Precision timing and
                                                                         navigation is critical to the
                                                                         performance of a wide range of deep
                                                                         space exploration missions. 	

                                                                         	


Artist's rendering of a vacuum tube, one of the main components of an
atomic clock that will undergo a technology flight demonstration. Image
Credit: NASA	




                                                                                                           [10]
Jet Propulsion Laboratory!
California Institute of Technology
                              Optical clock system overview
National Aeronautics and Space Administration




                                                        Locking
                                                        feedback	

             Ludlow, et al. OL	

                                                                                                SHG laser/Toptica	

    Ti:Sapphire	

                     Diode lasers/Toptica	

  Trapping/
                                           Atomic                        Optical LO
   cooling	

                                          reference
                                                  	

                 (Stabilized laser)
                                                                                       	

Laser  optics	

                                                                              Optical standard output	



                                                                         Optical to
                      JILA	

         NPL	

              NIST	

        microwave
                                                                         frequency
                                                                           divider
                                                                                 	

                                                                                         Microwave clock signal	




                                                                                     NIST	




             Optical clock setup/ NIST	

                                                                   Menlo	


                                                                                                                       [11]
Jet Propulsion Laboratory!
     California Institute of Technology
                                             Towards an ultra-compact optical clock
     National Aeronautics and Space Administration

Can one envision to package everything into liter-sized device, 	

 10 kg, 20 W, and  x10 improvement over microwave clocks of similar size?	


                                                                             Locking                     Laser
                                                                             feedback	

                 reference
                                                                                                         cavity	



     Trapping/                                                                                                       Optical standard output	

                                            Atomic                                            Optical LO
      cooling	

                                           reference
                                                   	

                                     (Stabilized laser)
                                                                                                            	

   Laser  optics	

                                                                  2P
                                                                        1/2!


                                                                 2D

                                                    369 nm
                                                    cooling
                                                                      3/2!
                                                                                              Optical to
                                                    transition


   Compact lasers	

                                                             !          436 nm
                                                                        clock
                                                                        transition
                                                                                              microwave
                            Single trapped ion	

                                !
                                                                                                                       Comb
                                                                  2S
                                                                       1/2!    Yb+           frequency                generator	

                                                                                                divider
                                                                                                      	

                            Single trapped ion standard
                                                                                                                  Microwave clock signal	


   To realize the ultra-compact optical clocks	

   •  Miniature physics packages	

   •  Whispering gallery mode (WGM) resonator based narrow line lasers	

   •  WGM resonator stabilized optical local oscillator	

   •  WGM resonator comb generation	

                                                                                                                                            [12]
Jet Propulsion Laboratory!
California Institute of Technology
National Aeronautics and Space Administration
                                                                                                  Space clock size vs. performance



                                                                                      ?2,663P-1HQ2KP1-3XK                        Long-term
                                                    Graphic!                                                                         Stability 
                                                  #;#%
                                                                 =?5-                                                                and 
                                                                                                =@AB0??5-                           Accuracy  	

                                                                =,636K.CD8#!#%EF,GFH3I:
           56.47/H,4R.P,6/HKVQKP4G-1,D3631G




                                                                =?CD8#!#%EF,GFH3I:       =0J+,-KH
                                                  #;#




                                                                                                                                     J39W46.47LKH/.H2,P4K
                                                                              =,636K.,--3NKJ+,-KH

                                                                                      04K-J+,-KH8O??:
                                                  #;#'                                                        B0?0E?0A
                                                                                                                             ;?0
                                                            J9?L,4K56.478M@:
                                                                                                                       J+,-KH-

                                                  #;#(
                                                                                                               H.L.-KF;=;3.P                               ST-­‐QUEST	
  or	
  
                                                                                                               46.47                                          ISS	
  op,cal	
  clock	
  
                                                                +3P3,1QHK?L,4KALR4,656.47                  8)!79T(!U:                                    (100kg,	
  100W)	
  
                                                                8S#!631KH-T$!U:
                                                  #;#)
                                                           !        #!       $!     %!     !     '!       (!      )!      *!
                                                                           +,--./01.23456.47879:
                                                                     (Based on chart from J. Prestage)
                                                                                                     	





                                                                                                                                                                                            [13]
Jet Propulsion Laboratory!
    California Institute of Technology
              Applications of high-performance atomic clocks
    National Aeronautics and Space Administration



Primary frequency standards, timekeeping,
and global time scale and access.	



                    !#$%
                    '()*+%                                      A. Einstein	

                    +,(+-.%



                                                         Clock-based fundamental physics tests in space:	

                                                         Gravitational redshift, Shapiro time delay,
                                                         Lorentz Invariances, Equivalence Principle,
                                                         variations of fundamental constants, …..	



 High-performance
                                                      Stable reference sources for
 frequency standards
                                                      global and Deep Space
 are universal tools for
                                                      Network (DSN) tracking,
 precision
                                                      positioning, timing, and
 measurements in
                                                      communication needs. Also
 space, including laser
                                                      enable tracking based science
 interferometers,
                                                      measurements – planetary
 VLBI, relativistic
                                                      gravity science, occultation, ….	

 geodesy, 	



                                                                                                          [14]
Jet Propulsion Laboratory!
California Institute of Technology
National Aeronautics and Space Administration
                                                                        Clocks and Sensors




                                          clocks	





Digital watches	

                                                                              Cold atom clocks	





                                                 sensors	

                   Stanford AI
                                                                              gravimeter	

                                                                                              Hannover AI Gyro	



Quartz microbalances	

                                                      Atomic inertial sensors	



                                                              (15)	

                                                                                                                    [15]
Jet Propulsion Laboratory!
California Institute of Technology
National Aeronautics and Space Administration
          Atoms as free fall clocks




                                                 Free falling
                                                 atoms (clocks)

                                                                     Δv= g Δt ?	


                                                    t1	

    v1	



                                                    g	

                             Laser ruler
                                                                                     with wavelength
                                                                                     markers


                                                   t2	

    v2	



                                                   Δv= g Δt	




                                                                                                [16]
Jet Propulsion Laboratory!
   California Institute of Technology
                     Matter-wave Interferometer
   National Aeronautics and Space Administration



             Quantum particle-wave duality	

                                                           atom wave
   de Broglie wave: λdB=h/mv	

   h – Planck constant = 6.6 × 10-34 m2 kg / s	


                                                                 Why atom interferometer?	

                                                                 	

                                                                 1.  Larger mass, shorter wavelength
                                                                     Cs atoms, at 2 µK, λdB ≈ 160 nm.
      Atom-wave Mach-Zehnder Interferometer	

                       	

                                                                 2.  Extremely high inertial force
                 mirror	

            Beam splitter	

               sensitivity
                                                                     (mc2/hν) enhancement factor over
                                                                     comparable photon devices:
                                                                      1010 theoretically	

                                                    fringes	

Atom beam	

                                                                 3.  Possessing internal states
                                                                     Easier to control and manipulate
           Beam splitter	

        mirror	

                         ⇒ laser cooling, trapping,
                                                                     detection, and atom optics.	



                                                                                                        [17]
Jet Propulsion Laboratory!
    California Institute of Technology
              Atom Optics: Beam Splitting and Deflection
    National Aeronautics and Space Administration


In the light pulse scheme, photon recoils are used to coherently split and redirect atom beams (waves).	



Photon absorption process (π pulse)	

                                 deflection (mirror)


     p=hk	

                                            ΔV=p/m	



     light	

       atom	

              after absorption	

                                                                            (π pulse)	

                         ⏐ 〉 ⇒ ⏐ 〉	


Superposition state (π/2 pulse)	

                                                                           beam splitter

       p=hk 	

                                         ΔV=p/m	


                                                         ΔV=0	

                         ⏐ 〉 ⇒ ⏐ 〉 + ⏐ 〉	

                          (π/2 pulse)	


                                                                                                      [18]
Jet Propulsion Laboratory!
   California Institute of Technology
              Atom Interferometer with Light Pulses
   National Aeronautics and Space Administration


A straightforward atom interferometer implementation consists of a light pulse
sequence of π/2-π-π/2* 	



                                Each
                              individual
                                 atom	



                                                                                    fringes	

                 Atomic beam	



                                                            π/2 pulse	

                             π/2 pulse	

 π pulse	


  •  The interferometer loop area can be either in spatial space
     (gyroscope) or momentum space (accelerometer).	

  •  The amount of splitting is determined by the photon recoil.	

                                                    * Ref: M. Kasevich and S. Chu Phys. Rev. Lett. 67, 181 (1991)	


                                                                                                                       [19]
Jet Propulsion Laboratory!
            California Institute of Technology
                   Atom Wave Packet Size and Dispersion
            National Aeronautics and Space Administration




                        Wave packet	





                                             T	

             T + δT	

                               Tvs	

                Longitudinal
                velocity selection	



	

•       Initial velocity selection pulse 240 µs; a FWHM sinc function frequency width 5.4 kHz; a velocity group with
        spread Δv = 2.3 mm/s. This is the initial wave packet preparation, corresponding to a minimum uncertainty wave
        packet with spread of 450 nm.	


•       Dispersion of the atom wave packet: Δx(t) = (Δx02 + Δv2 t2)1/2. At the end of 2T (4 ms), the spread of the wave
        packet becomes 9.2 µm,  initial x0 = 0.45 µm.	


•       The rate of relative displacement between two separated wave packet is about 7.2 mm/s (two photon recoil). The
        separation of the two wave packets change at the rate of 7.2 µm per ms.	

	


      J. R. Kellogg, N. Yu, J. M. Kohel, R. J. Thompson, D. C. Aveline, and L. Maleki, “Longitudinal coherence in cold atom interferometry,”
      J. Modern Optics, 54:16, 2533 (2007).	


                                                                                                                                         [20]
Jet Propulsion Laboratory!
      California Institute of Technology
                           Coherent Length of Cold Atoms
      National Aeronautics and Space Administration




                                                                                                                        720 nm	





                                                                                                                         Coherent length	

                      500 nm	





                                                                     Coherent length, over which the contrast is
 The contrast loss over the length of initial                        lost, depends on the initial velocity selection
 wave packet size, not the actual wave packet                        pulse length.
 size.

Conclusion: at the point of the interference, the wave packets mostly overlap. The coherence is determined by the
initial velocity spread of the atom wave, given by the quantum uncertainty principle.*	

	

•  Similar observation and proof were made for neutron matter waves. Ref: Kaiser, H. S., Werner, A. and George, E. A. Phys. Rev. Lett.
   50, 560 (1983); Klein, A. G., Opat, G. I., and Hamilton, W. A. Phys. Rev. Lett. 50, 563 (1983).	


J. R. Kellogg, N. Yu, J. M. Kohel, R. J. Thompson, D. C. Aveline, and L. Maleki, “Longitudinal coherence in cold atom
interferometry,” J. Modern Optics, 54:16, 2533 (2007).	

                                                                                                                                              [21]
Jet Propulsion Laboratory!
         California Institute of Technology
                                     AI Accelerometer Phase Shift
         National Aeronautics and Space Administration


             For atom interferometer                                                        Atomic fountain on ground	

                  accelerometer	

                                 	

                                                                              Ram an beam s

                 ΔΦ = 2 k a T 2	

                                                                                                                     π pulse	

         •  Independent of atom initial velocity	

                                                              ! /2 pul s e
         •  k, the laser wavenumber is the only
            reference parameter	

                                                                               ! pul s e

         •  Sensitivity goes with T2	

                                                                                                               π/2/2 pul s e
                                                                                                                ! + π/2 pulses	


            With over 106 atoms, the shot-noise
            limited SNR ~ 1000.	

            Per shot sensitivity = 2×10-10/T2 m/s2,                                                               counter-
            or about 10-11/T2 g.	

                                                                               propagating
                                                                                                                  Ram an beam s

                           Great enhancement of the
                                                                                           For example: in microgravity,
                           sensitivity can be gained in                                    10-13 g Hz-1/2 possible with 10 s
                              microgravity in space!                                       interrogation time.	

“Quantum Gravity Gradiometer Sensor for Earth Science Applications,” Nan Yu, James M. Kohel, Larry Romans, and Lute Maleki, NASA
Earth Science and Technology Conference 2002. Paper B3P5. Pasadena, California. June 2002. 	

                                                                                                                                    [22]
Jet Propulsion Laboratory!
       California Institute of Technology
       National Aeronautics and Space Administration
                                                           Atom Interferometer Inertial Sensors

       Rotational sensing 	

                                          Acceleration/gravity sensing	

   Sagnac effect ΔΦ= 8π(A•Ω)/λv	

                                                              Phase shift due to acceleration ΔΦ = 2 k a T 2	





  !#$%'!$%
                                            ()*+,'-%                            	

        a
                          !                                                                            ! = 2 k!!T!#!


                                                                   !#$%'!$%



                         Stanford	

Hannover	

                                                                                                      Firenze U.	



                                       SYRTE	

                       Berkeley	

                                                                      (Stanford)	

                                                        SYRTE	

                         JPL	

       Stanford	

               Yale	

e.g. Laboratory AI gyroscope has a sensitivity          e.g. Laboratory atomic accelerometer measured g with a resolution
of 6 x 10-10 rad s-1 Hz-1/2. [T. L. Gustavson et        of 2 x 10-8g in 1 second, and 3 x 10-9g overall precision. [A. Peters
al., Class. Quantum Grav. 17, 2385 (2000)]              et al., Metrologia, 38, 25 (2001)]



There are also many activities of atom interferometers with BEC and guided atom chips.	


                                                                                                                          [23]
Jet Propulsion Laboratory!                                                  Technology Developments towards Space
California Institute of Technology
National Aeronautics and Space Administration
                                           Applications




                 Drop tower Experiments with cold atoms         Atom interferometer in 0-g
                 and BEC, Quantus collaboration, DLR	

         flight, I.C.E. collaboration,
                 	

                                            France	

                                                                	

                         JPL atom interferometer gravity gradiometer development	

                         	





                     !#$%%'()*%+,*-,*#.*/%   2/34*/*#'5+/)'(+#'%+#6$6$%*. 0#'/$,+#%'()*1/%


Jet Propulsion Laboratory!
California Institute of Technology
National Aeronautics and Space Administration
                                                                                                                [24]
Jet Propulsion Laboratory!
     California Institute of Technology
     National Aeronautics and Space Administration
                                                             Atomic Freefall Test Mass in Space

   Freefall test mass               +        Displacement Detection                  +   Atomic system stability

                !+

           !
                                                                              fringes!
                     B field
                     coils
                               !
                                    Atomic beam!
      !+



                         !+

                !
                                                                 !/2 pulse!
                                                                                                       NIST
                                           !/2 pulse! ! pulse!                                      atomic clock
      Laser-cooled Cs                       atom-wave interferometer
      atom cloud at µK                       (laser-based atom optics)	

                 Atoms are stable clocks

•  Use totally freefall atomic particles as ideal test masses
           identical atomic particles are collected, cooled, and set in free fall in vacuum with no external
   perturbation other than gravity/inertial forces; laser-cooling and trapping are used to produce the atomic
   test masses at µK and nK; no cryogenics and no mechanical moving parts.
•  Matter-wave interference for displacement measurements
           displacement measurements trough interaction of lasers and atoms, pm/Hz1/2 when in space;
   laser control and manipulation of atoms with opto-atomic optics.
•  Intrinsic high stability of atomic system
           use the very same atoms and measurement schemes as those for the most precise atomic
   clocks, allowing high measurement stabilities.
•  Enable orders of magnitude sensitivity gain when in space
          microgravity environment in space offers long interrogation times with atoms, resulting orders of
   magnitude higher sensitivity compared terrestrial operations.
                                                                                                                   [25]
Jet Propulsion Laboratory!
                                            California Institute of Technology
                  Test of Weak Equivalence Principle on ISS
                                            National Aeronautics and Space Administration
Two species differential accelerometer	




                                                   Δg = gA-gB = ?	


                                                                       ΦA= 2k(gA+a)T 2	


                                                                       ΦB= 2k(gB+a)T 2	

                                                                                                                                          Atom-A	

                                                                                                                                           Atom-B	

                                                                        ΔΦΑΒ = 2k (gA-gB) T 2	




                                                                    ª  Single axis differential acceleration of two co-located matter wave interferometers with
                                            a	

                        different atomic species 	

                                                        mirror	

   ª  Seek a violation of Einstein’s Equivalence Principle by improving the test limit by three
                                                                        orders of magnitude, to 1x10-15 level and better.	

                                                                    ª  First non-trivial precision experiment of quantum particles under the influence of
                                                                        gravity, and may stimulate discussions of General Relativity in the framework of
                 NASA QuITE                                             quantum mechanics. 	

                 ESA QWEP	



                                                                                                                                                           [26]
Jet Propulsion Laboratory!                       - Advanced gravity mission for Earth and
     California Institute of Technology
     National Aeronautics and Space Administration
             planetary sciences


-  Cold atoms as truly drag-free test masses
-  Gravity gradiometer (better resolution)
-  Simpler mission architecture (single spacecraft)
-  More flexible orbits and satellite constellation
 (more comprehensive data for data analyses)

 Geodesy	

 Earth and Planetary Interiors	

      –  Lithospheric thickness, composition	

      –  Lateral mantle density heterogeneity	

      –  Deep interior studies	

      –  Translational oscillation between core/mantle	

 Earth and Planetary Climate Effects	

      –  Oceanic circulation	

      –  Tectonic and glacial movements	

      –  Tidal variations	

      –  Surface and ground water storage	

      –  Polar ice sheets	

      –  Earthquake monitoring	

                                        GOCE

                                                                                                 [27]
Jet Propulsion Laboratory!
California Institute of Technology
              Transportable atomic gradiometer instrument
National Aeronautics and Space Administration




James Kohel, James Kellogg, Rob Thompson and Dave Aveline	



                                                                                        [28]
Jet Propulsion Laboratory!
California Institute of Technology
                               Experimental results
National Aeronautics and Space Administration


                      Instrument phase measurement revolution




                                     Data are for a total interrogation time of greater than 300 ms.

        James Kohel and James Kellogg	


                                                                                                       [29]
Jet Propulsion Laboratory!
 California Institute of Technology
                        Summary	

 National Aeronautics and Space Administration




ü  Properties of quantum mechanics can be utilized to implement and enhance
    sensors of unprecedented performance.

ü  Space-based measurements for both science and application often require
    extraordinary sensitivity which is afforded by quantum devices.

ü  Space environment is also ideal and often necessary for tests of fundamental
    physics and quantum physics itself.

ü  Near-term quantum applications in space will include ultra-precise clocks for test
    of special and general relativity and navigation; atom interferometers for tests of
    General Relativity and WEP; and gravity gradiometer for gravity mapping.

ü  Atomic clocks and atom-wave inertial sensors will play important roles in space
    applications for gravity and magnetic filed measurements, navigations, pointing
    and guidance, inertial-fame referencing and drag-free control.

ü  We are developing a number of quantum technologies with atomic systems (clocks
    and gravity sensor devices) in support of NASA missions, including Earth Science,
    Space and Planetary Sciences.


                                                                                          [30]
Jet Propulsion Laboratory!
     California Institute of Technology
                          Quantum Sciences and Technology Group	

     National Aeronautics and Space Administration


Situated in JPL Frequency Standard Laboratory, which is Responsible for technology
development, generation, and distribution of ultra-stable reference frequencies and
synchronized timing signals for NASA's Deep Space Network (DSN).	


Group research areas and activities:	

                                                             Trapped Hg ion
Frequency Standards and Clocks	

                Space clock and
Linear ion trap clocks (space clocks)	

         other miniature
                                                 clocks	

Small and micro atomic clock	

Optical clocks	

                                                                                               Laser stabilizations	

Atomic Quantum Sensors	

Atom interferometers and gravity gradiometer	

                                                                         Optical phase control
                                                                                                                            and photonics	

BEC and guided atoms on chips	

                                                            Whispering Gallery mode
Laser pumped magnetometers	

                               resonators and devices	

Light and Microwave Photonics	

Photonic oscillators	

                                                                Laser cooling and
MIR and THz photonics	

                                                               Fundamental Physics
                                                                                                                 Atom interferometer
                                                                                       research	

Micro resonator research and devices	

                                                                                Gravity sensor	

(lasers, filter, modulator, nonlinear device,             Mid infrared lasers	

spectrometer, and sensor)
Laser and Coherent Control	

                                                         Optical frequency
                                                                                      combs	

Narrow-line and ultra-stable lasers	

                                                                                                                  Single ion trapping
Frequency comb	

                                                       Gravity and fundamental                   and optical clocks	

                                                                        physics through precision
Optical phase locking and control	

                                    measurements in space	

                                                                                                                                            [31]

Mais conteúdo relacionado

Mais procurados

Interplanetary Mission Design
Interplanetary Mission DesignInterplanetary Mission Design
Interplanetary Mission DesignNicholas Cordero
 
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUEHarsh Mohan
 
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...IOSR Journals
 
Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...
Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...
Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...stgermain
 
Optical Screening Tools For Characterizing NAPL Source Zones
Optical Screening Tools For Characterizing NAPL Source ZonesOptical Screening Tools For Characterizing NAPL Source Zones
Optical Screening Tools For Characterizing NAPL Source Zonesstgermain
 
Galaxy Forum Africa 11 - Petri
Galaxy Forum Africa 11 -  PetriGalaxy Forum Africa 11 -  Petri
Galaxy Forum Africa 11 - PetriILOAHawaii
 
Project report on LHC " Large Hadron Collider " Machine
Project report on LHC  " Large Hadron Collider " MachineProject report on LHC  " Large Hadron Collider " Machine
Project report on LHC " Large Hadron Collider " MachineJyotismat Raul
 

Mais procurados (9)

2019 hm-iv-pixe
2019 hm-iv-pixe2019 hm-iv-pixe
2019 hm-iv-pixe
 
Interplanetary Mission Design
Interplanetary Mission DesignInterplanetary Mission Design
Interplanetary Mission Design
 
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
 
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
 
Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...
Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...
Direct Push Optical Screening Tool For Chlorinated Solvent Dnapl St Germain 1...
 
Optical Screening Tools For Characterizing NAPL Source Zones
Optical Screening Tools For Characterizing NAPL Source ZonesOptical Screening Tools For Characterizing NAPL Source Zones
Optical Screening Tools For Characterizing NAPL Source Zones
 
Galaxy Forum Africa 11 - Petri
Galaxy Forum Africa 11 -  PetriGalaxy Forum Africa 11 -  Petri
Galaxy Forum Africa 11 - Petri
 
Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Project report on LHC " Large Hadron Collider " Machine
Project report on LHC  " Large Hadron Collider " MachineProject report on LHC  " Large Hadron Collider " Machine
Project report on LHC " Large Hadron Collider " Machine
 

Semelhante a Space-Based Quantum Technology and Fundamental Physics Tests

"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre..."Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...Edge AI and Vision Alliance
 
The Netherlands China Low Frequency Explorer (NCLE) Change'-4
The Netherlands China Low Frequency Explorer (NCLE) Change'-4The Netherlands China Low Frequency Explorer (NCLE) Change'-4
The Netherlands China Low Frequency Explorer (NCLE) Change'-4ILOAHawaii
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayaliNASAPMC
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayaliNASAPMC
 
Space Systems Fundamentals
Space Systems FundamentalsSpace Systems Fundamentals
Space Systems FundamentalsJim Jenkins
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentationClifford Stone
 
Ralph.basilio
Ralph.basilioRalph.basilio
Ralph.basilioNASAPMC
 
Ralph.basilio
Ralph.basilioRalph.basilio
Ralph.basilioNASAPMC
 
LAICE Overview - NGC Presentation 12-02-15
LAICE Overview - NGC Presentation 12-02-15LAICE Overview - NGC Presentation 12-02-15
LAICE Overview - NGC Presentation 12-02-15Stephen Noel
 
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...Altair
 
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...Jim Jenkins
 
Presentación proyecto fin de carrera.
Presentación proyecto fin de carrera.Presentación proyecto fin de carrera.
Presentación proyecto fin de carrera.M A
 
Silicon Happy Valley 2016
Silicon Happy Valley 2016Silicon Happy Valley 2016
Silicon Happy Valley 2016Corey Cochrane
 

Semelhante a Space-Based Quantum Technology and Fundamental Physics Tests (20)

"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre..."Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
"Using Vision to Enable Autonomous Land, Sea and Air Vehicles," a Keynote Pre...
 
The Netherlands China Low Frequency Explorer (NCLE) Change'-4
The Netherlands China Low Frequency Explorer (NCLE) Change'-4The Netherlands China Low Frequency Explorer (NCLE) Change'-4
The Netherlands China Low Frequency Explorer (NCLE) Change'-4
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayali
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayali
 
Bicay_Post
Bicay_PostBicay_Post
Bicay_Post
 
Space Systems Fundamentals
Space Systems FundamentalsSpace Systems Fundamentals
Space Systems Fundamentals
 
Laforge nov99
Laforge nov99Laforge nov99
Laforge nov99
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentation
 
Ralph.basilio
Ralph.basilioRalph.basilio
Ralph.basilio
 
Ralph.basilio
Ralph.basilioRalph.basilio
Ralph.basilio
 
J-PARC
J-PARCJ-PARC
J-PARC
 
LAICE Overview - NGC Presentation 12-02-15
LAICE Overview - NGC Presentation 12-02-15LAICE Overview - NGC Presentation 12-02-15
LAICE Overview - NGC Presentation 12-02-15
 
Curiosity-CA STEM Summit 2012
Curiosity-CA STEM Summit 2012Curiosity-CA STEM Summit 2012
Curiosity-CA STEM Summit 2012
 
ACT Science Coffee - Robert Swinney
ACT Science Coffee  - Robert SwinneyACT Science Coffee  - Robert Swinney
ACT Science Coffee - Robert Swinney
 
Barc
BarcBarc
Barc
 
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
 
Poster Layout
Poster LayoutPoster Layout
Poster Layout
 
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
Ocean Optics: Fundamentals & Naval Applications Technical Training Short Cour...
 
Presentación proyecto fin de carrera.
Presentación proyecto fin de carrera.Presentación proyecto fin de carrera.
Presentación proyecto fin de carrera.
 
Silicon Happy Valley 2016
Silicon Happy Valley 2016Silicon Happy Valley 2016
Silicon Happy Valley 2016
 

Mais de Sergey Lourie

Skoltech: take a step into the future
Skoltech: take a step into the futureSkoltech: take a step into the future
Skoltech: take a step into the futureSergey Lourie
 
Normalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 IndexNormalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 IndexSergey Lourie
 
Yahoo vs. Google in 2012
Yahoo vs. Google in 2012Yahoo vs. Google in 2012
Yahoo vs. Google in 2012Sergey Lourie
 
Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...Sergey Lourie
 
Opportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at SkoltechOpportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at SkoltechSergey Lourie
 
Looking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced MaterialsLooking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced MaterialsSergey Lourie
 
Skoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research GroupsSkoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research GroupsSergey Lourie
 
Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013Sergey Lourie
 
Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...Sergey Lourie
 
Государственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартаповГосударственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартаповSergey Lourie
 
Инновационная диагностика свертывания крови
Инновационная диагностика свертывания кровиИнновационная диагностика свертывания крови
Инновационная диагностика свертывания кровиSergey Lourie
 
Роль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрииРоль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрииSergey Lourie
 
РОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилеткиРОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилеткиSergey Lourie
 
Российский институты развития
Российский институты развитияРоссийский институты развития
Российский институты развитияSergey Lourie
 
Делирий: термоквантовый двигатель
Делирий: термоквантовый двигательДелирий: термоквантовый двигатель
Делирий: термоквантовый двигательSergey Lourie
 
RUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investorsRUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investorsSergey Lourie
 
Рекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрахРекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрахSergey Lourie
 
Mlab labnotes-021 American management
Mlab labnotes-021 American managementMlab labnotes-021 American management
Mlab labnotes-021 American managementSergey Lourie
 
Сайт первого лица компании
Сайт первого лица компанииСайт первого лица компании
Сайт первого лица компанииSergey Lourie
 

Mais de Sergey Lourie (20)

Planets
PlanetsPlanets
Planets
 
Skoltech: take a step into the future
Skoltech: take a step into the futureSkoltech: take a step into the future
Skoltech: take a step into the future
 
Normalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 IndexNormalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 Index
 
Yahoo vs. Google in 2012
Yahoo vs. Google in 2012Yahoo vs. Google in 2012
Yahoo vs. Google in 2012
 
Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...
 
Opportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at SkoltechOpportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at Skoltech
 
Looking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced MaterialsLooking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced Materials
 
Skoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research GroupsSkoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research Groups
 
Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013
 
Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...
 
Государственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартаповГосударственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартапов
 
Инновационная диагностика свертывания крови
Инновационная диагностика свертывания кровиИнновационная диагностика свертывания крови
Инновационная диагностика свертывания крови
 
Роль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрииРоль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрии
 
РОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилеткиРОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилетки
 
Российский институты развития
Российский институты развитияРоссийский институты развития
Российский институты развития
 
Делирий: термоквантовый двигатель
Делирий: термоквантовый двигательДелирий: термоквантовый двигатель
Делирий: термоквантовый двигатель
 
RUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investorsRUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investors
 
Рекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрахРекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрах
 
Mlab labnotes-021 American management
Mlab labnotes-021 American managementMlab labnotes-021 American management
Mlab labnotes-021 American management
 
Сайт первого лица компании
Сайт первого лица компанииСайт первого лица компании
Сайт первого лица компании
 

Último

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 

Último (20)

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 

Space-Based Quantum Technology and Fundamental Physics Tests

  • 1. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Opportunities and Development of Atomic Systems and Quantum Devices in Space Nan Yu Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91109 Copyright 2011 California Institute of Technology Government Sponsorship Acknowledged [1]
  • 2. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Quantum Mechanics and Space Space exploration has a dual role: –  As a challenging endeavor, extremely sensitive instrumentation is required with features of performance, low power, low mass, and low cost. –  As a benign environment (micro gravity, low vibration, high isolation, space and time spans, etc.) it offers the opportunity to perform exacting tests of physics. Space environment for tests of quantum world and fundamental physics QM Space Space based measurements enhanced by quantum technology [2]
  • 3. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Quantum Properties for Technology •  The fundamentally quantum phenomena of quantum coherence and interferences, wave-particle duality, entanglement, quantum photon statistics allow the realization of sensors with unprecedented capability •  Areas such as free cold atom based technology, are particularly suitable for space application •  Ultra-stable clocks - timekeeping, navigation, fundamental physics tests •  Atom interferometer inertial sensors - gravity mapping for Earth science, gravity survey for planetary science, autonomous inertial navigation, tests of fundamental physics, drag-free control, pointing and guidance control •  BEC and quantum degenerate gas - enhancement for cold atom interferometers, tests for fundamental physics, quantum system modeling •  Entangled photon source and correlation properties - quantum communication, secure communication, imaging and computation [3]
  • 4. Jet Propulsion Laboratory! California Institute of Technology Space for Fundamental Physics and Applications National Aeronautics and Space Administration Precision Measurement Technology -  Laser cooling and atom trapping -  Atom optics -  Ultra-stable lasers Fundamental Physics and Applications -  Self-referenced optical frequency comb - Relativity theories -  Atomic clocks - Standard Model -  Atomic sensors - Equivalence Principle - Gravity physics - Cosmology and quantum decoherence Unique space environment - Gravitational wave detection   Global access - Earth and planetary gravity measurements   Free from atmospheric interference - Astrophysics observations   Microgravity - Communication   Low vibration - Navigation   Large spatial extent - Geodesy   Large gravitational field variation - Global timekeeping   Inertial frame Jet Propulsion Laboratory! California Institute of Technology (4) National Aeronautics and Space Administration [4]
  • 5. Jet Propulsion Laboratory! California Institute of Technology Optical Clocks – Next Generation High National Aeronautics and Space Administration Accuracy Clocks of Cold Atoms NIST 30 cm NIST (5) [5]
  • 6. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Space clock size vs. performance ?2,66"3P-1HQ2KP1"-3XK" Long-term Graphic! Stability #;#% =?5- and =@AB0??5- Accuracy =,636K.CD8#!#%EF,GFH3I: 56.47/H,4R.P,6/HKVQKP4G-1,D3631G =?CD8#!#%EF,GFH3I: =0J+,-KH #;# J39W46.47LKH/.H2,P4K =,636K.,--3NKJ+,-KH 04K-J+,-KH8O??: #;#' B0?0E?0A ;?0 J9?L,4K56.478M@: J+,-KH- #;#( H.L.-KF;=;3.P ST-­‐QUEST  or   46.47 ISS  op,cal  clock   +3P3,1QHK?L,4KALR4,656.47 8)!79T(!U: (100kg,  100W)   8S#!631KH-T$!U: #;#) ! #! $! %! ! '! (! )! *! +,--./01.23456.47879: (Based on chart from J. Prestage) [6]
  • 7. Jet Propulsion Laboratory! California Institute of Technology JPL linear ion trap clock development National Aeronautics and Space Administration LITS clock technology Ground LITS clock J. Prestage et al. Tjoelker et al. [7]
  • 8. Jet Propulsion Laboratory! California Institute of Technology Long-term stability of linear ion trap clock National Aeronautics and Space Administration LITS9-­‐UTC   UTC(NIST)-­‐UTC   UTC(PTB)-­‐UTC   UTC(USNO)-­‐UTC   •  9 month comparison: MJD 54023 to MJD 54296 (Robert Tjoelker and Eric Burt) - LITS-9 operating continuously - no intervention •  Relative drift (to primary standards TTBIPM) +2.7(0.4)x10-17/day [8]
  • 9. Jet Propulsion Laboratory! California Institute of Technology Miniaturization of linear trapped ion clocks National Aeronautics and Space Administration J. Prestage Ground LITS clock [9]
  • 10. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Deep Space Atomic Clock – Technology Demo The Deep Space Atomic Clock demonstration mission will fly and validate a miniaturized mercury-ion atomic clock that is 10-times more accurate than today’s systems. This project will demonstrate ultra- precision timing in space and its benefits for one-way radio navigation. The investigation will fly as a hosted payload on an Iridium spacecraft and make use of GPS signals to demonstrate precision orbit determination and confirm the clock's performance. Precision timing and navigation is critical to the performance of a wide range of deep space exploration missions. Artist's rendering of a vacuum tube, one of the main components of an atomic clock that will undergo a technology flight demonstration. Image Credit: NASA [10]
  • 11. Jet Propulsion Laboratory! California Institute of Technology Optical clock system overview National Aeronautics and Space Administration Locking feedback Ludlow, et al. OL SHG laser/Toptica Ti:Sapphire Diode lasers/Toptica Trapping/ Atomic Optical LO cooling reference (Stabilized laser) Laser optics Optical standard output Optical to JILA NPL NIST microwave frequency divider Microwave clock signal NIST Optical clock setup/ NIST Menlo [11]
  • 12. Jet Propulsion Laboratory! California Institute of Technology Towards an ultra-compact optical clock National Aeronautics and Space Administration Can one envision to package everything into liter-sized device, 10 kg, 20 W, and x10 improvement over microwave clocks of similar size? Locking Laser feedback reference cavity Trapping/ Optical standard output Atomic Optical LO cooling reference (Stabilized laser) Laser optics 2P 1/2! 2D 369 nm cooling 3/2! Optical to transition Compact lasers ! 436 nm clock transition microwave Single trapped ion ! Comb 2S 1/2! Yb+ frequency generator divider Single trapped ion standard Microwave clock signal To realize the ultra-compact optical clocks •  Miniature physics packages •  Whispering gallery mode (WGM) resonator based narrow line lasers •  WGM resonator stabilized optical local oscillator •  WGM resonator comb generation [12]
  • 13. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Space clock size vs. performance ?2,663P-1HQ2KP1-3XK Long-term Graphic! Stability #;#% =?5- and =@AB0??5- Accuracy =,636K.CD8#!#%EF,GFH3I: 56.47/H,4R.P,6/HKVQKP4G-1,D3631G =?CD8#!#%EF,GFH3I: =0J+,-KH #;# J39W46.47LKH/.H2,P4K =,636K.,--3NKJ+,-KH 04K-J+,-KH8O??: #;#' B0?0E?0A ;?0 J9?L,4K56.478M@: J+,-KH- #;#( H.L.-KF;=;3.P ST-­‐QUEST  or   46.47 ISS  op,cal  clock   +3P3,1QHK?L,4KALR4,656.47 8)!79T(!U: (100kg,  100W)   8S#!631KH-T$!U: #;#) ! #! $! %! ! '! (! )! *! +,--./01.23456.47879: (Based on chart from J. Prestage) [13]
  • 14. Jet Propulsion Laboratory! California Institute of Technology Applications of high-performance atomic clocks National Aeronautics and Space Administration Primary frequency standards, timekeeping, and global time scale and access. !#$% '()*+% A. Einstein +,(+-.% Clock-based fundamental physics tests in space: Gravitational redshift, Shapiro time delay, Lorentz Invariances, Equivalence Principle, variations of fundamental constants, ….. High-performance Stable reference sources for frequency standards global and Deep Space are universal tools for Network (DSN) tracking, precision positioning, timing, and measurements in communication needs. Also space, including laser enable tracking based science interferometers, measurements – planetary VLBI, relativistic gravity science, occultation, …. geodesy, [14]
  • 15. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Clocks and Sensors clocks Digital watches Cold atom clocks sensors Stanford AI gravimeter Hannover AI Gyro Quartz microbalances Atomic inertial sensors (15) [15]
  • 16. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Atoms as free fall clocks Free falling atoms (clocks) Δv= g Δt ? t1 v1 g Laser ruler with wavelength markers t2 v2 Δv= g Δt [16]
  • 17. Jet Propulsion Laboratory! California Institute of Technology Matter-wave Interferometer National Aeronautics and Space Administration Quantum particle-wave duality atom wave de Broglie wave: λdB=h/mv h – Planck constant = 6.6 × 10-34 m2 kg / s Why atom interferometer? 1.  Larger mass, shorter wavelength Cs atoms, at 2 µK, λdB ≈ 160 nm. Atom-wave Mach-Zehnder Interferometer 2.  Extremely high inertial force mirror Beam splitter sensitivity (mc2/hν) enhancement factor over comparable photon devices: 1010 theoretically fringes Atom beam 3.  Possessing internal states Easier to control and manipulate Beam splitter mirror ⇒ laser cooling, trapping, detection, and atom optics. [17]
  • 18. Jet Propulsion Laboratory! California Institute of Technology Atom Optics: Beam Splitting and Deflection National Aeronautics and Space Administration In the light pulse scheme, photon recoils are used to coherently split and redirect atom beams (waves). Photon absorption process (π pulse) deflection (mirror) p=hk ΔV=p/m light atom after absorption (π pulse) ⏐ 〉 ⇒ ⏐ 〉 Superposition state (π/2 pulse) beam splitter p=hk ΔV=p/m ΔV=0 ⏐ 〉 ⇒ ⏐ 〉 + ⏐ 〉 (π/2 pulse) [18]
  • 19. Jet Propulsion Laboratory! California Institute of Technology Atom Interferometer with Light Pulses National Aeronautics and Space Administration A straightforward atom interferometer implementation consists of a light pulse sequence of π/2-π-π/2* Each individual atom fringes Atomic beam π/2 pulse π/2 pulse π pulse •  The interferometer loop area can be either in spatial space (gyroscope) or momentum space (accelerometer). •  The amount of splitting is determined by the photon recoil. * Ref: M. Kasevich and S. Chu Phys. Rev. Lett. 67, 181 (1991) [19]
  • 20. Jet Propulsion Laboratory! California Institute of Technology Atom Wave Packet Size and Dispersion National Aeronautics and Space Administration Wave packet T T + δT Tvs Longitudinal velocity selection •  Initial velocity selection pulse 240 µs; a FWHM sinc function frequency width 5.4 kHz; a velocity group with spread Δv = 2.3 mm/s. This is the initial wave packet preparation, corresponding to a minimum uncertainty wave packet with spread of 450 nm. •  Dispersion of the atom wave packet: Δx(t) = (Δx02 + Δv2 t2)1/2. At the end of 2T (4 ms), the spread of the wave packet becomes 9.2 µm, initial x0 = 0.45 µm. •  The rate of relative displacement between two separated wave packet is about 7.2 mm/s (two photon recoil). The separation of the two wave packets change at the rate of 7.2 µm per ms. J. R. Kellogg, N. Yu, J. M. Kohel, R. J. Thompson, D. C. Aveline, and L. Maleki, “Longitudinal coherence in cold atom interferometry,” J. Modern Optics, 54:16, 2533 (2007). [20]
  • 21. Jet Propulsion Laboratory! California Institute of Technology Coherent Length of Cold Atoms National Aeronautics and Space Administration 720 nm Coherent length 500 nm Coherent length, over which the contrast is The contrast loss over the length of initial lost, depends on the initial velocity selection wave packet size, not the actual wave packet pulse length. size. Conclusion: at the point of the interference, the wave packets mostly overlap. The coherence is determined by the initial velocity spread of the atom wave, given by the quantum uncertainty principle.* •  Similar observation and proof were made for neutron matter waves. Ref: Kaiser, H. S., Werner, A. and George, E. A. Phys. Rev. Lett. 50, 560 (1983); Klein, A. G., Opat, G. I., and Hamilton, W. A. Phys. Rev. Lett. 50, 563 (1983). J. R. Kellogg, N. Yu, J. M. Kohel, R. J. Thompson, D. C. Aveline, and L. Maleki, “Longitudinal coherence in cold atom interferometry,” J. Modern Optics, 54:16, 2533 (2007). [21]
  • 22. Jet Propulsion Laboratory! California Institute of Technology AI Accelerometer Phase Shift National Aeronautics and Space Administration For atom interferometer Atomic fountain on ground accelerometer Ram an beam s ΔΦ = 2 k a T 2 π pulse •  Independent of atom initial velocity ! /2 pul s e •  k, the laser wavenumber is the only reference parameter ! pul s e •  Sensitivity goes with T2 π/2/2 pul s e ! + π/2 pulses With over 106 atoms, the shot-noise limited SNR ~ 1000. Per shot sensitivity = 2×10-10/T2 m/s2, counter- or about 10-11/T2 g. propagating Ram an beam s Great enhancement of the For example: in microgravity, sensitivity can be gained in 10-13 g Hz-1/2 possible with 10 s microgravity in space! interrogation time. “Quantum Gravity Gradiometer Sensor for Earth Science Applications,” Nan Yu, James M. Kohel, Larry Romans, and Lute Maleki, NASA Earth Science and Technology Conference 2002. Paper B3P5. Pasadena, California. June 2002. [22]
  • 23. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Atom Interferometer Inertial Sensors Rotational sensing Acceleration/gravity sensing Sagnac effect ΔΦ= 8π(A•Ω)/λv Phase shift due to acceleration ΔΦ = 2 k a T 2 !#$%'!$% ()*+,'-% a ! ! = 2 k!!T!#! !#$%'!$% Stanford Hannover Firenze U. SYRTE Berkeley (Stanford) SYRTE JPL Stanford Yale e.g. Laboratory AI gyroscope has a sensitivity e.g. Laboratory atomic accelerometer measured g with a resolution of 6 x 10-10 rad s-1 Hz-1/2. [T. L. Gustavson et of 2 x 10-8g in 1 second, and 3 x 10-9g overall precision. [A. Peters al., Class. Quantum Grav. 17, 2385 (2000)] et al., Metrologia, 38, 25 (2001)] There are also many activities of atom interferometers with BEC and guided atom chips. [23]
  • 24. Jet Propulsion Laboratory! Technology Developments towards Space California Institute of Technology National Aeronautics and Space Administration Applications Drop tower Experiments with cold atoms Atom interferometer in 0-g and BEC, Quantus collaboration, DLR flight, I.C.E. collaboration, France JPL atom interferometer gravity gradiometer development !#$%%'()*%+,*-,*#.*/% 2/34*/*#'5+/)'(+#'%+#6$6$%*. 0#'/$,+#%'()*1/% Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration [24]
  • 25. Jet Propulsion Laboratory! California Institute of Technology National Aeronautics and Space Administration Atomic Freefall Test Mass in Space Freefall test mass + Displacement Detection + Atomic system stability !+ ! fringes! B field coils ! Atomic beam! !+ !+ ! !/2 pulse! NIST !/2 pulse! ! pulse! atomic clock Laser-cooled Cs atom-wave interferometer atom cloud at µK (laser-based atom optics) Atoms are stable clocks •  Use totally freefall atomic particles as ideal test masses identical atomic particles are collected, cooled, and set in free fall in vacuum with no external perturbation other than gravity/inertial forces; laser-cooling and trapping are used to produce the atomic test masses at µK and nK; no cryogenics and no mechanical moving parts. •  Matter-wave interference for displacement measurements displacement measurements trough interaction of lasers and atoms, pm/Hz1/2 when in space; laser control and manipulation of atoms with opto-atomic optics. •  Intrinsic high stability of atomic system use the very same atoms and measurement schemes as those for the most precise atomic clocks, allowing high measurement stabilities. •  Enable orders of magnitude sensitivity gain when in space microgravity environment in space offers long interrogation times with atoms, resulting orders of magnitude higher sensitivity compared terrestrial operations. [25]
  • 26. Jet Propulsion Laboratory! California Institute of Technology Test of Weak Equivalence Principle on ISS National Aeronautics and Space Administration Two species differential accelerometer Δg = gA-gB = ? ΦA= 2k(gA+a)T 2 ΦB= 2k(gB+a)T 2 Atom-A Atom-B ΔΦΑΒ = 2k (gA-gB) T 2 ª  Single axis differential acceleration of two co-located matter wave interferometers with a different atomic species mirror ª  Seek a violation of Einstein’s Equivalence Principle by improving the test limit by three orders of magnitude, to 1x10-15 level and better. ª  First non-trivial precision experiment of quantum particles under the influence of gravity, and may stimulate discussions of General Relativity in the framework of NASA QuITE quantum mechanics. ESA QWEP [26]
  • 27. Jet Propulsion Laboratory! - Advanced gravity mission for Earth and California Institute of Technology National Aeronautics and Space Administration planetary sciences -  Cold atoms as truly drag-free test masses -  Gravity gradiometer (better resolution) -  Simpler mission architecture (single spacecraft) -  More flexible orbits and satellite constellation (more comprehensive data for data analyses) Geodesy Earth and Planetary Interiors –  Lithospheric thickness, composition –  Lateral mantle density heterogeneity –  Deep interior studies –  Translational oscillation between core/mantle Earth and Planetary Climate Effects –  Oceanic circulation –  Tectonic and glacial movements –  Tidal variations –  Surface and ground water storage –  Polar ice sheets –  Earthquake monitoring GOCE [27]
  • 28. Jet Propulsion Laboratory! California Institute of Technology Transportable atomic gradiometer instrument National Aeronautics and Space Administration James Kohel, James Kellogg, Rob Thompson and Dave Aveline [28]
  • 29. Jet Propulsion Laboratory! California Institute of Technology Experimental results National Aeronautics and Space Administration Instrument phase measurement revolution Data are for a total interrogation time of greater than 300 ms. James Kohel and James Kellogg [29]
  • 30. Jet Propulsion Laboratory! California Institute of Technology Summary National Aeronautics and Space Administration ü  Properties of quantum mechanics can be utilized to implement and enhance sensors of unprecedented performance. ü  Space-based measurements for both science and application often require extraordinary sensitivity which is afforded by quantum devices. ü  Space environment is also ideal and often necessary for tests of fundamental physics and quantum physics itself. ü  Near-term quantum applications in space will include ultra-precise clocks for test of special and general relativity and navigation; atom interferometers for tests of General Relativity and WEP; and gravity gradiometer for gravity mapping. ü  Atomic clocks and atom-wave inertial sensors will play important roles in space applications for gravity and magnetic filed measurements, navigations, pointing and guidance, inertial-fame referencing and drag-free control. ü  We are developing a number of quantum technologies with atomic systems (clocks and gravity sensor devices) in support of NASA missions, including Earth Science, Space and Planetary Sciences. [30]
  • 31. Jet Propulsion Laboratory! California Institute of Technology Quantum Sciences and Technology Group National Aeronautics and Space Administration Situated in JPL Frequency Standard Laboratory, which is Responsible for technology development, generation, and distribution of ultra-stable reference frequencies and synchronized timing signals for NASA's Deep Space Network (DSN). Group research areas and activities: Trapped Hg ion Frequency Standards and Clocks Space clock and Linear ion trap clocks (space clocks) other miniature clocks Small and micro atomic clock Optical clocks Laser stabilizations Atomic Quantum Sensors Atom interferometers and gravity gradiometer Optical phase control and photonics BEC and guided atoms on chips Whispering Gallery mode Laser pumped magnetometers resonators and devices Light and Microwave Photonics Photonic oscillators Laser cooling and MIR and THz photonics Fundamental Physics Atom interferometer research Micro resonator research and devices Gravity sensor (lasers, filter, modulator, nonlinear device, Mid infrared lasers spectrometer, and sensor) Laser and Coherent Control Optical frequency combs Narrow-line and ultra-stable lasers Single ion trapping Frequency comb Gravity and fundamental and optical clocks physics through precision Optical phase locking and control measurements in space [31]