SlideShare uma empresa Scribd logo
1 de 96
Baixar para ler offline
ELEKTROMANYETİK ALAN TEORİSİ
Hafta Konu
1 Vektör Analizi
2 Koordinat Sistemleri ve Dönüşümler
3 Elektrik Yükleri ve Alanlar
4 Elektriksel Akı ve Gauss Yasası
5 Diverjansın Fiziksel Anlamı ve Uygulamaları
6 Statik Elektriksel Alanın Endüstriyel Uygulamaları
7 Elektriksel Potansiyel
8 Enerji
9 Akım ve Akım Yoğunluğu
10 İletkenler ve Sınır Şartları
11 Dielektrikler ve Sınır Şartları
12 Kapasitör ve Uygulamaları
13 Laplace ve Poisson Denklemlerinin Çözüm Tahminleri
14 Görüntü Metodu
Vektör Analizi
Alan uzay ve zamanda gözlenebilir bir niceliğin veya büyüklüğün
süreklilik gösteren dağılımı olarak tanımlanabilir.
Skaler ve vektörel alanlar
Vektör Analizi
Elektrik alan şiddeti (E) boş uzaydaki elektrostatik alanların
açıklanabilmesi için gereken tek vektör olup birim test yüküne etkiyen
elektrik kuvveti olarak tanımlanır.
Elektrik akı yoğunluğu (D) malzeme ortamında elektrik alan
çalışmasında kullanışlıdır.
Manyetik akı yoğunluğu (B) boş uzayda manyeto statik (kararlı
elektrik akımlarının etkisi) tartışmasında gereken tek vektördür ve
belirli bir hızla hareket eden yük üzerine etkiyen manyetik kuvvet ile
ilişkilidir.
Manyetik alan şiddeti (H) malzeme ortamında manyetik alan
çalışmasında kullanışlıdır.
Vektörel Gösterim
Vektörel Gösterim
Vektörel gösterim
Skaler gösterimi
Vektörel çarpımın üç adet skaler eşleniğine göre vektörel eşitliği daha
iyi ifade ettiği görülmektedir.
Vektörlerde Toplama Çıkarma
İki vektörün nokta (skaler) çarpımı
İki vektörün nokta (skaler) çarpımı
Nokta çarpımının bazı temel özellikleri
İki vektörün vektörel çarpımı
Sağ El Kuralı
Vektörel çarpım
Vektörel çarpım
Vektörel çarpım
Vektörel çarpım
Karma çarpım
Karma çarpım
Sorular
Koordinat Sistemleri ve Dönüşümler
Koordinat Sistemleri
• Uzayda bir noktayı göstermek ve vektörleri görselleştirerek daha kolay
anlaşılmasını sağlamak için koordinat sisteminden faydalanılır. Verilen bir
vektör matematiksel olarak seçilen koordinat sistemi üzerinde bileşenlerine
ayrılarak ifade edilir.
• Uzayda çok sayıda dikgen (orthogonal) koordinat sistemi mevcuttur.
Burada dikgen terimi koordinat sistemi içinde her bir noktanın birbirlerine
dik üç yüzeyin kesişimi ile tanımlanabileceğini anlatmaktadır.
• Elektromanyetik teoride alanları ve dalgaları ifade etmek için Kartezyen
(Cartesian), silindirik (cylindrical) ve küresel (spherical) koordinat
sistemlerinden faydalanılır. Verilen bir vektör ifadesi için koordinat
sistemleri arasında dönüşüm yapmak mümkündür.
Koordinat Sistemleri
Kartezyen Koordinat Sistemi
Koordinat eksenlerinin (çizgilerinin)
DOĞRU şeklinde olduğu ortogonal
(dikey) sistemlerdir.
P(x,y,z) noktasını, eksenlere
düşen kenar uzunlukları
belirlemektedir.
Kartezyen Koordinat Sistemi
Kartezyen Koordinat Sistemi
Silindirik Koordinat Sistemi
Silindirik Koordinat Sistemi
Silindirik Koordinat Sistemi
Küresel Koordinat Sistemi
Küre üzerindeki bir nokta bu sistemde üç tane bileşenle ifade edilir, bunlar r, θ ve ф' dir.
Koordinatların tanımlı oldukları aralıklar ve tanımları şu şekilde verilir.
r: Yarıçap P ve (0,0,0) noktası arasındaki uzaklıktır.
θ: Enlem, z-ekseni ve çap arasındaki açıdır.
ф: Boylam, x-ekseni ile çapın xy-düzlemine izdüşümü (ρ) arasındaki açıdır.
Bu sistem, dünya üzerinde
coğrafi konum belirlerken
kullanılan sistemdir. Dünya' nın
yüzeyi üzerinde her noktada
yarıçap aynı olduğundan,
sadece enlem ve boylam ile bir
yer belirlenebilir.
Küresel Koordinat Sistemi
Küresel Koordinat Sistemi
Sorular (1)
Sorular (2)
Sorular (3)
Sorular(4)
Elektrik Yükleri ve Alanlar
• Bu bölümde durgun yüklerden dolayı oluşan statik elektrik
alanları (elektrostatik) işlenecektir.
• Statik elektrik alanları === Yük zamanla sabit
• Coulomb deneyleri sonucu yüklü iki parçacık arasındaki
elektrik kuvvetinin
Yüklerin çarpımı ile doğru orantılı,
Yüklerin aralarındaki uzaklığın karesi ile ters orantılı,
Yüklerin birbirini birleştiren hat boyunca yönlenmiş ve
Aynı yükler için itici ve zıt yükler için çekici
ELEKTRİK ALAN ŞİDDETİ
Eğer bir yük diğerine doğru hareket ettirilirse Coulomb kanununa göre yükler
tarafından etkiyen kuvvetin de ani olarak değişmesi gerekir.
Bunun tersine görecelik teorisi bir yükün hareketi hakkındaki bilginin diğer yüke
ulaşması için belli bir zaman alması gerektiğini zorunlu kılmaktadır.
Bundan dolayı yükler üzerine etkiyen kuvvetlerin artışı ani olamaz böylece yük
sistemleri ile ilgili enerji ve momentin geçici olarak denge dışı olacağı gösterilir.
Bu yüzden, bir yük üzerine başka bir yükün varlığında etkiyen kuvvetin bir alan
olarak tanımlanması oldukça kullanışlı olmaktadır.
Cisimlerden kaçan (kaybolan) moment ve enerjinin hesaba katılması için
etkileşen cisimlerin bulunduğu ortamda, alanın biçimini bozucu etki gösteren
ekstra bir şeyin var olması gerekir.
ELEKTRİK ALAN ŞİDDETİ
Yükü çevreleyen uzayda her yerde bir elektrik alanı veya elektrik alan şiddetinin
var olduğu söylenebilir.
𝑬 uzayda bir noktadaki elektrik alan şiddeti ise bu noktada q yüküne etkiyen
kuvvet:
q nokta yükünden dolayı P noktasındaki elektrik alan şiddetinin ifadesi:
ELEKTRİK ALAN ŞİDDETİ
Elektrik alan çizgileri
• Bir pozitif yükten çıkıp bir negatif yükte son bulurlar
• Bir pozitif yükten ayrılan veya bir negatif yüke ulaşan alan çizgilerinin sayısı
yük miktarıyla orantılıdır.
• Asla birbirlerini kesmezler
İki Levha Arasındaki Elektrik Alan Şiddeti
Elektrik Alan ile Manyetik Alan Arasındaki Farklar
• Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen
elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir.
• Zamana göre değişen bir elektrik alan (mesela hareketli bir yüklü
parçacık nedeniyle) yerel manyetik alana sebep olur.
Elektrik Alan ile Manyetik Alan Arasındaki Farklar
• Manyetik alan çizgileri kapalı eğrilerdir. Bir başka deyişle manyetik alan
çizgilerinin başlangıcı ve sonu yoktur. Oysa elektriksel alan çizgileri artı
işaretli yüklerden çıkıp eksi işaretli yüklerde son bulmaktadır.
• Elektrik kuvveti, her zaman elektrik alanına paralel, buna karşın manyetik
kuvvet manyetik alana dik olarak etkir.
Örnek: 24 μC yük değerine sahip bir cisim düzgün 610 N/C elektrik alanın
içerisinde havada asılı durmaktadır. Cismin kütlesini hesaplayınız.
Elektriksel Akı ve Gauss Yasası
Elektriksel Akı
• Statik Elektrik, tabiatta birbirinden farklı veya aynı, iletken veya yalıtkan
iki maddenin temas etmesi ve sonra ayrılması veya sürtünme işlemi
sonucunda, bu iki cisim arasında pozitif ve negatif elektronların serbest
bırakılması ve işaretlerinin değişmesi sonucunda oluşur. Statik yükün
voltajı çok fazla olmasına karşın, akımı çok zayıftır.
• Maddeler birbirleriyle temas halinde olduğu sürece aralarında temas yüzeyi
boyunca elektron transferi olur. İki maddenin temasının kesilmesi
durumunda aralarındaki sınır tabakası ortadan kalkar ve maddelerden
birinde negatif yük fazlalığı (negatif yüklenme) diğerinde ise elektron
azlığı (pozitif yüklenme) meydana gelir. Oluşan bu iki ayrı yük birbirlerini
çeker ve arada bulunan hava gibi yalıtkan olan bir ortam boyunca ark
(kıvılcım) yaparak boşalır ve yük farklarını dengelerler.
Elektriksel Akı
• Yük veya yükler kapalı bir hacim içerisine alındıklarında, bu
kapalı alandan dışarı veya içeri doğru elektrik alan çizgileri
düşünülebilir.
Elektriksel Akı
Alan çizgileri birbirine yakın olduğunda E büyük, uzak olduğunda küçüktür.
Alan çizgileri bir artı yükten çıkıp bir eksi yükte son bulmalıdır.
Alan çizgilerinin sayısı yük miktarıyla orantılıdır.
İki alan çizgisi birbirini kesmez.
Elektriksel Akı
Elektrik akısı, bir yüzeyden geçen elektrik alan çizgilerinin sayısıyla doğru
orantılıdır.
Çok küçük bir dA alanındaki elektrik akısı şu şekilde hesaplanır:
Burada E yüzeye dik olan elektrik alanıdır. Bir S yüzeyinden geçen elektrik akısı dA
alanlarının toplanmasıyla elde edilir:
Elektrik alanı vektörüyle, dA vektörü arasında skaler çarpım olduğundan manyetik
akının büyüklüğü şu şekilde yazılır:
Elektriksel Akı
Elektriksel Akı- Soru
Gauss Kanunu
Noktasal Yükte Gauss Kanunu
Küresel Yükte Elektrik Alanı
Yük Dağılımları
Noktasal, çizgisel, alana yayılan (düzlemsel), hacim içerisine yayılan yükler
Gauss Yasası Kullanılarak Hesaplanan Bazı Örneksel Elektrik Alanları
Sorular (1)
Sorular (2)
Sorular (3)
Sorular (4)
Sorular (5)
Diverjansın Fiziksel Anlamı ve Uygulamaları
Diverjans Nedir
• Isındıkça genişleyen havanın hızını gösteren bir vektör alanının
uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer
hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu
örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak
düşünülebilir.
• Vektör hesaplamada, diverjans (ıraksama, uzaksama,
uzaklaşma) bir vektör alanının kaynak ya da batma noktasından
uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör
alanının uzaksaması işaretli (artı ya da eksi) bir sayıdır.
• Uzaksaması her yerde 0 olan vektör alanına selenoidal denir.
Diverjans Nedir
Soru (1)
Soru (2)
Hatırlatma
Hatırlatma
Hacmin Türevi Alan
Alanın Türevi Vektör
Vektörün Türevi Nokta
Diverjans bulurken bir vektör alanının kısmi
türevini alarak vektör buluyoruz
Diverjans İşareti
Selenoidal Diverjans
Diverjans Uygulamaları-1
Diverjans Uygulamaları-2
Diverjans Uygulamaları-3
Diverjans Uygulamaları-4
6-Statik Elektriksel Alanın Endüstriyel
Uygulamaları
Yüklü Parçacığın Sapması
• Elektrostatik alanların en yaygın uygulamalarından biri elektron veya
proton gibi yüklü bir parçacığın yörüngesinin kontrol edilmesi için
saptırılmasıdır.
• Katot ışınlı osiloskop, mürekkepli-jet yazıcı ve hız seçici gibi aygıtlar bu
prensibe dayanmaktadır.
• Yüklü parçacığın sapması bir çift paralel plaka arasındaki potansiyel fark
korunarak yapılır.
• ux hızı ile x yönünde hareket eden m kütleli ve q yükü ile yüklü bir
parçacığı dikkate alalım. t=0 zamanında yüklü parçacık Vo potansiyel
farkında tutulan paralel levha çifti arasındaki bölgeye girer.
Yüklü Parçacığın Sapması
Hız=İlk hız + ivme ∙ zaman
V = V0 + a ∙ t
Yüklü Parçacığın Sapması
Yüklü Parçacığın Sapması- Örnek
KATOT IŞINLI OSİLOSKOP
Katot ışınlı osiloskop’un temel özellikleri; tüp camdan yapılmış ve içi tamamen
boşaltılmıştır. Isıtıcı bir flaman ile ısıtıldığında katot elektron yayar. Bu
elektronlar daha sonra katota göre birkaç yüz voltluk bir potansiyelde tutulan
anoda doğru hızlandırılır. Küçük bir deliğe sahip olan anot, içinden ince bir
elektron ışınının geçmesine izin verir. Hızlanmış elektronlar bundan önceki
kısımda tartışılana benzer bir davranışla hem yatay ve hem de dikey
boyutlarda saptırılabilecekleri bir bölgeye girerler. Son olarak elektron ışını bir
cisim (fosfor) ile kaplanmış görünür ışık yayan ekranın iç yüzeyine
bombardıman edilir.
KATOT IŞINLI OSİLOSKOP
KATOT IŞINLI OSİLOSKOP
KATOT IŞINLI OSİLOSKOP
KATOT IŞINLI OSİLOSKOP
MÜREKKEPLİ YAZICI
MÜREKKEPLİ YAZICI
MİNERALLERİN AYRIŞTIRILMASI
MİNERALLERİN AYRIŞTIRILMASI
MİNERALLERİN AYRIŞTIRILMASI
MİNERALLERİN AYRIŞTIRILMASI

Mais conteúdo relacionado

Semelhante a ELEKTROMANYETİK ALAN TEORİSİ.pdf

7. sınıf yaşamımızdaki elektrik
7. sınıf yaşamımızdaki elektrik7. sınıf yaşamımızdaki elektrik
7. sınıf yaşamımızdaki elektrikelif yaralı
 
ATOMLARINELEKTRONYAPISI.pdf
ATOMLARINELEKTRONYAPISI.pdfATOMLARINELEKTRONYAPISI.pdf
ATOMLARINELEKTRONYAPISI.pdfMuratKaya115683
 
Deney Raporu2
Deney Raporu2Deney Raporu2
Deney Raporu2akbey
 
Gruphizlariningörüntülenmesi̇
Gruphizlariningörüntülenmesi̇Gruphizlariningörüntülenmesi̇
Gruphizlariningörüntülenmesi̇Ali Osman Öncel
 
Izolator pdf
Izolator pdfIzolator pdf
Izolator pdfka_ka
 
Temel Devre
Temel DevreTemel Devre
Temel Devreakbey
 
11. elektrokimya 1
11. elektrokimya 111. elektrokimya 1
11. elektrokimya 1Farhan Alfin
 
2 gerilim trafoları
2 gerilim trafoları2 gerilim trafoları
2 gerilim trafolarıka_ka
 
kuantum paradox.pptx
kuantum paradox.pptxkuantum paradox.pptx
kuantum paradox.pptxOktay Eldem
 
Elektromanyetik Dalgalar
Elektromanyetik DalgalarElektromanyetik Dalgalar
Elektromanyetik Dalgalarruzgarz
 
ÖNCEL AKADEMİ: ÖZEL KONULAR
ÖNCEL AKADEMİ: ÖZEL KONULARÖNCEL AKADEMİ: ÖZEL KONULAR
ÖNCEL AKADEMİ: ÖZEL KONULARAli Osman Öncel
 
1. Temel Kavramlar.pptx
1. Temel Kavramlar.pptx1. Temel Kavramlar.pptx
1. Temel Kavramlar.pptxMuratDemirAydn
 
Elektrik Akım Ohm Yasası
Elektrik Akım Ohm YasasıElektrik Akım Ohm Yasası
Elektrik Akım Ohm Yasasıkerimabdullah
 

Semelhante a ELEKTROMANYETİK ALAN TEORİSİ.pdf (20)

Enerji-Band yapıları
Enerji-Band yapılarıEnerji-Band yapıları
Enerji-Band yapıları
 
7. sınıf yaşamımızdaki elektrik
7. sınıf yaşamımızdaki elektrik7. sınıf yaşamımızdaki elektrik
7. sınıf yaşamımızdaki elektrik
 
ATOMLARINELEKTRONYAPISI.pdf
ATOMLARINELEKTRONYAPISI.pdfATOMLARINELEKTRONYAPISI.pdf
ATOMLARINELEKTRONYAPISI.pdf
 
Elektrik Tomografi
Elektrik TomografiElektrik Tomografi
Elektrik Tomografi
 
Kovalentbag2
Kovalentbag2Kovalentbag2
Kovalentbag2
 
Bölüm 1xrays-
Bölüm 1xrays-Bölüm 1xrays-
Bölüm 1xrays-
 
Deney Raporu2
Deney Raporu2Deney Raporu2
Deney Raporu2
 
Gruphizlariningörüntülenmesi̇
Gruphizlariningörüntülenmesi̇Gruphizlariningörüntülenmesi̇
Gruphizlariningörüntülenmesi̇
 
Ir arbsorbsıyon
Ir arbsorbsıyonIr arbsorbsıyon
Ir arbsorbsıyon
 
Astrofizik 1
Astrofizik 1Astrofizik 1
Astrofizik 1
 
Uydu Yorunge
Uydu YorungeUydu Yorunge
Uydu Yorunge
 
Izolator pdf
Izolator pdfIzolator pdf
Izolator pdf
 
Temel Devre
Temel DevreTemel Devre
Temel Devre
 
11. elektrokimya 1
11. elektrokimya 111. elektrokimya 1
11. elektrokimya 1
 
2 gerilim trafoları
2 gerilim trafoları2 gerilim trafoları
2 gerilim trafoları
 
kuantum paradox.pptx
kuantum paradox.pptxkuantum paradox.pptx
kuantum paradox.pptx
 
Elektromanyetik Dalgalar
Elektromanyetik DalgalarElektromanyetik Dalgalar
Elektromanyetik Dalgalar
 
ÖNCEL AKADEMİ: ÖZEL KONULAR
ÖNCEL AKADEMİ: ÖZEL KONULARÖNCEL AKADEMİ: ÖZEL KONULAR
ÖNCEL AKADEMİ: ÖZEL KONULAR
 
1. Temel Kavramlar.pptx
1. Temel Kavramlar.pptx1. Temel Kavramlar.pptx
1. Temel Kavramlar.pptx
 
Elektrik Akım Ohm Yasası
Elektrik Akım Ohm YasasıElektrik Akım Ohm Yasası
Elektrik Akım Ohm Yasası
 

ELEKTROMANYETİK ALAN TEORİSİ.pdf

  • 1. ELEKTROMANYETİK ALAN TEORİSİ Hafta Konu 1 Vektör Analizi 2 Koordinat Sistemleri ve Dönüşümler 3 Elektrik Yükleri ve Alanlar 4 Elektriksel Akı ve Gauss Yasası 5 Diverjansın Fiziksel Anlamı ve Uygulamaları 6 Statik Elektriksel Alanın Endüstriyel Uygulamaları 7 Elektriksel Potansiyel 8 Enerji 9 Akım ve Akım Yoğunluğu 10 İletkenler ve Sınır Şartları 11 Dielektrikler ve Sınır Şartları 12 Kapasitör ve Uygulamaları 13 Laplace ve Poisson Denklemlerinin Çözüm Tahminleri 14 Görüntü Metodu
  • 2. Vektör Analizi Alan uzay ve zamanda gözlenebilir bir niceliğin veya büyüklüğün süreklilik gösteren dağılımı olarak tanımlanabilir. Skaler ve vektörel alanlar
  • 3. Vektör Analizi Elektrik alan şiddeti (E) boş uzaydaki elektrostatik alanların açıklanabilmesi için gereken tek vektör olup birim test yüküne etkiyen elektrik kuvveti olarak tanımlanır. Elektrik akı yoğunluğu (D) malzeme ortamında elektrik alan çalışmasında kullanışlıdır. Manyetik akı yoğunluğu (B) boş uzayda manyeto statik (kararlı elektrik akımlarının etkisi) tartışmasında gereken tek vektördür ve belirli bir hızla hareket eden yük üzerine etkiyen manyetik kuvvet ile ilişkilidir. Manyetik alan şiddeti (H) malzeme ortamında manyetik alan çalışmasında kullanışlıdır.
  • 5. Vektörel Gösterim Vektörel gösterim Skaler gösterimi Vektörel çarpımın üç adet skaler eşleniğine göre vektörel eşitliği daha iyi ifade ettiği görülmektedir.
  • 6.
  • 7.
  • 9. İki vektörün nokta (skaler) çarpımı
  • 10. İki vektörün nokta (skaler) çarpımı Nokta çarpımının bazı temel özellikleri
  • 11. İki vektörün vektörel çarpımı Sağ El Kuralı
  • 16.
  • 20. Koordinat Sistemleri ve Dönüşümler
  • 21. Koordinat Sistemleri • Uzayda bir noktayı göstermek ve vektörleri görselleştirerek daha kolay anlaşılmasını sağlamak için koordinat sisteminden faydalanılır. Verilen bir vektör matematiksel olarak seçilen koordinat sistemi üzerinde bileşenlerine ayrılarak ifade edilir. • Uzayda çok sayıda dikgen (orthogonal) koordinat sistemi mevcuttur. Burada dikgen terimi koordinat sistemi içinde her bir noktanın birbirlerine dik üç yüzeyin kesişimi ile tanımlanabileceğini anlatmaktadır. • Elektromanyetik teoride alanları ve dalgaları ifade etmek için Kartezyen (Cartesian), silindirik (cylindrical) ve küresel (spherical) koordinat sistemlerinden faydalanılır. Verilen bir vektör ifadesi için koordinat sistemleri arasında dönüşüm yapmak mümkündür.
  • 23. Kartezyen Koordinat Sistemi Koordinat eksenlerinin (çizgilerinin) DOĞRU şeklinde olduğu ortogonal (dikey) sistemlerdir. P(x,y,z) noktasını, eksenlere düşen kenar uzunlukları belirlemektedir.
  • 29. Küresel Koordinat Sistemi Küre üzerindeki bir nokta bu sistemde üç tane bileşenle ifade edilir, bunlar r, θ ve ф' dir. Koordinatların tanımlı oldukları aralıklar ve tanımları şu şekilde verilir. r: Yarıçap P ve (0,0,0) noktası arasındaki uzaklıktır. θ: Enlem, z-ekseni ve çap arasındaki açıdır. ф: Boylam, x-ekseni ile çapın xy-düzlemine izdüşümü (ρ) arasındaki açıdır. Bu sistem, dünya üzerinde coğrafi konum belirlerken kullanılan sistemdir. Dünya' nın yüzeyi üzerinde her noktada yarıçap aynı olduğundan, sadece enlem ve boylam ile bir yer belirlenebilir.
  • 37. • Bu bölümde durgun yüklerden dolayı oluşan statik elektrik alanları (elektrostatik) işlenecektir. • Statik elektrik alanları === Yük zamanla sabit • Coulomb deneyleri sonucu yüklü iki parçacık arasındaki elektrik kuvvetinin Yüklerin çarpımı ile doğru orantılı, Yüklerin aralarındaki uzaklığın karesi ile ters orantılı, Yüklerin birbirini birleştiren hat boyunca yönlenmiş ve Aynı yükler için itici ve zıt yükler için çekici
  • 38.
  • 39.
  • 40.
  • 41.
  • 42. ELEKTRİK ALAN ŞİDDETİ Eğer bir yük diğerine doğru hareket ettirilirse Coulomb kanununa göre yükler tarafından etkiyen kuvvetin de ani olarak değişmesi gerekir. Bunun tersine görecelik teorisi bir yükün hareketi hakkındaki bilginin diğer yüke ulaşması için belli bir zaman alması gerektiğini zorunlu kılmaktadır. Bundan dolayı yükler üzerine etkiyen kuvvetlerin artışı ani olamaz böylece yük sistemleri ile ilgili enerji ve momentin geçici olarak denge dışı olacağı gösterilir. Bu yüzden, bir yük üzerine başka bir yükün varlığında etkiyen kuvvetin bir alan olarak tanımlanması oldukça kullanışlı olmaktadır. Cisimlerden kaçan (kaybolan) moment ve enerjinin hesaba katılması için etkileşen cisimlerin bulunduğu ortamda, alanın biçimini bozucu etki gösteren ekstra bir şeyin var olması gerekir.
  • 43. ELEKTRİK ALAN ŞİDDETİ Yükü çevreleyen uzayda her yerde bir elektrik alanı veya elektrik alan şiddetinin var olduğu söylenebilir. 𝑬 uzayda bir noktadaki elektrik alan şiddeti ise bu noktada q yüküne etkiyen kuvvet: q nokta yükünden dolayı P noktasındaki elektrik alan şiddetinin ifadesi:
  • 44. ELEKTRİK ALAN ŞİDDETİ Elektrik alan çizgileri • Bir pozitif yükten çıkıp bir negatif yükte son bulurlar • Bir pozitif yükten ayrılan veya bir negatif yüke ulaşan alan çizgilerinin sayısı yük miktarıyla orantılıdır. • Asla birbirlerini kesmezler
  • 45. İki Levha Arasındaki Elektrik Alan Şiddeti
  • 46. Elektrik Alan ile Manyetik Alan Arasındaki Farklar • Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. • Zamana göre değişen bir elektrik alan (mesela hareketli bir yüklü parçacık nedeniyle) yerel manyetik alana sebep olur.
  • 47. Elektrik Alan ile Manyetik Alan Arasındaki Farklar • Manyetik alan çizgileri kapalı eğrilerdir. Bir başka deyişle manyetik alan çizgilerinin başlangıcı ve sonu yoktur. Oysa elektriksel alan çizgileri artı işaretli yüklerden çıkıp eksi işaretli yüklerde son bulmaktadır. • Elektrik kuvveti, her zaman elektrik alanına paralel, buna karşın manyetik kuvvet manyetik alana dik olarak etkir.
  • 48.
  • 49.
  • 50. Örnek: 24 μC yük değerine sahip bir cisim düzgün 610 N/C elektrik alanın içerisinde havada asılı durmaktadır. Cismin kütlesini hesaplayınız.
  • 51. Elektriksel Akı ve Gauss Yasası
  • 52. Elektriksel Akı • Statik Elektrik, tabiatta birbirinden farklı veya aynı, iletken veya yalıtkan iki maddenin temas etmesi ve sonra ayrılması veya sürtünme işlemi sonucunda, bu iki cisim arasında pozitif ve negatif elektronların serbest bırakılması ve işaretlerinin değişmesi sonucunda oluşur. Statik yükün voltajı çok fazla olmasına karşın, akımı çok zayıftır. • Maddeler birbirleriyle temas halinde olduğu sürece aralarında temas yüzeyi boyunca elektron transferi olur. İki maddenin temasının kesilmesi durumunda aralarındaki sınır tabakası ortadan kalkar ve maddelerden birinde negatif yük fazlalığı (negatif yüklenme) diğerinde ise elektron azlığı (pozitif yüklenme) meydana gelir. Oluşan bu iki ayrı yük birbirlerini çeker ve arada bulunan hava gibi yalıtkan olan bir ortam boyunca ark (kıvılcım) yaparak boşalır ve yük farklarını dengelerler.
  • 53. Elektriksel Akı • Yük veya yükler kapalı bir hacim içerisine alındıklarında, bu kapalı alandan dışarı veya içeri doğru elektrik alan çizgileri düşünülebilir.
  • 54. Elektriksel Akı Alan çizgileri birbirine yakın olduğunda E büyük, uzak olduğunda küçüktür. Alan çizgileri bir artı yükten çıkıp bir eksi yükte son bulmalıdır. Alan çizgilerinin sayısı yük miktarıyla orantılıdır. İki alan çizgisi birbirini kesmez.
  • 55. Elektriksel Akı Elektrik akısı, bir yüzeyden geçen elektrik alan çizgilerinin sayısıyla doğru orantılıdır. Çok küçük bir dA alanındaki elektrik akısı şu şekilde hesaplanır: Burada E yüzeye dik olan elektrik alanıdır. Bir S yüzeyinden geçen elektrik akısı dA alanlarının toplanmasıyla elde edilir: Elektrik alanı vektörüyle, dA vektörü arasında skaler çarpım olduğundan manyetik akının büyüklüğü şu şekilde yazılır:
  • 61. Yük Dağılımları Noktasal, çizgisel, alana yayılan (düzlemsel), hacim içerisine yayılan yükler
  • 62. Gauss Yasası Kullanılarak Hesaplanan Bazı Örneksel Elektrik Alanları
  • 68. Diverjansın Fiziksel Anlamı ve Uygulamaları
  • 69. Diverjans Nedir • Isındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir. • Vektör hesaplamada, diverjans (ıraksama, uzaksama, uzaklaşma) bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli (artı ya da eksi) bir sayıdır. • Uzaksaması her yerde 0 olan vektör alanına selenoidal denir.
  • 74. Hatırlatma Hacmin Türevi Alan Alanın Türevi Vektör Vektörün Türevi Nokta Diverjans bulurken bir vektör alanının kısmi türevini alarak vektör buluyoruz
  • 81. 6-Statik Elektriksel Alanın Endüstriyel Uygulamaları
  • 82. Yüklü Parçacığın Sapması • Elektrostatik alanların en yaygın uygulamalarından biri elektron veya proton gibi yüklü bir parçacığın yörüngesinin kontrol edilmesi için saptırılmasıdır. • Katot ışınlı osiloskop, mürekkepli-jet yazıcı ve hız seçici gibi aygıtlar bu prensibe dayanmaktadır. • Yüklü parçacığın sapması bir çift paralel plaka arasındaki potansiyel fark korunarak yapılır. • ux hızı ile x yönünde hareket eden m kütleli ve q yükü ile yüklü bir parçacığı dikkate alalım. t=0 zamanında yüklü parçacık Vo potansiyel farkında tutulan paralel levha çifti arasındaki bölgeye girer.
  • 83. Yüklü Parçacığın Sapması Hız=İlk hız + ivme ∙ zaman V = V0 + a ∙ t
  • 86. KATOT IŞINLI OSİLOSKOP Katot ışınlı osiloskop’un temel özellikleri; tüp camdan yapılmış ve içi tamamen boşaltılmıştır. Isıtıcı bir flaman ile ısıtıldığında katot elektron yayar. Bu elektronlar daha sonra katota göre birkaç yüz voltluk bir potansiyelde tutulan anoda doğru hızlandırılır. Küçük bir deliğe sahip olan anot, içinden ince bir elektron ışınının geçmesine izin verir. Hızlanmış elektronlar bundan önceki kısımda tartışılana benzer bir davranışla hem yatay ve hem de dikey boyutlarda saptırılabilecekleri bir bölgeye girerler. Son olarak elektron ışını bir cisim (fosfor) ile kaplanmış görünür ışık yayan ekranın iç yüzeyine bombardıman edilir.