SlideShare uma empresa Scribd logo
1 de 41
Baixar para ler offline
OBSERVATIONAL PARAMETERS IN A
BRANEWORLD INFLATIONARY SCENARIO
MILAN MILOŠEVIĆ
Department of Physics
Faculty of Sciences and Mathematics
University of Niš, Serbia
Ruđer Bošković Institute, Zagreb, Croatia, 2 November 2018
In collaboration with
N. Bilić (Zagreb), G. Djordjević (Niš),
D. Dimitrijević (Niš) and M. Stojanović (Niš)
OUTLINE
• Introduction
• Standard Cosmological Model
• Inflationary models
• Tachyon Inflation
• Randall - Sundrum (RS) Model
• Extended RS model
• Numerical results
• Conclusion
INTRODUCTION
• The inflation theory proposes a period of extremely rapid
(exponential) expansion of the universe during the very early
stage of the universe.
• Inflation is a process in which the dimensions of the universe
have increased exponentially at least 𝑒60 ≈ 1026 times.
• Although inflationary cosmology has successfully
complemented the Standard Model, the process of inflation,
in particular its origin, is still largely unknown.
INTRODUCTION
• Over the past 35 years numerous models of inflationary
expansion of the universe have been proposed.
• The simplest model of inflation is based on the existence of a
single scalar field, which is called inflaton.
• Recent years - a lot of evidence from WMAP and Planck
observations of the CMB
• The most important ways to test inflationary cosmological
models is to compare the computed and measured values of
the observational parameters.
STANDARD COSMOLOGICAL MODEL
• Dynamics of an expansion of a homogeneous and isotropic universe
• A. Fridman (A. Einstein, W. de Siter, G. Lemaître)
• From the basic postulates GTR -> The Einstein field equation
𝑅 𝜇𝜈 −
1
2
𝑔 𝜇𝜈 𝑅 =
8𝜋𝐺
𝑐4
𝑇𝜇𝜈.
• Friedmann–Robertson–Walker metric
𝑑𝑠2
= 𝑐2
𝑑𝑡2
− 𝑎2
(𝑡)
𝑑𝑟2
1 − 𝑘𝑟2
+ 𝑟2
𝑑𝜃2
+ sin2
𝜃𝑑𝜙2
,
• where 𝑅 𝜇𝜈 are components of Ricci tensor, 𝑅 – Ricci scalar, and 𝑇𝜇𝜈 are
components of energy–momentum tensor
STANDARD COSMOLOGICAL MODEL
• Friedmann equations
𝐻2 ≡
ሶ𝑎
𝑎
2
=
8𝜋𝐺
3
𝜌 −
𝑘𝑐2
𝑎2
ሷ𝑎
𝑎
= −
4𝜋𝐺
3
𝜌 +
3𝑝
𝑐2
• A reliable model for 10−10 𝑠 old universe and energy of the
particles < 1𝑇𝑒𝑉
• SCM: about 15 problems, the most
important
• The flatness problem
• The horizon problem
• Solution – inflation?!
(A. Guth, K. Sato, 1981)
A. Linde, Particle Physics and Inflationary Cosmology, (2005) 270.
𝑘 = −1
𝑘 = 0
𝑘 = 1
Whydoweneedinflation?
„STANDARD“ INFLATION
• The simplest models - standard single scalar field inflation, a field 𝜙
- inflaton
• A condition for inflation (from the Friedmann equations)
𝑑
𝑑𝑡
𝑎𝐻 −1
< 0 ⇔
𝑑2
𝑎
𝑑𝑡2
> 0 ⇔ 𝜌 + 3𝑝 < 0
• The dynamics of the classical real scalar field
𝑆 = −
1
16𝜋𝐺
‫׬‬ −𝑔 𝑅𝑑4 𝑥 + ‫׬‬ −𝑔 ℒ(𝑋, 𝜑)𝑑4 𝑥,
• where )ℒ(𝑋, 𝜑 is the Lagrangian, with kinetic term 𝑋 ≡
1
2
𝜕𝜇 𝜑𝜕𝜈 𝜑
• Energy density and preassure
A negative pressure runs inflation
𝜌 ≡ ℋ =
1
2
ሶ𝜙2
+ 𝑉(𝜙)
𝑝 ≡ ℒ =
1
2
ሶ𝜙2 − 𝑉(𝜙)
„STANDARD“ INFLATION
• Time evolution of homogeneous scalar field, for FRW metric → the
Klein–Gordon equation
ሷ𝜙 + 3𝐻 ሶ𝜙 + 𝑉′ = 0, 𝑉′ ≡
𝜕𝑉
𝜕𝜙
• The Friedmann equation
𝐻2
=
8π𝐺
3
1
2
ሶ𝜙2
+ 𝑉(𝜙)
• Slow-roll condition
ሶ𝜙2 ≪ 𝑉(𝜙) ⇒ ൞
𝐻2
≈
8π𝐺
3
𝑉(𝜙)
3𝐻 ሶ𝜙 + 𝑉′ ≈ 0
• In order for inflation to last long enough | | | 3 |
| | | |
H
V
 
 
OBSERVATIONAL PARAMETERS
• Last 20 years → observational results can be used to
validate teoretical models
• Inflation - explains fluctuations in the early universe
• Independently S.W. Hawking, A. Starobinsky i A. Guth
W.H. Kinney, Cosmology, inflation, and the physics of nothing, (2003)
Beginning and End of the Universe, http://www.as.utexas.edu/~gebhardt/u303f16/cos3.html
OBSERVATIONAL PARAMETERS
• Hubble hierarchy (slow-roll) parameters
𝜖𝑖+1 ≡
𝑑ln|𝜖𝑖|
𝑑𝑁
, 𝑖 ≥ 0, 𝜖0 ≡
𝐻∗
𝐻
• Duration of inflation 𝜀𝑖 ≪ 1
𝑁 = ln
𝑎 𝑒𝑛𝑑
𝑎
= න
𝑡
𝑡 𝑒𝑛𝑑
𝐻𝑑𝑡
• The end of inflation 𝜖𝑖(𝜑 𝑒𝑛𝑑) ≈ 1
• Three independent observational parameters: amplitude of scalar
perturbation 𝐴 𝑠, tensor-to-scalar ratio 𝑟 and scalar spectral index 𝑛 𝑠
𝑟 = 16𝜀1
𝑛 𝑠 = 1 − 2𝜀1 − 𝜀2
Hubble expansion rate
at an arbitrarily
chosen time
At the lowest order in parameters 𝜀1 and 𝜀2
𝜀1 = −
ሶ𝐻
𝐻2
,
𝜀2 = 2𝜀1 +
ሷ𝐻
𝐻 ሶ𝐻
.
OBSERVATIONAL PARAMETERS
• Satellite Planck
(May 2009 – October 2013)
• Planck Collaboration
• Latest results are published
in year 2018.
Planck 2018 results. X Constraints on inflation, arXiv:1807.06211 [astro-ph.CO]
TACHYONS
• Traditionally, the word tachyon was used to describe a
hypothetical particle which propagates faster than light.
• In modern physics this meaning has been changed:
• The effective tachyonic field theory was proposed by A. Sen
• String theory: states of quantum fields with imaginary mass (i.e.
negative mass squared).
• However it was realized that the imaginary mass creates an instability
and tachyons spontaneously decay through the process known as
tachyon condensation.
• Quanta are not tachyon any more, but rather an ”ordinary” particle with
a positive mass.
TACHYON INFLATION
• Properties of a tachyon potential
𝑉(0) = const, 𝑉′(𝜃 > 0) < 0, 𝑉(|𝜃| → ∞) → 0.
• The corresponding Lagrangian and the Hamiltionian are
p ≡ ℒ(𝑋, 𝜃) = −𝑉(𝜃) 1 − 2𝑋 = −𝑉(𝜃) 1 − ሶ𝜃2
ρ ≡ ℋ =
)𝑉(𝜃
1 − ሶ𝜃2
• The Friedmann equation
𝐻2 ≡
ሶ𝑎
𝑎
2
=
8𝜋𝐺
3
ℋ =
8𝜋𝐺
3
)𝑉(𝜃
1 − ሶ𝜃2
• M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Stojanovic, Dynamics of tachyon fields and inflation - comparison of
analytical and numerical results with observation, Serbian Astronomical Journal. 192 (2016)
• D. Steer, F. Vernizzi, Tachyon inflation: Tests and comparison with single scalar field inflation, Phys. Rev. D. 70 (2004)
43527.
DYNAMICS OF INFLATION
1. The energy-momentum conservation equation
൯ሶℋ = −3𝐻(ℒ + ℋ .
2. The Hamilton’s equations
ሶ𝜃 =
𝜕ℋ
𝜕𝜋 𝜃
,
ሶ𝜋 𝜃 + 3𝐻𝜋 𝜃 = −
𝜕ℋ
𝜕𝜃
,
𝜋 𝜃 =
𝜕ℒ
𝜕 ሶ𝜃
is the conjugate momentum and the Hamiltonian ℋ = ሶ𝜃𝜋 𝜃 − ℒ
TACHYON INFLATION
• Dimensionless equations
ሷ𝜃
1 − ሶ𝜃2
+ 3ℎ ሶ𝜃 +
1
𝑉
𝜕𝑉
𝜕𝜃
= 0
ℎ2
=
𝜅2
3
ρ =
𝜅2
3
𝑉
1 − ሶ𝜃2
• Dimensionless constant 𝜅2 = 8π𝐺𝜆𝑘2, a choice of a constant 𝜎
(brane tension) was motivated by string theory
𝜎 = λ𝑘2 =
𝑀𝑠
4
𝑔𝑠 2𝜋 3
.
t = Τ𝜏 𝑘, Θ = kθ, ℎ =
𝐻
𝑘
.
CONDITIONS FOR TACHYON INFLATION
• General condition for inflation
ሷ𝑎
𝑎
≡ ෩𝐻2 + ሶ෩𝐻 =
𝜅2
3
෨𝑉 )(Θ
1 − ሶΘ2
1 −
3
2
ሶΘ2 > 0.
• Slow-roll conditions
ሷΘ ≪ 3 ෩𝐻 ሶΘ, ሶΘ2
≪ 1.
BRANEWORLD COSMOLOGY
• Braneworld universe is based on the scenario in which matter is
confined on a brane moving in the higher dimensional bulk with
only gravity allowed to propagate in the bulk.
• One of the simplest models - Randall-Sundrum (RS)
• Two branes with opposite tensions are placed at some distance
in 5 dimensional space
• N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, Tachyon inflation in an AdS braneworld with
back-reaction, International Journal of Modern Physics A. 32 (2017) 1750039.
• N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys. 12 (2014) 147–159.
THE RSII MODEL
0y = y → 
0  0 
N. Bilic, “Braneworld Universe”, 2nd CERN – SEENET-MTP PhD School, Timisoara, December 2016
x
5
x y
RSII model – observer is placed on
the positive tension brane, 2nd
brane is pushed to infinity
THE RSII MODEL
• The space is described by Anti de Siter metric
𝑑𝑠 5
2
= 𝑒−2𝑘𝑦
𝑔 𝜇𝜈
𝑑𝑥 𝜇
𝑑𝑥 𝜈
− 𝑑𝑦2
,
where 𝑘 =
1
𝓁
is the inverse of AdS5 curvature radius
• The Lagrangian and the Hamiltonian
ℒ ≡ 𝑝 =
1
2
𝑔 𝜇𝜈 𝜙,𝜇 𝜙,𝜈 −
𝜆𝜓2
𝜃4
1 −
𝑔 𝜇𝜈 𝜃,𝜇 𝜃,𝜈
𝜓3
,
ℋ ≡ 𝜌 =
1
2
𝑔 𝜇𝜈 𝜙,𝜇 𝜙,𝜈 +
𝜆𝜓2
𝜃4
1 −
𝑔 𝜇𝜈 𝜃,𝜇 𝜃,𝜈
𝜓3
− Τ1 2
,
where 𝜓 = 1 + 𝜃2 𝜂 and 𝜂 = sinh2 Τ4 3 𝜋𝐺𝜙 .
• One additional 3-brane moving in the AdS5 bulk behaves effectively
as a tachyon with the potential 𝑉 𝜃 ∝ 𝜃−4
THE RSII MODEL
• The Hamilton’s equations
• The conjugate momenta: 𝜋 𝜙
𝜇
≡
𝜕ℒ
𝜕𝜙,𝜇
, 𝜋 𝜃
𝜇
≡
𝜕ℒ
𝜕𝜃,𝜇
.
• The modified Friedman equations
𝐻 ≡
ሶ𝑎
𝑎
=
8𝜋𝐺
3
ℋ 1 +
2𝜋𝐺
3𝑘2 ℋ ,
ሶ𝐻 = −4𝜋𝐺(ℋ + ℒ) 1 +
4𝜋𝐺
3𝑘2
ℋ
ሶ𝜙 =
𝜕ℋ
𝜕𝜋 𝜙
, ሶ𝜋 𝜙 + 3𝐻𝜋 𝜙 = −
𝜕ℋ
𝜕𝜙
,
ሶ𝜃 =
𝜕ℋ
𝜕𝜋 𝜃
, ሶ𝜋 𝜃 + 3𝐻𝜋 𝜃 = −
𝜕ℋ
𝜕𝜃
.
INITIAL CONDITIONS FOR RSII MODEL
• Initial conditions – from a model without radion field
• “Pure” tachyon potential 𝑉(𝛩) =
𝜆
𝛩4
• Hamiltonian ℋ =
𝜆
𝛩4 1 + 𝛱 𝛩
2 Τ𝛩8 𝜆2 .
• Dimensionless equations
4
8 2
5 8 2
1
4
3 .
1
h
EXTENDED RSII MODEL
• The RSII model is extended to include matter in
the bulk.
• The presence of matter modifies the warp factor
which results in two effects:
• a modification of the RSII cosmology
• a modification of the tachyon potential.
• N. Bilić, S. Domazet, G.S. Djordjevic, Particle Creation and Reheating in a Braneworld Inflationary
Scenario, Physical Review D, 96 (2017), 083518
• N. Bilić, S. Domazet, and G. S. Djordjevic, Tachyon with an inverse power-law potential in a
braneworld cosmology, Class. Quantum Gravity 34, 165006 (2017).
EXTENDED RSII MODEL
• Similar setup as the RSII model, however a more general tachyon
potential:
𝑉 Θ =
𝜎
𝜒4 (Θ)
• The modified Friedmann equations
ℎ =
𝜅2
3
𝜌 𝜒,𝜑 +
𝜅2
12
𝜌
ሶℎ = −
𝜅2
2
(𝜌 + 𝑝) 𝜒,𝜃 +
𝜅2
6
𝜌 +
𝜅2 𝜌
6ℎ
𝜒,𝜃𝜃
ሶ𝜃.
𝜒,𝜃 =
𝜕𝜒
𝜕𝜃
NUMERICAL COMPUTATION
• Calculation:
• Programming language: C/C++
• GNU Scientific Library
• Visualization and data analysis
• Programming language: R
OBSERVATIONAL PARAMETERS
• Scalar spectral index 𝑛 𝑠 and tensor-to-scalar ratio 𝑟 for all
models up to the second order
𝑟 = 16𝜀1 1 + 𝐶𝜀2 − 2𝛼𝜀1 ,
𝑛 𝑠 = 1 − 2𝜀1 − 𝜀2 − 2𝜀1
2
+ 2𝐶 + 3 − 2𝛼 𝜀1 𝜀2 + 𝐶𝜀2 𝜀3 .
• 𝐶 ≃ −0,72,
• 𝛼 =
1
6
for tachyon inflation in standard cosmology,
• 𝛼 =
1
12
for Randall-Sundrum cosmology
• Planck results (𝑃𝑙𝑎𝑛𝑐𝑘 TT,TE,EE+lowW+lensing+BK14)
𝑛 𝑠 = 0.9665 ± 0.0038 (68% CL),
r0.002 < 0.064 (95% CL).
THE TACHYION POTENTIAL 𝑽 𝜽 = 𝒆−𝜽
45 ≤ N < 75, 1 ≤ κ < 10
ℎ =
𝜅2
3
𝜌 1 +
𝜅2
12
𝜌ℎ =
𝜅2
3
𝜌
THE TACHYION POTENTIAL 𝑽 𝜽 =
𝟏
𝜽 𝟒
45 ≤ N < 75, 1 ≤ κ < 1045 ≤ N < 90, 1 ≤ κ < 10
ℎ =
𝜅2
3
𝜌 1 +
𝜅2
12
𝜌ℎ =
𝜅2
3
𝜌
THE TACHYION POTENTIAL 𝑽 𝜽 =
𝟏
𝒄𝒐𝒔𝒉 𝜽
45 ≤ N < 75, 1 ≤ κ < 10
ℎ =
𝜅2
3
𝜌 1 +
𝜅2
12
𝜌ℎ =
𝜅2
3
𝜌
THE BEST RESULTS: 𝑽 𝜽 =
𝟏
𝒄𝒐𝒔𝒉 𝜽
45 ≤ N ≤ 75, 1≤ κ ≤ 10
Mean (red)
μ ns = 0.9694
𝜇(𝑟) = 0.062
Median (green)
෤𝑛 𝑠 = 0.9745
ǁ𝑟 = 0.045
ℎ =
𝜅2
3
𝜌 1 +
𝜅2
12
𝜌
RSII MODEL, 𝑽 𝜽 =
𝟏
𝜽 𝟒
45 ≤ N ≤ 75, 1 ≤ κ ≤ 10ℎ =
𝜅2
3
𝜌 1 +
𝜅2
12
𝜌
EXTENDED RSII, 𝑽 𝜽 = 𝒆−𝜽
45 ≤ N < 75, 1 ≤ κ < 10
ℎ =
𝜅2
3
𝜌
𝜕𝜒
𝜕𝜃
+
𝜅2
12
𝜌
EXTENDED RSII, 𝑽 𝜽 =
𝟏
𝜽 𝟒𝒏
45 ≤ N < 75, 1 ≤ κ < 10,
0.5 ≤ 𝑛 < 5
ℎ =
𝜅2
3
𝜌
𝜕𝜒
𝜕𝜃
+
𝜅2
12
𝜌
EXTENDED RSII, 𝑽 𝜽 =
𝟏
𝒄𝒐𝒔𝒉 𝜽
45 ≤ N < 75, 1 ≤ κ < 10
ℎ =
𝜅2
3
𝜌
𝜕𝜒
𝜕𝜃
+
𝜅2
12
𝜌
CONCLUSIONS
• The simplest tachyon model that originates from the dynamics of a
D3-brane in an AdS5 bulk yields an inverse quartic potential.
• The same mechanism leads to a more general tachyon potential if the
AdS5 background metric is modified by the presence of matter in the
bulk, e.g. in the form of a minimally coupled scalar field with self-
interaction.
• The software is written in such a way that its only inputs are the Hamilton’s
and Friedmann equations, with relevant parameters.
• The program can readily be used for a much wider set of models.
• The best fitting result is obtained for 𝑉 𝜃 =
1
cosh 𝜃
.
• Our preliminary results indicate an opportunity for further research based on
various potentials in the contest of the RSII model and holographic
cosmology.
THANK YOU FOR YOUR ATTENTION
The financial support of the Serbian Ministry for Education and Science,
Project OI 176021 is acknowledged.
Research partially supported by STSM CANTATA-COST grant and
by the SEENET-MTP Network under the ICTP grant NT-03
OUR REFERENCES
1. N. Bilić, D.D. Dimitrijević, G.S. Djordjević, M. Milošević, & M. Stojanović, Tachyon inflation in
the holographic braneworld, arXiv:1809.07216 [gr-qc]
2. D.D. Dimitrijevic, N. Bilić, G.S. Djordjevic, M. Milosevic & M. Stojanović, Tachyon Scalar Field
in a Braneworld Cosmology, in International Journal of Modern Physics A, (submitted 2018)
3. M. Milošević, N. Bilić, D.D. Dimitrijević, G.S. Djordjević & M. Stojanović, Numerical
Calculation of Hubble Hierarchy Parameters and Observational Parameters of Inflation. in
AIP Conference Proceedings of the BPU10 (submitted 2018).
4. D. D. Dimitrijevic, N. Bilić, G. S. Djordjevic & M. Milosevic, Tachyon scalar field in DBI and
RSII cosmological context, in SFIN (submitted 2018).
5. N. Bilić, S. Domazet & G.S. Djordjevic, Particle Creation and Reheating in a Braneworld
Inflationary Scenario, Physical Review D, 96 (2017), 083518
6. N. Bilić, S. Domazet & G. S. Djordjevic, Tachyon with an inverse power-law potential in a
braneworld cosmology, Class. Quantum Gravity 34, 165006 (2017).
7. N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic & M. Milosevic, Tachyon inflation in an AdS
braneworld with back-reaction, International Journal of Modern Physics A. 32 (2017)
1750039.
8. N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic & M. Stojanović, Dynamics of
tachyon fields and inflation: Analytical vs numerical solutions, in AIP Conf. Proc. (2016), p.
050002.
THE MOST IMPORTANT REFERENCES
• Planck 2018 results. X Constraints on inflation, arXiv:1807.06211
[astro-ph.CO] (2018)
• N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent.
Eur. J. Phys. 12 (2014) 147–159.
• D. Steer, F. Vernizzi, Tachyon inflation: Tests and comparison with
single scalar field inflation, Phys. Rev. D. 70 (2004) 43527.
• L. Randall, R. Sundrum, Large Mass Hierarchy from a Small Extra
Dimension, Physical Review Letters. 83 (1999) 3370–3373.
• L. Randall, R. Sundrum, An Alternative to Compactification,
Physical Review Letters. 83 (1999) 4690–4693.
SEENET-MTP – A REGIONAL STORY
15 YEARS OF THE NETWORK (2003 – 2018)
• Hoping for bridging the gap between Southeastern and Western
European scientific community, the participants of the UNESCO
sponsored BALKAN WORKSHOP BW2003 "Mathematical, Theoretical
and Phenomenological Challenges Beyond the Standard Model:
Perspectives of Balkans Collaboration" (Vrnjacka Banja, Serbia, August
29 - September 3 2003) came to a common agreement on the
Initiative for the SEENET-MTP NETWORK
• The Network was a natural extension of the WIGV initiative
(Wissenschaftler in globaler Verantwortung) launched by J. Wess in
1999
• Structure Development
• 23 institutions from 11 countries in the region joined the Network
• 13 partner institutions all over the world
• about 400 individual members
MAIN OBJECTIVES AND AIMS
• Provide a regional framework for the institutional capacity-building in
Mathematical and Theoretical Physics
• Strengthening of close relations and cooperation among faculties of science,
research institutions and groups, including individual scientists in South-East
Europe
• Joint scientific and research activities in the region and fostering
interregional collaboration, foremost in a European context, but also with a
strong worldwide dimension
• Support capacity building in physics, mathematics and other sciences and
technology by initiating new approaches to teaching physics and sciences
• Promote the exchange of students and encourageing communication
between gifted pupils
• Promote physics and science in general
• Support the establishment of local and regional centres of excellence in
physics and mathematics
WEB PORTAL: WWW.SEENET-MTP.INFO

Mais conteúdo relacionado

Mais procurados

Berlin - Conceptual Aspects of Gauge-Gravity Duality
Berlin - Conceptual Aspects of Gauge-Gravity DualityBerlin - Conceptual Aspects of Gauge-Gravity Duality
Berlin - Conceptual Aspects of Gauge-Gravity DualitySebastian De Haro
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling BasicsAshutosh Kumar
 
REU Research Project_Final
REU Research Project_FinalREU Research Project_Final
REU Research Project_FinalJongyoon Sohn
 
Trialdraftsppformat dimen test1
Trialdraftsppformat dimen   test1Trialdraftsppformat dimen   test1
Trialdraftsppformat dimen test1foxtrot jp R
 
Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1foxtrot jp R
 
Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985Benjamin Seive
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
 
Optimization in Statistical Physics
Optimization in Statistical PhysicsOptimization in Statistical Physics
Optimization in Statistical PhysicsKwan-yuet Ho
 
Geometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsGeometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsShuchang Zhang
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUniversity of California, San Diego
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization gandhinagar
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qmAnda Tywabi
 

Mais procurados (20)

Berlin - Conceptual Aspects of Gauge-Gravity Duality
Berlin - Conceptual Aspects of Gauge-Gravity DualityBerlin - Conceptual Aspects of Gauge-Gravity Duality
Berlin - Conceptual Aspects of Gauge-Gravity Duality
 
The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
 
REU Research Project_Final
REU Research Project_FinalREU Research Project_Final
REU Research Project_Final
 
Trialdraftsppformat dimen test1
Trialdraftsppformat dimen   test1Trialdraftsppformat dimen   test1
Trialdraftsppformat dimen test1
 
Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1
 
Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985
 
Av 738- Adaptive Filtering - Wiener Filters[wk 3]
Av 738- Adaptive Filtering - Wiener Filters[wk 3]Av 738- Adaptive Filtering - Wiener Filters[wk 3]
Av 738- Adaptive Filtering - Wiener Filters[wk 3]
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
 
Optimization in Statistical Physics
Optimization in Statistical PhysicsOptimization in Statistical Physics
Optimization in Statistical Physics
 
Lagrange
LagrangeLagrange
Lagrange
 
Geometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsGeometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov Chains
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
Laplace Transform
Laplace TransformLaplace Transform
Laplace Transform
 
I0744347
I0744347I0744347
I0744347
 

Semelhante a Observational Parameters in a Braneworld Inlationary Scenario

Observational parameters of Inflation in Holographic cosmology
Observational parameters of Inflation in Holographic cosmologyObservational parameters of Inflation in Holographic cosmology
Observational parameters of Inflation in Holographic cosmologyMilan Milošević
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"SEENET-MTP
 
The Dark Side of the Universe
The Dark Side of the UniverseThe Dark Side of the Universe
The Dark Side of the UniverseRohanSrivastava56
 
Quantum gravity phenomenology: Minimal length
Quantum gravity phenomenology: Minimal lengthQuantum gravity phenomenology: Minimal length
Quantum gravity phenomenology: Minimal lengthMilad Hajebrahimi
 
Tachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextTachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextMilan Milošević
 
Biermann - Quarks and the Cosmos
Biermann - Quarks and the CosmosBiermann - Quarks and the Cosmos
Biermann - Quarks and the CosmosAtner Yegorov
 
Lectures on Cosmological Correlations
Lectures on Cosmological CorrelationsLectures on Cosmological Correlations
Lectures on Cosmological CorrelationsDanielBaumann11
 
Higgs inflation
Higgs inflationHiggs inflation
Higgs inflationOUSEPHCJ
 
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptxPhysics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptxAzzahDyahPramata2
 
Day 6 cosmo_inflation_ss09
Day 6 cosmo_inflation_ss09Day 6 cosmo_inflation_ss09
Day 6 cosmo_inflation_ss09Atner Yegorov
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009Jay Wacker
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdfgarfacio30
 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System ModelsAIMST University
 
Neil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesNeil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesSEENET-MTP
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...RohitNukte
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdfcfisicaster
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...JeremyHeyl
 

Semelhante a Observational Parameters in a Braneworld Inlationary Scenario (20)

Observational parameters of Inflation in Holographic cosmology
Observational parameters of Inflation in Holographic cosmologyObservational parameters of Inflation in Holographic cosmology
Observational parameters of Inflation in Holographic cosmology
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
The Dark Side of the Universe
The Dark Side of the UniverseThe Dark Side of the Universe
The Dark Side of the Universe
 
Quantum gravity phenomenology: Minimal length
Quantum gravity phenomenology: Minimal lengthQuantum gravity phenomenology: Minimal length
Quantum gravity phenomenology: Minimal length
 
Tachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextTachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII context
 
Biermann - Quarks and the Cosmos
Biermann - Quarks and the CosmosBiermann - Quarks and the Cosmos
Biermann - Quarks and the Cosmos
 
Spherical harmonics
Spherical harmonicsSpherical harmonics
Spherical harmonics
 
Lectures on Cosmological Correlations
Lectures on Cosmological CorrelationsLectures on Cosmological Correlations
Lectures on Cosmological Correlations
 
Higgs inflation
Higgs inflationHiggs inflation
Higgs inflation
 
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptxPhysics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
 
Day 6 cosmo_inflation_ss09
Day 6 cosmo_inflation_ss09Day 6 cosmo_inflation_ss09
Day 6 cosmo_inflation_ss09
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
 
Neil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesNeil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branes
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
String theory basics
String theory basicsString theory basics
String theory basics
 

Mais de Milan Milošević

Inflacija, crne rupe i Fizika u Nišu
Inflacija, crne rupe i Fizika u NišuInflacija, crne rupe i Fizika u Nišu
Inflacija, crne rupe i Fizika u NišuMilan Milošević
 
Observational tests of Tachyonic and Holographic Models of Inflation
Observational tests of Tachyonic and Holographic Models of InflationObservational tests of Tachyonic and Holographic Models of Inflation
Observational tests of Tachyonic and Holographic Models of InflationMilan Milošević
 
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuKako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuMilan Milošević
 
Sunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaSunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaMilan Milošević
 
Numerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersNumerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersMilan Milošević
 
Od crne rupe do Nobelove nagrade za fiziku
Od crne rupe do Nobelove nagrade za fizikuOd crne rupe do Nobelove nagrade za fiziku
Od crne rupe do Nobelove nagrade za fizikuMilan Milošević
 
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinu
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinuOd velikog praska do Nobelove nagrade za fiziku za 2019. godinu
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinuMilan Milošević
 
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivoEvolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivoMilan Milošević
 
Kako videti nevidljivo? - prva fotografija crne rupe
Kako videti nevidljivo? - prva fotografija crne rupeKako videti nevidljivo? - prva fotografija crne rupe
Kako videti nevidljivo? - prva fotografija crne rupeMilan Milošević
 
CERN mesto gde je nastao "internet"
CERN mesto gde je nastao "internet"CERN mesto gde je nastao "internet"
CERN mesto gde je nastao "internet"Milan Milošević
 
Kako je svet postao globalno selo?
Kako je svet postao globalno selo?Kako je svet postao globalno selo?
Kako je svet postao globalno selo?Milan Milošević
 
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacijaNETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacijaMilan Milošević
 
NETCHEM CPD: Video konferencijsko povezivanje
NETCHEM CPD: Video konferencijsko povezivanjeNETCHEM CPD: Video konferencijsko povezivanje
NETCHEM CPD: Video konferencijsko povezivanjeMilan Milošević
 
Overview of collected WARIAL data from NETCHEM consortium
Overview of collected WARIAL data from NETCHEM consortiumOverview of collected WARIAL data from NETCHEM consortium
Overview of collected WARIAL data from NETCHEM consortiumMilan Milošević
 
Agreement of protection of intellectual property
Agreement of protection of intellectual propertyAgreement of protection of intellectual property
Agreement of protection of intellectual propertyMilan Milošević
 

Mais de Milan Milošević (20)

Inflacija, crne rupe i Fizika u Nišu
Inflacija, crne rupe i Fizika u NišuInflacija, crne rupe i Fizika u Nišu
Inflacija, crne rupe i Fizika u Nišu
 
Observational tests of Tachyonic and Holographic Models of Inflation
Observational tests of Tachyonic and Holographic Models of InflationObservational tests of Tachyonic and Holographic Models of Inflation
Observational tests of Tachyonic and Holographic Models of Inflation
 
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fizikuKako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
Kako smo videli nevidljivo - od crne rupe do Nobelove nagrade za fiziku
 
Sunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistemaSunce - zvezda iz Sunčevog sistema
Sunce - zvezda iz Sunčevog sistema
 
Numerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersNumerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parameters
 
Od crne rupe do Nobelove nagrade za fiziku
Od crne rupe do Nobelove nagrade za fizikuOd crne rupe do Nobelove nagrade za fiziku
Od crne rupe do Nobelove nagrade za fiziku
 
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinu
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinuOd velikog praska do Nobelove nagrade za fiziku za 2019. godinu
Od velikog praska do Nobelove nagrade za fiziku za 2019. godinu
 
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivoEvolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
Evolucija zvezda i nastanak crnih rupa - kako smo videli nevidljivo
 
Kako videti nevidljivo? - prva fotografija crne rupe
Kako videti nevidljivo? - prva fotografija crne rupeKako videti nevidljivo? - prva fotografija crne rupe
Kako videti nevidljivo? - prva fotografija crne rupe
 
Kako preživeti internet?
Kako preživeti internet?Kako preživeti internet?
Kako preživeti internet?
 
CERN mesto gde je nastao "internet"
CERN mesto gde je nastao "internet"CERN mesto gde je nastao "internet"
CERN mesto gde je nastao "internet"
 
Kako je svet postao globalno selo?
Kako je svet postao globalno selo?Kako je svet postao globalno selo?
Kako je svet postao globalno selo?
 
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacijaNETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
NETCHEM CPD: Audio prezentovanje jednosmerna i dvosmerna komunikacija
 
NETCHEM CPD: Video konferencijsko povezivanje
NETCHEM CPD: Video konferencijsko povezivanjeNETCHEM CPD: Video konferencijsko povezivanje
NETCHEM CPD: Video konferencijsko povezivanje
 
Fizika mobilnog telefona
Fizika mobilnog telefonaFizika mobilnog telefona
Fizika mobilnog telefona
 
30 godina World Wide Web-a
30 godina World Wide Web-a30 godina World Wide Web-a
30 godina World Wide Web-a
 
"Svet nauke" o svetu nauke
"Svet nauke" o svetu nauke"Svet nauke" o svetu nauke
"Svet nauke" o svetu nauke
 
NETCHEM Forum
NETCHEM ForumNETCHEM Forum
NETCHEM Forum
 
Overview of collected WARIAL data from NETCHEM consortium
Overview of collected WARIAL data from NETCHEM consortiumOverview of collected WARIAL data from NETCHEM consortium
Overview of collected WARIAL data from NETCHEM consortium
 
Agreement of protection of intellectual property
Agreement of protection of intellectual propertyAgreement of protection of intellectual property
Agreement of protection of intellectual property
 

Último

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 

Último (20)

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 

Observational Parameters in a Braneworld Inlationary Scenario

  • 1. OBSERVATIONAL PARAMETERS IN A BRANEWORLD INFLATIONARY SCENARIO MILAN MILOŠEVIĆ Department of Physics Faculty of Sciences and Mathematics University of Niš, Serbia Ruđer Bošković Institute, Zagreb, Croatia, 2 November 2018 In collaboration with N. Bilić (Zagreb), G. Djordjević (Niš), D. Dimitrijević (Niš) and M. Stojanović (Niš)
  • 2. OUTLINE • Introduction • Standard Cosmological Model • Inflationary models • Tachyon Inflation • Randall - Sundrum (RS) Model • Extended RS model • Numerical results • Conclusion
  • 3. INTRODUCTION • The inflation theory proposes a period of extremely rapid (exponential) expansion of the universe during the very early stage of the universe. • Inflation is a process in which the dimensions of the universe have increased exponentially at least 𝑒60 ≈ 1026 times. • Although inflationary cosmology has successfully complemented the Standard Model, the process of inflation, in particular its origin, is still largely unknown.
  • 4. INTRODUCTION • Over the past 35 years numerous models of inflationary expansion of the universe have been proposed. • The simplest model of inflation is based on the existence of a single scalar field, which is called inflaton. • Recent years - a lot of evidence from WMAP and Planck observations of the CMB • The most important ways to test inflationary cosmological models is to compare the computed and measured values of the observational parameters.
  • 5. STANDARD COSMOLOGICAL MODEL • Dynamics of an expansion of a homogeneous and isotropic universe • A. Fridman (A. Einstein, W. de Siter, G. Lemaître) • From the basic postulates GTR -> The Einstein field equation 𝑅 𝜇𝜈 − 1 2 𝑔 𝜇𝜈 𝑅 = 8𝜋𝐺 𝑐4 𝑇𝜇𝜈. • Friedmann–Robertson–Walker metric 𝑑𝑠2 = 𝑐2 𝑑𝑡2 − 𝑎2 (𝑡) 𝑑𝑟2 1 − 𝑘𝑟2 + 𝑟2 𝑑𝜃2 + sin2 𝜃𝑑𝜙2 , • where 𝑅 𝜇𝜈 are components of Ricci tensor, 𝑅 – Ricci scalar, and 𝑇𝜇𝜈 are components of energy–momentum tensor
  • 6. STANDARD COSMOLOGICAL MODEL • Friedmann equations 𝐻2 ≡ ሶ𝑎 𝑎 2 = 8𝜋𝐺 3 𝜌 − 𝑘𝑐2 𝑎2 ሷ𝑎 𝑎 = − 4𝜋𝐺 3 𝜌 + 3𝑝 𝑐2 • A reliable model for 10−10 𝑠 old universe and energy of the particles < 1𝑇𝑒𝑉 • SCM: about 15 problems, the most important • The flatness problem • The horizon problem • Solution – inflation?! (A. Guth, K. Sato, 1981) A. Linde, Particle Physics and Inflationary Cosmology, (2005) 270. 𝑘 = −1 𝑘 = 0 𝑘 = 1 Whydoweneedinflation?
  • 7. „STANDARD“ INFLATION • The simplest models - standard single scalar field inflation, a field 𝜙 - inflaton • A condition for inflation (from the Friedmann equations) 𝑑 𝑑𝑡 𝑎𝐻 −1 < 0 ⇔ 𝑑2 𝑎 𝑑𝑡2 > 0 ⇔ 𝜌 + 3𝑝 < 0 • The dynamics of the classical real scalar field 𝑆 = − 1 16𝜋𝐺 ‫׬‬ −𝑔 𝑅𝑑4 𝑥 + ‫׬‬ −𝑔 ℒ(𝑋, 𝜑)𝑑4 𝑥, • where )ℒ(𝑋, 𝜑 is the Lagrangian, with kinetic term 𝑋 ≡ 1 2 𝜕𝜇 𝜑𝜕𝜈 𝜑 • Energy density and preassure A negative pressure runs inflation 𝜌 ≡ ℋ = 1 2 ሶ𝜙2 + 𝑉(𝜙) 𝑝 ≡ ℒ = 1 2 ሶ𝜙2 − 𝑉(𝜙)
  • 8. „STANDARD“ INFLATION • Time evolution of homogeneous scalar field, for FRW metric → the Klein–Gordon equation ሷ𝜙 + 3𝐻 ሶ𝜙 + 𝑉′ = 0, 𝑉′ ≡ 𝜕𝑉 𝜕𝜙 • The Friedmann equation 𝐻2 = 8π𝐺 3 1 2 ሶ𝜙2 + 𝑉(𝜙) • Slow-roll condition ሶ𝜙2 ≪ 𝑉(𝜙) ⇒ ൞ 𝐻2 ≈ 8π𝐺 3 𝑉(𝜙) 3𝐻 ሶ𝜙 + 𝑉′ ≈ 0 • In order for inflation to last long enough | | | 3 | | | | | H V    
  • 9. OBSERVATIONAL PARAMETERS • Last 20 years → observational results can be used to validate teoretical models • Inflation - explains fluctuations in the early universe • Independently S.W. Hawking, A. Starobinsky i A. Guth W.H. Kinney, Cosmology, inflation, and the physics of nothing, (2003) Beginning and End of the Universe, http://www.as.utexas.edu/~gebhardt/u303f16/cos3.html
  • 10. OBSERVATIONAL PARAMETERS • Hubble hierarchy (slow-roll) parameters 𝜖𝑖+1 ≡ 𝑑ln|𝜖𝑖| 𝑑𝑁 , 𝑖 ≥ 0, 𝜖0 ≡ 𝐻∗ 𝐻 • Duration of inflation 𝜀𝑖 ≪ 1 𝑁 = ln 𝑎 𝑒𝑛𝑑 𝑎 = න 𝑡 𝑡 𝑒𝑛𝑑 𝐻𝑑𝑡 • The end of inflation 𝜖𝑖(𝜑 𝑒𝑛𝑑) ≈ 1 • Three independent observational parameters: amplitude of scalar perturbation 𝐴 𝑠, tensor-to-scalar ratio 𝑟 and scalar spectral index 𝑛 𝑠 𝑟 = 16𝜀1 𝑛 𝑠 = 1 − 2𝜀1 − 𝜀2 Hubble expansion rate at an arbitrarily chosen time At the lowest order in parameters 𝜀1 and 𝜀2 𝜀1 = − ሶ𝐻 𝐻2 , 𝜀2 = 2𝜀1 + ሷ𝐻 𝐻 ሶ𝐻 .
  • 11. OBSERVATIONAL PARAMETERS • Satellite Planck (May 2009 – October 2013) • Planck Collaboration • Latest results are published in year 2018. Planck 2018 results. X Constraints on inflation, arXiv:1807.06211 [astro-ph.CO]
  • 12. TACHYONS • Traditionally, the word tachyon was used to describe a hypothetical particle which propagates faster than light. • In modern physics this meaning has been changed: • The effective tachyonic field theory was proposed by A. Sen • String theory: states of quantum fields with imaginary mass (i.e. negative mass squared). • However it was realized that the imaginary mass creates an instability and tachyons spontaneously decay through the process known as tachyon condensation. • Quanta are not tachyon any more, but rather an ”ordinary” particle with a positive mass.
  • 13. TACHYON INFLATION • Properties of a tachyon potential 𝑉(0) = const, 𝑉′(𝜃 > 0) < 0, 𝑉(|𝜃| → ∞) → 0. • The corresponding Lagrangian and the Hamiltionian are p ≡ ℒ(𝑋, 𝜃) = −𝑉(𝜃) 1 − 2𝑋 = −𝑉(𝜃) 1 − ሶ𝜃2 ρ ≡ ℋ = )𝑉(𝜃 1 − ሶ𝜃2 • The Friedmann equation 𝐻2 ≡ ሶ𝑎 𝑎 2 = 8𝜋𝐺 3 ℋ = 8𝜋𝐺 3 )𝑉(𝜃 1 − ሶ𝜃2 • M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Stojanovic, Dynamics of tachyon fields and inflation - comparison of analytical and numerical results with observation, Serbian Astronomical Journal. 192 (2016) • D. Steer, F. Vernizzi, Tachyon inflation: Tests and comparison with single scalar field inflation, Phys. Rev. D. 70 (2004) 43527.
  • 14. DYNAMICS OF INFLATION 1. The energy-momentum conservation equation ൯ሶℋ = −3𝐻(ℒ + ℋ . 2. The Hamilton’s equations ሶ𝜃 = 𝜕ℋ 𝜕𝜋 𝜃 , ሶ𝜋 𝜃 + 3𝐻𝜋 𝜃 = − 𝜕ℋ 𝜕𝜃 , 𝜋 𝜃 = 𝜕ℒ 𝜕 ሶ𝜃 is the conjugate momentum and the Hamiltonian ℋ = ሶ𝜃𝜋 𝜃 − ℒ
  • 15. TACHYON INFLATION • Dimensionless equations ሷ𝜃 1 − ሶ𝜃2 + 3ℎ ሶ𝜃 + 1 𝑉 𝜕𝑉 𝜕𝜃 = 0 ℎ2 = 𝜅2 3 ρ = 𝜅2 3 𝑉 1 − ሶ𝜃2 • Dimensionless constant 𝜅2 = 8π𝐺𝜆𝑘2, a choice of a constant 𝜎 (brane tension) was motivated by string theory 𝜎 = λ𝑘2 = 𝑀𝑠 4 𝑔𝑠 2𝜋 3 . t = Τ𝜏 𝑘, Θ = kθ, ℎ = 𝐻 𝑘 .
  • 16. CONDITIONS FOR TACHYON INFLATION • General condition for inflation ሷ𝑎 𝑎 ≡ ෩𝐻2 + ሶ෩𝐻 = 𝜅2 3 ෨𝑉 )(Θ 1 − ሶΘ2 1 − 3 2 ሶΘ2 > 0. • Slow-roll conditions ሷΘ ≪ 3 ෩𝐻 ሶΘ, ሶΘ2 ≪ 1.
  • 17. BRANEWORLD COSMOLOGY • Braneworld universe is based on the scenario in which matter is confined on a brane moving in the higher dimensional bulk with only gravity allowed to propagate in the bulk. • One of the simplest models - Randall-Sundrum (RS) • Two branes with opposite tensions are placed at some distance in 5 dimensional space • N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, Tachyon inflation in an AdS braneworld with back-reaction, International Journal of Modern Physics A. 32 (2017) 1750039. • N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys. 12 (2014) 147–159.
  • 18. THE RSII MODEL 0y = y →  0  0  N. Bilic, “Braneworld Universe”, 2nd CERN – SEENET-MTP PhD School, Timisoara, December 2016 x 5 x y RSII model – observer is placed on the positive tension brane, 2nd brane is pushed to infinity
  • 19. THE RSII MODEL • The space is described by Anti de Siter metric 𝑑𝑠 5 2 = 𝑒−2𝑘𝑦 𝑔 𝜇𝜈 𝑑𝑥 𝜇 𝑑𝑥 𝜈 − 𝑑𝑦2 , where 𝑘 = 1 𝓁 is the inverse of AdS5 curvature radius • The Lagrangian and the Hamiltonian ℒ ≡ 𝑝 = 1 2 𝑔 𝜇𝜈 𝜙,𝜇 𝜙,𝜈 − 𝜆𝜓2 𝜃4 1 − 𝑔 𝜇𝜈 𝜃,𝜇 𝜃,𝜈 𝜓3 , ℋ ≡ 𝜌 = 1 2 𝑔 𝜇𝜈 𝜙,𝜇 𝜙,𝜈 + 𝜆𝜓2 𝜃4 1 − 𝑔 𝜇𝜈 𝜃,𝜇 𝜃,𝜈 𝜓3 − Τ1 2 , where 𝜓 = 1 + 𝜃2 𝜂 and 𝜂 = sinh2 Τ4 3 𝜋𝐺𝜙 . • One additional 3-brane moving in the AdS5 bulk behaves effectively as a tachyon with the potential 𝑉 𝜃 ∝ 𝜃−4
  • 20. THE RSII MODEL • The Hamilton’s equations • The conjugate momenta: 𝜋 𝜙 𝜇 ≡ 𝜕ℒ 𝜕𝜙,𝜇 , 𝜋 𝜃 𝜇 ≡ 𝜕ℒ 𝜕𝜃,𝜇 . • The modified Friedman equations 𝐻 ≡ ሶ𝑎 𝑎 = 8𝜋𝐺 3 ℋ 1 + 2𝜋𝐺 3𝑘2 ℋ , ሶ𝐻 = −4𝜋𝐺(ℋ + ℒ) 1 + 4𝜋𝐺 3𝑘2 ℋ ሶ𝜙 = 𝜕ℋ 𝜕𝜋 𝜙 , ሶ𝜋 𝜙 + 3𝐻𝜋 𝜙 = − 𝜕ℋ 𝜕𝜙 , ሶ𝜃 = 𝜕ℋ 𝜕𝜋 𝜃 , ሶ𝜋 𝜃 + 3𝐻𝜋 𝜃 = − 𝜕ℋ 𝜕𝜃 .
  • 21. INITIAL CONDITIONS FOR RSII MODEL • Initial conditions – from a model without radion field • “Pure” tachyon potential 𝑉(𝛩) = 𝜆 𝛩4 • Hamiltonian ℋ = 𝜆 𝛩4 1 + 𝛱 𝛩 2 Τ𝛩8 𝜆2 . • Dimensionless equations 4 8 2 5 8 2 1 4 3 . 1 h
  • 22. EXTENDED RSII MODEL • The RSII model is extended to include matter in the bulk. • The presence of matter modifies the warp factor which results in two effects: • a modification of the RSII cosmology • a modification of the tachyon potential. • N. Bilić, S. Domazet, G.S. Djordjevic, Particle Creation and Reheating in a Braneworld Inflationary Scenario, Physical Review D, 96 (2017), 083518 • N. Bilić, S. Domazet, and G. S. Djordjevic, Tachyon with an inverse power-law potential in a braneworld cosmology, Class. Quantum Gravity 34, 165006 (2017).
  • 23. EXTENDED RSII MODEL • Similar setup as the RSII model, however a more general tachyon potential: 𝑉 Θ = 𝜎 𝜒4 (Θ) • The modified Friedmann equations ℎ = 𝜅2 3 𝜌 𝜒,𝜑 + 𝜅2 12 𝜌 ሶℎ = − 𝜅2 2 (𝜌 + 𝑝) 𝜒,𝜃 + 𝜅2 6 𝜌 + 𝜅2 𝜌 6ℎ 𝜒,𝜃𝜃 ሶ𝜃. 𝜒,𝜃 = 𝜕𝜒 𝜕𝜃
  • 24. NUMERICAL COMPUTATION • Calculation: • Programming language: C/C++ • GNU Scientific Library • Visualization and data analysis • Programming language: R
  • 25. OBSERVATIONAL PARAMETERS • Scalar spectral index 𝑛 𝑠 and tensor-to-scalar ratio 𝑟 for all models up to the second order 𝑟 = 16𝜀1 1 + 𝐶𝜀2 − 2𝛼𝜀1 , 𝑛 𝑠 = 1 − 2𝜀1 − 𝜀2 − 2𝜀1 2 + 2𝐶 + 3 − 2𝛼 𝜀1 𝜀2 + 𝐶𝜀2 𝜀3 . • 𝐶 ≃ −0,72, • 𝛼 = 1 6 for tachyon inflation in standard cosmology, • 𝛼 = 1 12 for Randall-Sundrum cosmology • Planck results (𝑃𝑙𝑎𝑛𝑐𝑘 TT,TE,EE+lowW+lensing+BK14) 𝑛 𝑠 = 0.9665 ± 0.0038 (68% CL), r0.002 < 0.064 (95% CL).
  • 26. THE TACHYION POTENTIAL 𝑽 𝜽 = 𝒆−𝜽 45 ≤ N < 75, 1 ≤ κ < 10 ℎ = 𝜅2 3 𝜌 1 + 𝜅2 12 𝜌ℎ = 𝜅2 3 𝜌
  • 27. THE TACHYION POTENTIAL 𝑽 𝜽 = 𝟏 𝜽 𝟒 45 ≤ N < 75, 1 ≤ κ < 1045 ≤ N < 90, 1 ≤ κ < 10 ℎ = 𝜅2 3 𝜌 1 + 𝜅2 12 𝜌ℎ = 𝜅2 3 𝜌
  • 28. THE TACHYION POTENTIAL 𝑽 𝜽 = 𝟏 𝒄𝒐𝒔𝒉 𝜽 45 ≤ N < 75, 1 ≤ κ < 10 ℎ = 𝜅2 3 𝜌 1 + 𝜅2 12 𝜌ℎ = 𝜅2 3 𝜌
  • 29. THE BEST RESULTS: 𝑽 𝜽 = 𝟏 𝒄𝒐𝒔𝒉 𝜽 45 ≤ N ≤ 75, 1≤ κ ≤ 10 Mean (red) μ ns = 0.9694 𝜇(𝑟) = 0.062 Median (green) ෤𝑛 𝑠 = 0.9745 ǁ𝑟 = 0.045 ℎ = 𝜅2 3 𝜌 1 + 𝜅2 12 𝜌
  • 30. RSII MODEL, 𝑽 𝜽 = 𝟏 𝜽 𝟒 45 ≤ N ≤ 75, 1 ≤ κ ≤ 10ℎ = 𝜅2 3 𝜌 1 + 𝜅2 12 𝜌
  • 31. EXTENDED RSII, 𝑽 𝜽 = 𝒆−𝜽 45 ≤ N < 75, 1 ≤ κ < 10 ℎ = 𝜅2 3 𝜌 𝜕𝜒 𝜕𝜃 + 𝜅2 12 𝜌
  • 32. EXTENDED RSII, 𝑽 𝜽 = 𝟏 𝜽 𝟒𝒏 45 ≤ N < 75, 1 ≤ κ < 10, 0.5 ≤ 𝑛 < 5 ℎ = 𝜅2 3 𝜌 𝜕𝜒 𝜕𝜃 + 𝜅2 12 𝜌
  • 33. EXTENDED RSII, 𝑽 𝜽 = 𝟏 𝒄𝒐𝒔𝒉 𝜽 45 ≤ N < 75, 1 ≤ κ < 10 ℎ = 𝜅2 3 𝜌 𝜕𝜒 𝜕𝜃 + 𝜅2 12 𝜌
  • 34. CONCLUSIONS • The simplest tachyon model that originates from the dynamics of a D3-brane in an AdS5 bulk yields an inverse quartic potential. • The same mechanism leads to a more general tachyon potential if the AdS5 background metric is modified by the presence of matter in the bulk, e.g. in the form of a minimally coupled scalar field with self- interaction. • The software is written in such a way that its only inputs are the Hamilton’s and Friedmann equations, with relevant parameters. • The program can readily be used for a much wider set of models. • The best fitting result is obtained for 𝑉 𝜃 = 1 cosh 𝜃 . • Our preliminary results indicate an opportunity for further research based on various potentials in the contest of the RSII model and holographic cosmology.
  • 35. THANK YOU FOR YOUR ATTENTION The financial support of the Serbian Ministry for Education and Science, Project OI 176021 is acknowledged. Research partially supported by STSM CANTATA-COST grant and by the SEENET-MTP Network under the ICTP grant NT-03
  • 36. OUR REFERENCES 1. N. Bilić, D.D. Dimitrijević, G.S. Djordjević, M. Milošević, & M. Stojanović, Tachyon inflation in the holographic braneworld, arXiv:1809.07216 [gr-qc] 2. D.D. Dimitrijevic, N. Bilić, G.S. Djordjevic, M. Milosevic & M. Stojanović, Tachyon Scalar Field in a Braneworld Cosmology, in International Journal of Modern Physics A, (submitted 2018) 3. M. Milošević, N. Bilić, D.D. Dimitrijević, G.S. Djordjević & M. Stojanović, Numerical Calculation of Hubble Hierarchy Parameters and Observational Parameters of Inflation. in AIP Conference Proceedings of the BPU10 (submitted 2018). 4. D. D. Dimitrijevic, N. Bilić, G. S. Djordjevic & M. Milosevic, Tachyon scalar field in DBI and RSII cosmological context, in SFIN (submitted 2018). 5. N. Bilić, S. Domazet & G.S. Djordjevic, Particle Creation and Reheating in a Braneworld Inflationary Scenario, Physical Review D, 96 (2017), 083518 6. N. Bilić, S. Domazet & G. S. Djordjevic, Tachyon with an inverse power-law potential in a braneworld cosmology, Class. Quantum Gravity 34, 165006 (2017). 7. N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic & M. Milosevic, Tachyon inflation in an AdS braneworld with back-reaction, International Journal of Modern Physics A. 32 (2017) 1750039. 8. N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic & M. Stojanović, Dynamics of tachyon fields and inflation: Analytical vs numerical solutions, in AIP Conf. Proc. (2016), p. 050002.
  • 37. THE MOST IMPORTANT REFERENCES • Planck 2018 results. X Constraints on inflation, arXiv:1807.06211 [astro-ph.CO] (2018) • N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys. 12 (2014) 147–159. • D. Steer, F. Vernizzi, Tachyon inflation: Tests and comparison with single scalar field inflation, Phys. Rev. D. 70 (2004) 43527. • L. Randall, R. Sundrum, Large Mass Hierarchy from a Small Extra Dimension, Physical Review Letters. 83 (1999) 3370–3373. • L. Randall, R. Sundrum, An Alternative to Compactification, Physical Review Letters. 83 (1999) 4690–4693.
  • 38.
  • 39. SEENET-MTP – A REGIONAL STORY 15 YEARS OF THE NETWORK (2003 – 2018) • Hoping for bridging the gap between Southeastern and Western European scientific community, the participants of the UNESCO sponsored BALKAN WORKSHOP BW2003 "Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration" (Vrnjacka Banja, Serbia, August 29 - September 3 2003) came to a common agreement on the Initiative for the SEENET-MTP NETWORK • The Network was a natural extension of the WIGV initiative (Wissenschaftler in globaler Verantwortung) launched by J. Wess in 1999 • Structure Development • 23 institutions from 11 countries in the region joined the Network • 13 partner institutions all over the world • about 400 individual members
  • 40. MAIN OBJECTIVES AND AIMS • Provide a regional framework for the institutional capacity-building in Mathematical and Theoretical Physics • Strengthening of close relations and cooperation among faculties of science, research institutions and groups, including individual scientists in South-East Europe • Joint scientific and research activities in the region and fostering interregional collaboration, foremost in a European context, but also with a strong worldwide dimension • Support capacity building in physics, mathematics and other sciences and technology by initiating new approaches to teaching physics and sciences • Promote the exchange of students and encourageing communication between gifted pupils • Promote physics and science in general • Support the establishment of local and regional centres of excellence in physics and mathematics