SlideShare uma empresa Scribd logo
1 de 2
Kohonen
Introducción Existen evidencias que demuestran que en el cerebro existen neuronas
que se organizan en muchas zonas, de forma que las informaciones captadas del
entorno a través de los órganos sensoriales se representan internamente en forma de
capas bidimensionales. Por ejemplo, en el sistema visual se han detectado mapas del
espacio visual en zonas de córtex (capa externa del cerebro). También en el sistema
auditivo se detecta organización según la frecuencia a la que cada neurona alcanza la
mayor respuesta (organización tonotópica). Aunque en gran medida esta
organización neuronal está predeterminada genéticamente, es probable que de ella se
origine medienta el aprendizaje. Esto sugiere, por tanto, que el cerebro podría poseer
la capacidad inherente de formar mapas topológicos de las informaciones recibidas del
exterior. De hecho, esta teoría podría explicar su poder de operar con elementos
semánticos: algunas areas del cerebro simplemente podrían crear y ordenar neuronas
especializadas o grupos con caracteristicas de alto nivel y sus combinaciones. Se
trataría, en definitiva, de construir mapas espaciales para atributos y características.
Historia A partir de estas ideas, T. Kohonen presentó en 1982 un sistema con un
comportamiento semejante. Se trataba de un modelo de red neuronal con capacidad
para formar mapas de características de manera similar a como ocurre en el cerebro.
El objetivo de Kohonen era demostrar que en un estímulo externo (información de
entrada) por si solo, suponiendo una estructura propia y una descripción funcional del
comportamiento de la red, era suficiente para forzar la formacion de mapas. Este
modelo tiene dos variantes, denominadas LVQ (Learning Vector Quantization) y TPM
(Topology-Preserving Map) o SOM (Self-Organizating Map). Ambas se basan en el
principio de formación de mapas topológicos para establecer características comunes
entre las informaciones (vectores) de entrada a la red, aunque difieren en las
dimensiones de éstos, siendo de una soladimensión en el caso de LVQ, y
bidimensional, e incluso tridimensional, en la red TPM. Características Pertenece a la
categoría de las redes competitivas o mapas de autoorganización, es decir,
aprendizaje no supervisado. Poseen una arquitectura de dos capas (entrada-salida)
(una sola capa de conexiones), funciones de activación lineales y flujo de información
unidireccional (son redes en cascada). Las unidades de entrada reciben datos
continuos normalizados, se normalizan así mismo los pesos de las conexiones con la
capa de salida. Tras el aprendizaje de la red, cada patrón de entrada activará una
única unidad de salida. El objetivo de este tipo de redes es clasificar los patrones de
entrada en grupos de características similares, de manera que cada grupo activará
siempre la(s) misma(s) salida(s). Cada grupo de entradas queda representado en los
pesos de las conexiones de la unidad de salida triunfante. La unidad de salida
ganadora para cada grupo de entradas no se conoce previamente, es necesario
averiguarlo después de entrenar a la red. Arquitectura En la arquitectura de la
versión original (LVQ) del modelo Kohonen no existen conexioines hacia atrás. Se
trata de una de las N neuronas entrada y M de salida. Cada una de las N neuronas de
entrada se conecta a las M de salida a través de conexiones hacia adelante
(feedfoward). Entre las neuronas de la capa de salida, puede decirse que existen
conexiones laterales de inhibición (peso negativo) implícitas, pues aunque no estén
conectadas, cada una de las neuronas va a tener cierta influencia sobre sus vecinas.
El valor que se asigne a los pesos de las conexiones hacia adelante entre las capas de
entrada y salida (Wji) durante el proceso de aprendizaje de la red va a depender
precisamente de esta interacción lateral. La influencia que una neurona ejerce sobre
las demás es función de la distancia entre ellas, siendo muy pequeñas cuando estan
muy alejadas. Es frecuente que dicha influencia tenga la forma de un sombrero
mexicano. Por otra parte, la versión del modelo denominada TPM (Topology
Preserving Map) trata de establecer una correspondencia entre los datos de entrada y
un espacio bidimensional de salida, crenado mapas topológicos de dos dimensiones,
de tal forma que ante datos de entrada con características comunes se deben activar
neuronas situadas en próximas zonasde la capa de salida. Aprendizaje Supongamos
que tenemos patrones de entrada n-dimensionales. 0. Aleatorizar los pesos de las
conexiones. Normalizar los pesos de las conexiones incidentes de cada unidad de
salida sobre la unidad: dividir cada conexión por la raíz cuadrada de la suma de los
cuadrados de las conexiones de cada unidad. Normalizar igualmente los datos de
entrada Aplicar un patrón de entrada. Calcular alguna medida de similitud/disimilitud
(producto interno, distancia euclídea o de Mahalanobis, etc.) entre las entradas y los
pesos de las conexiones. La unidad de salida con los pesos más parecidos al patrón
de entrada es declarada ganadora. El vector de pesos de la unidad ganadora, se
convierte en el centro de un grupo de vectores cercanos a él. Modificar los pesos de
los vectores de pesos Wj "cercanos" a Wc (distancia menor a D), según la fórmula:

                                   De esta manera conseguimos que los vectores de
pesos de la unidad ganadora y de su "vecindario" se parezcan cada vez más al patrón
de entrada que hace ganar a esa unidad. Repetir los pasos 1 a 4 con todos los
patrones de entrada. A medida que avanza el aprendizaje hay que ir reduciendo D y
a. Kohonen recomienda empezar con un valor de a cercano a 1 y reducirlo
gradualmente hasta 0.1. D puede empezar valiendo la máxima distancia existente
entre los pesos de las conexiones al principio y acabar siendo tan pequeño que no
quede ninguna unidad en el vecindario de la unidad ganadora. En ese momento solo
se entrenará una unidad, que al final tendrá su vector de pesos igual al vector de
entrada. La precisión de la clasificación de los patrones de entrada aumenta con el
número de ciclos de aprendizaje. Kohonen recomienda una cantidad de ciclos no
inferior a 500 veces el número de neuronas de salida para obtener buenos resultados.
Aplicación Una vez entrenada, podemos usar a la red para clasificar patrones de
entrada similares en el espacio n-dimensional. Una clase o grupo de patrones
similares tiende a controlar una neurona específica, que representará el centro de una
esfera n-dimensional (de radio unitario, pues normalizamos los datos sobre la
unidad). Esa neurona resultará la más activada frente a los patrones más parecidos a
su vector de pesos. Después del aprendizaje, la clasificación consiste en presentar
una entrada y seleccionar la unidad más activada. Además, el vector de pesos nos
servirá para reconstruir el patrón de entrada.

Mais conteúdo relacionado

Mais procurados

Modulación De Señales Digitales
Modulación De Señales DigitalesModulación De Señales Digitales
Modulación De Señales Digitales
Lorenzo Cruz
 
PERTURBACIONES DE LA TRANSMISIÓN
PERTURBACIONES DE LA TRANSMISIÓNPERTURBACIONES DE LA TRANSMISIÓN
PERTURBACIONES DE LA TRANSMISIÓN
UNAED
 

Mais procurados (20)

Codigos de Linea - Telecomunicaciones III
Codigos de Linea - Telecomunicaciones IIICodigos de Linea - Telecomunicaciones III
Codigos de Linea - Telecomunicaciones III
 
Presentación Arreglo de Antenas
Presentación Arreglo de AntenasPresentación Arreglo de Antenas
Presentación Arreglo de Antenas
 
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IPCUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
CUADRO COMPARATIVO ENTRE MODELO OSI Y TCP/IP
 
Códigos de línea
Códigos de líneaCódigos de línea
Códigos de línea
 
Modulación De Señales Digitales
Modulación De Señales DigitalesModulación De Señales Digitales
Modulación De Señales Digitales
 
ospf isis
ospf   isisospf   isis
ospf isis
 
Tecnologías de acceso
Tecnologías de accesoTecnologías de acceso
Tecnologías de acceso
 
MUESTREO
MUESTREOMUESTREO
MUESTREO
 
PERTURBACIONES DE LA TRANSMISIÓN
PERTURBACIONES DE LA TRANSMISIÓNPERTURBACIONES DE LA TRANSMISIÓN
PERTURBACIONES DE LA TRANSMISIÓN
 
Modulación pcm
Modulación pcmModulación pcm
Modulación pcm
 
Tipos De Modulación
Tipos De ModulaciónTipos De Modulación
Tipos De Modulación
 
Digitalización de las señales de abonado
Digitalización de las señales de abonadoDigitalización de las señales de abonado
Digitalización de las señales de abonado
 
Investigación Técnicas de detección de errores de transmisión
Investigación Técnicas de detección de errores de transmisiónInvestigación Técnicas de detección de errores de transmisión
Investigación Técnicas de detección de errores de transmisión
 
Deteccion-y-comprobacion-de-errores-mediante-comprobacion-ciclica
Deteccion-y-comprobacion-de-errores-mediante-comprobacion-ciclicaDeteccion-y-comprobacion-de-errores-mediante-comprobacion-ciclica
Deteccion-y-comprobacion-de-errores-mediante-comprobacion-ciclica
 
computación paralela
computación paralelacomputación paralela
computación paralela
 
Modulación AM - PM - FM
Modulación AM - PM - FMModulación AM - PM - FM
Modulación AM - PM - FM
 
Sistema psk & qpsk
Sistema psk &  qpskSistema psk &  qpsk
Sistema psk & qpsk
 
Topologia red anillo
Topologia red anilloTopologia red anillo
Topologia red anillo
 
Modelo Hibrido
Modelo HibridoModelo Hibrido
Modelo Hibrido
 
Modulacion Digital de Señales Analogicas
Modulacion Digital de Señales AnalogicasModulacion Digital de Señales Analogicas
Modulacion Digital de Señales Analogicas
 

Destaque

red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
ESCOM
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
ESCOM
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
ESCOM
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
ESCOM
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
ESCOM
 

Destaque (9)

red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
 
Diseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoDiseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y Entrenamiento
 

Semelhante a redes neuronales Kohonen

REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
ESCOM
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
ESCOM
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
Jesus Rojas
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
Luis Álamo
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
Elik Castillo
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
Elik Castillo
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
ESCOM
 

Semelhante a redes neuronales Kohonen (20)

REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
 
redes competitivas
redes competitivasredes competitivas
redes competitivas
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
 
Tedes estocasticas
Tedes estocasticasTedes estocasticas
Tedes estocasticas
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia compet
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificiales
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
 
Ap acompet
Ap acompetAp acompet
Ap acompet
 
Redes neuronales Luis Lozano CI 22.840.519
Redes neuronales   Luis Lozano CI 22.840.519Redes neuronales   Luis Lozano CI 22.840.519
Redes neuronales Luis Lozano CI 22.840.519
 
Introduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVAIntroduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVA
 
Neurona de Mc culloch
Neurona de Mc cullochNeurona de Mc culloch
Neurona de Mc culloch
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
MODELO DE RESONANCIA ADAPTATIVA (ART)
MODELO DE RESONANCIA ADAPTATIVA (ART)MODELO DE RESONANCIA ADAPTATIVA (ART)
MODELO DE RESONANCIA ADAPTATIVA (ART)
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes Neuronales
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
 

Mais de ESCOM

redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
ESCOM
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
ESCOM
 
Art2
Art2Art2
Art2
ESCOM
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
ESCOM
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
ESCOM
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
ESCOM
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
ESCOM
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
ESCOM
 
Unsupervised Slides
Unsupervised SlidesUnsupervised Slides
Unsupervised Slides
ESCOM
 
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedREDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
ESCOM
 
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedREDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
ESCOM
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
ESCOM
 

Mais de ESCOM (20)

redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
 
Art2
Art2Art2
Art2
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Unsupervised Slides
Unsupervised SlidesUnsupervised Slides
Unsupervised Slides
 
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedREDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
 
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedREDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
 

Último

5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
MiNeyi1
 

Último (20)

Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
 

redes neuronales Kohonen

  • 1. Kohonen Introducción Existen evidencias que demuestran que en el cerebro existen neuronas que se organizan en muchas zonas, de forma que las informaciones captadas del entorno a través de los órganos sensoriales se representan internamente en forma de capas bidimensionales. Por ejemplo, en el sistema visual se han detectado mapas del espacio visual en zonas de córtex (capa externa del cerebro). También en el sistema auditivo se detecta organización según la frecuencia a la que cada neurona alcanza la mayor respuesta (organización tonotópica). Aunque en gran medida esta organización neuronal está predeterminada genéticamente, es probable que de ella se origine medienta el aprendizaje. Esto sugiere, por tanto, que el cerebro podría poseer la capacidad inherente de formar mapas topológicos de las informaciones recibidas del exterior. De hecho, esta teoría podría explicar su poder de operar con elementos semánticos: algunas areas del cerebro simplemente podrían crear y ordenar neuronas especializadas o grupos con caracteristicas de alto nivel y sus combinaciones. Se trataría, en definitiva, de construir mapas espaciales para atributos y características. Historia A partir de estas ideas, T. Kohonen presentó en 1982 un sistema con un comportamiento semejante. Se trataba de un modelo de red neuronal con capacidad para formar mapas de características de manera similar a como ocurre en el cerebro. El objetivo de Kohonen era demostrar que en un estímulo externo (información de entrada) por si solo, suponiendo una estructura propia y una descripción funcional del comportamiento de la red, era suficiente para forzar la formacion de mapas. Este modelo tiene dos variantes, denominadas LVQ (Learning Vector Quantization) y TPM (Topology-Preserving Map) o SOM (Self-Organizating Map). Ambas se basan en el principio de formación de mapas topológicos para establecer características comunes entre las informaciones (vectores) de entrada a la red, aunque difieren en las dimensiones de éstos, siendo de una soladimensión en el caso de LVQ, y bidimensional, e incluso tridimensional, en la red TPM. Características Pertenece a la categoría de las redes competitivas o mapas de autoorganización, es decir, aprendizaje no supervisado. Poseen una arquitectura de dos capas (entrada-salida) (una sola capa de conexiones), funciones de activación lineales y flujo de información unidireccional (son redes en cascada). Las unidades de entrada reciben datos continuos normalizados, se normalizan así mismo los pesos de las conexiones con la capa de salida. Tras el aprendizaje de la red, cada patrón de entrada activará una única unidad de salida. El objetivo de este tipo de redes es clasificar los patrones de entrada en grupos de características similares, de manera que cada grupo activará siempre la(s) misma(s) salida(s). Cada grupo de entradas queda representado en los pesos de las conexiones de la unidad de salida triunfante. La unidad de salida ganadora para cada grupo de entradas no se conoce previamente, es necesario averiguarlo después de entrenar a la red. Arquitectura En la arquitectura de la versión original (LVQ) del modelo Kohonen no existen conexioines hacia atrás. Se trata de una de las N neuronas entrada y M de salida. Cada una de las N neuronas de entrada se conecta a las M de salida a través de conexiones hacia adelante (feedfoward). Entre las neuronas de la capa de salida, puede decirse que existen conexiones laterales de inhibición (peso negativo) implícitas, pues aunque no estén conectadas, cada una de las neuronas va a tener cierta influencia sobre sus vecinas. El valor que se asigne a los pesos de las conexiones hacia adelante entre las capas de entrada y salida (Wji) durante el proceso de aprendizaje de la red va a depender precisamente de esta interacción lateral. La influencia que una neurona ejerce sobre las demás es función de la distancia entre ellas, siendo muy pequeñas cuando estan muy alejadas. Es frecuente que dicha influencia tenga la forma de un sombrero mexicano. Por otra parte, la versión del modelo denominada TPM (Topology Preserving Map) trata de establecer una correspondencia entre los datos de entrada y
  • 2. un espacio bidimensional de salida, crenado mapas topológicos de dos dimensiones, de tal forma que ante datos de entrada con características comunes se deben activar neuronas situadas en próximas zonasde la capa de salida. Aprendizaje Supongamos que tenemos patrones de entrada n-dimensionales. 0. Aleatorizar los pesos de las conexiones. Normalizar los pesos de las conexiones incidentes de cada unidad de salida sobre la unidad: dividir cada conexión por la raíz cuadrada de la suma de los cuadrados de las conexiones de cada unidad. Normalizar igualmente los datos de entrada Aplicar un patrón de entrada. Calcular alguna medida de similitud/disimilitud (producto interno, distancia euclídea o de Mahalanobis, etc.) entre las entradas y los pesos de las conexiones. La unidad de salida con los pesos más parecidos al patrón de entrada es declarada ganadora. El vector de pesos de la unidad ganadora, se convierte en el centro de un grupo de vectores cercanos a él. Modificar los pesos de los vectores de pesos Wj "cercanos" a Wc (distancia menor a D), según la fórmula: De esta manera conseguimos que los vectores de pesos de la unidad ganadora y de su "vecindario" se parezcan cada vez más al patrón de entrada que hace ganar a esa unidad. Repetir los pasos 1 a 4 con todos los patrones de entrada. A medida que avanza el aprendizaje hay que ir reduciendo D y a. Kohonen recomienda empezar con un valor de a cercano a 1 y reducirlo gradualmente hasta 0.1. D puede empezar valiendo la máxima distancia existente entre los pesos de las conexiones al principio y acabar siendo tan pequeño que no quede ninguna unidad en el vecindario de la unidad ganadora. En ese momento solo se entrenará una unidad, que al final tendrá su vector de pesos igual al vector de entrada. La precisión de la clasificación de los patrones de entrada aumenta con el número de ciclos de aprendizaje. Kohonen recomienda una cantidad de ciclos no inferior a 500 veces el número de neuronas de salida para obtener buenos resultados. Aplicación Una vez entrenada, podemos usar a la red para clasificar patrones de entrada similares en el espacio n-dimensional. Una clase o grupo de patrones similares tiende a controlar una neurona específica, que representará el centro de una esfera n-dimensional (de radio unitario, pues normalizamos los datos sobre la unidad). Esa neurona resultará la más activada frente a los patrones más parecidos a su vector de pesos. Después del aprendizaje, la clasificación consiste en presentar una entrada y seleccionar la unidad más activada. Además, el vector de pesos nos servirá para reconstruir el patrón de entrada.