SlideShare uma empresa Scribd logo
1 de 99
Baixar para ler offline
Section 3.7
   Indeterminate Forms and L’Hôpital’s
                  Rule

                     V63.0121.041, Calculus I

                           New York University


                         November 3, 2010



Announcements

   Quiz 3 in recitation this week on Sections 2.6, 2.8, 3.1, and 3.2

                                                 .   .   .   .   .     .
Announcements




         Quiz 3 in recitation this
         week on Sections 2.6, 2.8,
         3.1, and 3.2




                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       2 / 34
Objectives


         Know when a limit is of
         indeterminate form:
                indeterminate quotients:
                0/0, ∞/∞
                indeterminate products:
                0×∞
                indeterminate
                differences: ∞ − ∞
                indeterminate powers:
                00 , ∞0 , and 1∞
         Resolve limits in
         indeterminate form



                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       3 / 34
Experiments with funny limits


           sin2 x
       lim
       x→0   x


                                                                         .




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim        =0
       x→0   x


                                                                         .




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim        =0
       x→0   x
             x
       lim
       x→0 sin2 x
                                                                         .




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim        =0
       x→0   x
             x
       lim        does not exist
       x→0 sin2 x
                                                                         .




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim         =0
       x→0    x
              x
       lim         does not exist
       x→0 sin2 x
                                                                         .
            sin2 x
       lim
       x→0 sin(x2 )




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim         =0
       x→0    x
              x
       lim         does not exist
       x→0 sin2 x
                                                                         .
            sin2 x
       lim          =1
       x→0 sin(x2 )




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim         =0
       x→0    x
              x
       lim         does not exist
       x→0 sin2 x
                                                                         .
            sin2 x
       lim          =1
       x→0 sin(x2 )
           sin 3x
       lim
       x→0 sin x




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim         =0
       x→0    x
              x
       lim         does not exist
       x→0 sin2 x
                                                                         .
            sin2 x
       lim          =1
       x→0 sin(x2 )
           sin 3x
       lim         =3
       x→0 sin x




                                                                 .   .       .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule                   November 3, 2010       4 / 34
Experiments with funny limits


           sin2 x
       lim         =0
       x→0    x
              x
       lim         does not exist
       x→0 sin2 x
                                                       .
            sin2 x
       lim          =1
       x→0 sin(x2 )
           sin 3x
       lim         =3
       x→0 sin x
                              0
All of these are of the form , and since we can get different answers
                              0
in different cases, we say this form is indeterminate.



                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       4 / 34
Recall




Recall the limit laws from Chapter 2.
      Limit of a sum is the sum of the limits




                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       5 / 34
Recall




Recall the limit laws from Chapter 2.
      Limit of a sum is the sum of the limits
      Limit of a difference is the difference of the limits




                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       5 / 34
Recall




Recall the limit laws from Chapter 2.
      Limit of a sum is the sum of the limits
      Limit of a difference is the difference of the limits
      Limit of a product is the product of the limits




                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       5 / 34
Recall




Recall the limit laws from Chapter 2.
      Limit of a sum is the sum of the limits
      Limit of a difference is the difference of the limits
      Limit of a product is the product of the limits
      Limit of a quotient is the quotient of the limits ... whoops! This is
      true as long as you don’t try to divide by zero.




                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       5 / 34
More about dividing limits

      We know dividing by zero is bad.
      Most of the time, if an expression’s numerator approaches a finite
      number and denominator approaches zero, the quotient
      approaches some kind of infinity. For example:
                                         1                                cos x
                                  lim+     = +∞                lim              = −∞
                                  x→0    x                   x→0    −      x3




                                                                            .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)            Section 3.7 L’Hôpital’s Rule                 November 3, 2010       6 / 34
More about dividing limits

      We know dividing by zero is bad.
      Most of the time, if an expression’s numerator approaches a finite
      number and denominator approaches zero, the quotient
      approaches some kind of infinity. For example:
                                         1                                cos x
                                  lim+     = +∞                lim              = −∞
                                  x→0    x                   x→0    −      x3


      An exception would be something like
                                                  1
                                         lim          = lim x csc x.
                                         x→∞ 1   sin x x→∞
                                             x

      which does not exist and is not infinite.


                                                                            .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)            Section 3.7 L’Hôpital’s Rule                 November 3, 2010       6 / 34
More about dividing limits

      We know dividing by zero is bad.
      Most of the time, if an expression’s numerator approaches a finite
      number and denominator approaches zero, the quotient
      approaches some kind of infinity. For example:
                                         1                                cos x
                                  lim+     = +∞                lim              = −∞
                                  x→0    x                   x→0    −      x3


      An exception would be something like
                                                  1
                                         lim          = lim x csc x.
                                         x→∞ 1   sin x x→∞
                                             x

      which does not exist and is not infinite.
      Even less predictable: numerator and denominator both go to
      zero.
                                                                            .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)            Section 3.7 L’Hôpital’s Rule                 November 3, 2010       6 / 34
Language Note
It depends on what the meaning of the word “is" is




        Be careful with the
        language here. We are not
        saying that the limit in each
                  0
        case “is” , and therefore
                  0
        nonexistent because this
        expression is undefined.
                                  0
        The limit is of the form ,
                                  0
        which means we cannot
        evaluate it with our limit
        laws.


                                                                  .   .   .         .      .     .

  V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       7 / 34
Indeterminate forms are like Tug Of War




Which side wins depends on which side is stronger.
                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       8 / 34
Outline



L’Hôpital’s Rule


Relative Rates of Growth


Other Indeterminate Limits
   Indeterminate Products
   Indeterminate Differences
   Indeterminate Powers




                                                                 .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule               November 3, 2010       9 / 34
The Linear Case
Question
If f and g are lines and f(a) = g(a) = 0, what is

                                           f(x)
                                       lim      ?
                                       x→a g(x)




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   10 / 34
The Linear Case
Question
If f and g are lines and f(a) = g(a) = 0, what is

                                           f(x)
                                       lim      ?
                                       x→a g(x)



Solution
The functions f and g can be written in the form

                                  f(x) = m1 (x − a)
                                  g(x) = m2 (x − a)

So
                                      f(x)  m
                                           = 1
                                      g(x)  m2
                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   10 / 34
The Linear Case, Illustrated


                          y
                          .                                                  y
                                                                             . = g(x)

                                                                             y
                                                                             . = f(x)


                                                             g
                                                             . (x)
                                  a
                                  .              f
                                                 .(x)
                              .       .                  .                   x
                                                                             .
                                                             x
                                                             .



                f(x)    f(x) − f(a)    (f(x) − f(a))/(x − a)  m
                     =              =                        = 1
                g(x)   g(x) − g(a)    (g(x) − g(a))/(x − a)   m2


                                                                         .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 3.7 L’Hôpital’s Rule               November 3, 2010   11 / 34
What then?




      But what if the functions aren’t linear?




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   12 / 34
What then?




      But what if the functions aren’t linear?
      Can we approximate a function near a point with a linear function?




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   12 / 34
What then?




      But what if the functions aren’t linear?
      Can we approximate a function near a point with a linear function?
      What would be the slope of that linear function?




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   12 / 34
What then?




      But what if the functions aren’t linear?
      Can we approximate a function near a point with a linear function?
      What would be the slope of that linear function? The derivative!




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   12 / 34
Theorem of the Day

Theorem (L’Hopital’s Rule)
Suppose f and g are differentiable functions and g′ (x) ̸= 0 near a
(except possibly at a). Suppose that

              lim f(x) = 0                    and                  lim g(x) = 0
              x→a                                                  x→a

or

              lim f(x) = ±∞                   and                  lim g(x) = ±∞
              x→a                                                  x→a

Then
                                      f(x)       f′ (x)
                                  lim      = lim ′ ,
                                  x→a g(x)   x→a g (x)

if the limit on the right-hand side is finite, ∞, or −∞.
                                                                   .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 3.7 L’Hôpital’s Rule             November 3, 2010   13 / 34
Meet the Mathematician: L'H_pital



       wanted to be a military
       man, but poor eyesight
       forced him into math
       did some math on his own
       (solved the “brachistocrone
       problem”)
       paid a stipend to Johann
       Bernoulli, who proved this
       theorem and named it after
       him!                                             Guillaume François Antoine,
                                                            Marquis de L’Hôpital
                                                           (French, 1661–1704)
                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   14 / 34
Revisiting the previous examples
Example

                                  sin2 x
                              lim
                              x→0   x




                                                                      .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim
                              x→0   x      x→0       1




                                                                      .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example                                                               . in x → 0
                                                                      s

                                                      .
                                  sin2 x H     2 sin x cos x
                              lim        = lim
                              x→0   x      x→0       1




                                                                      .    .   .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 3.7 L’Hôpital’s Rule            November 3, 2010   15 / 34
Revisiting the previous examples
Example                                                              . in x → 0
                                                                     s

                                                      .
                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1




                                                                     .    .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule            November 3, 2010   15 / 34
Revisiting the previous examples
Example                                                              . in x → 0
                                                                     s

                                                      .
                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example

          sin2 x
       lim
      x→0 sin x2




                                                                     .    .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule            November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                 . umerator → 0
                        n

                 .
          sin2 x
       lim
      x→0 sin x2




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                 . umerator → 0
                        n

                 .
          sin2 x
       lim       .
      x→0 sin x2




                      . enominator → 0
                      d

                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                 . umerator → 0
                        n

                .
          sin2 x H       sin x cos x
                         2
       lim     2.
                  = lim (       )
      x→0 sin x     x→0 cos x2 (x)
                                  2



                      . enominator → 0
                      d

                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                                            . umerator → 0
                                                   n

                                     .
          sin2 x H      sin x cos x
                        2
       lim       = lim (       )
      x→0 sin x2   x→0 cos x2 (x)
                                 2




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                                            . umerator → 0
                                                   n

                                     .
          sin2 x H      sin x cos x
                        2
       lim       = lim (       )    .
      x→0 sin x2   x→0 cos x2 (x )
                                 2




                                                . enominator → 0
                                                d

                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                                            . umerator → 0
                                                   n

                                    .
          sin2 x H      sin x cos x H
                        2                     cos2 x − sin2 x
       lim       = lim (       )    . = lim
      x→0 sin x2   x→0 cos x2 (x )
                                 2      x→0 cos x2 − 2x2 sin(x2 )




                                                . enominator → 0
                                                d

                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                                                                      . umerator → 1
                                                                             n

                                                             .
          sin2 x H      sin x cos x H
                        2                    cos2 x − sin2 x
       lim       = lim (       )     = lim
      x→0 sin x2   x→0 cos x2 (x)
                                 2     x→0 cos x2 − 2x2 sin(x2 )




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example                                                                       . umerator → 1
                                                                              n

                                                             .
          sin2 x H      sin x cos x H
                        2                    cos2 x − sin2 x
       lim       = lim (       )     = lim                      .
      x→0 sin x2   x→0 cos x2 (x)
                                 2     x→0 cos x2 − 2x2 sin(x2 )




                                                                             . enominator → 1
                                                                             d

                                                                     .   .     .     .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule            November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example

          sin2 x H      sin x cos x H
                        2                    cos2 x − sin2 x
       lim       = lim (       )     = lim                       =1
      x→0 sin x2   x→0 cos x2 (x)
                                 2     x→0 cos x2 − 2x2 sin(x2 )




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example

          sin2 x H      sin x cos x H
                        2                    cos2 x − sin2 x
       lim       = lim (       )     = lim                       =1
      x→0 sin x2   x→0 cos x2 (x)
                                 2     x→0 cos x2 − 2x2 sin(x2 )



Example

                                     sin 3x
                                  lim
                                  x→0 sin x
                                                                       .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)         Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Revisiting the previous examples
Example

                                  sin2 x H     2 sin x cos x
                              lim        = lim               =0
                              x→0   x      x→0       1


Example

          sin2 x H      sin x cos x H
                        2                    cos2 x − sin2 x
       lim       = lim (       )     = lim                       =1
      x→0 sin x2   x→0 cos x2 (x)
                                 2     x→0 cos x2 − 2x2 sin(x2 )



Example

                                     sin 3x H     3 cos 3x
                                  lim       = lim          = 3.
                                  x→0 sin x   x→0 cos x
                                                                        .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)          Section 3.7 L’Hôpital’s Rule           November 3, 2010   15 / 34
Another Example



Example
Find
                                             x
                                        lim
                                       x→0 cos x




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   16 / 34
Beware of Red Herrings



Example
Find
                                             x
                                        lim
                                       x→0 cos x



Solution
The limit of the denominator is 1, not 0, so L’Hôpital’s rule does not
apply. The limit is 0.




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   16 / 34
Outline



L’Hôpital’s Rule


Relative Rates of Growth


Other Indeterminate Limits
   Indeterminate Products
   Indeterminate Differences
   Indeterminate Powers




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   17 / 34
Limits of Rational Functions revisited


Example
           5x2 + 3x − 1
Find lim                 if it exists.
       x→∞ 3x2 + 7x + 27




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   18 / 34
Limits of Rational Functions revisited


Example
           5x2 + 3x − 1
Find lim                 if it exists.
       x→∞ 3x2 + 7x + 27


Solution
Using L’Hôpital:

                   5x2 + 3x − 1
                lim
               x→∞ 3x2 + 7x + 27




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   18 / 34
Limits of Rational Functions revisited


Example
           5x2 + 3x − 1
Find lim                 if it exists.
       x→∞ 3x2 + 7x + 27


Solution
Using L’Hôpital:

                   5x2 + 3x − 1 H      10x + 3
                lim              = lim
               x→∞ 3x2 + 7x + 27  x→∞ 6x + 7




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   18 / 34
Limits of Rational Functions revisited


Example
           5x2 + 3x − 1
Find lim                 if it exists.
       x→∞ 3x2 + 7x + 27


Solution
Using L’Hôpital:

                   5x2 + 3x − 1 H      10x + 3 H     10   5
                lim              = lim         = lim    =
               x→∞ 3x2 + 7x + 27  x→∞ 6x + 7     x→∞ 6    3




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   18 / 34
Limits of Rational Functions revisited


Example
           5x2 + 3x − 1
Find lim                 if it exists.
       x→∞ 3x2 + 7x + 27


Solution
Using L’Hôpital:

                   5x2 + 3x − 1 H      10x + 3 H     10   5
                lim              = lim         = lim    =
               x→∞ 3x2 + 7x + 27  x→∞ 6x + 7     x→∞ 6    3




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   18 / 34
Limits of Rational Functions revisited II


Example
           5x2 + 3x − 1
Find lim                if it exists.
       x→∞   7x + 27




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   19 / 34
Limits of Rational Functions revisited II


Example
           5x2 + 3x − 1
Find lim                if it exists.
       x→∞   7x + 27

Solution
Using L’Hôpital:

                             5x2 + 3x − 1
                          lim
                         x→∞   7x + 27




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   19 / 34
Limits of Rational Functions revisited II


Example
           5x2 + 3x − 1
Find lim                if it exists.
       x→∞   7x + 27

Solution
Using L’Hôpital:

                             5x2 + 3x − 1 H     10x + 3
                          lim             = lim
                         x→∞   7x + 27      x→∞    7




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   19 / 34
Limits of Rational Functions revisited II


Example
           5x2 + 3x − 1
Find lim                if it exists.
       x→∞   7x + 27

Solution
Using L’Hôpital:

                             5x2 + 3x − 1 H     10x + 3
                          lim             = lim         =∞
                         x→∞   7x + 27      x→∞    7




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   19 / 34
Limits of Rational Functions revisited III



Example
                   4x + 7
Find lim                     if it exists.
       x→∞     3x2 + 7x + 27




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   20 / 34
Limits of Rational Functions revisited III



Example
                   4x + 7
Find lim                     if it exists.
       x→∞     3x2 + 7x + 27

Solution
Using L’Hôpital:

                                    4x + 7
                           lim
                          x→∞ 3x2   + 7x + 27




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   20 / 34
Limits of Rational Functions revisited III



Example
                   4x + 7
Find lim                     if it exists.
       x→∞     3x2 + 7x + 27

Solution
Using L’Hôpital:

                                    4x + 7   H      4
                           lim               = lim
                          x→∞ 3x2   + 7x + 27 x→∞ 6x + 7




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   20 / 34
Limits of Rational Functions revisited III



Example
                   4x + 7
Find lim                     if it exists.
       x→∞     3x2 + 7x + 27

Solution
Using L’Hôpital:

                                    4x + 7   H      4
                           lim               = lim       =0
                          x→∞ 3x2   + 7x + 27 x→∞ 6x + 7




                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   20 / 34
Limits of Rational Functions



Fact
Let f(x) and g(x) be polynomials of degree p and q.
                        f(x)
     If p  q, then lim      =∞
                   x→∞ g(x)
                        f(x)
     If p  q, then lim      =0
                   x→∞ g(x)
                        f(x)
     If p = q, then lim      is the ratio of the leading coefficients of f
                   x→∞ g(x)
     and g.




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   21 / 34
Exponential versus geometric growth
Example
           ex
Find lim      , if it exists.
       x→∞ x2




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   22 / 34
Exponential versus geometric growth
Example
           ex
Find lim      , if it exists.
       x→∞ x2


Solution
We have
                                 ex H     ex H     ex
                              lim   = lim    = lim    = ∞.
                             x→∞ x2   x→∞ 2x   x→∞ 2




                                                                   .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 3.7 L’Hôpital’s Rule           November 3, 2010   22 / 34
Exponential versus geometric growth
Example
           ex
Find lim      , if it exists.
       x→∞ x2


Solution
We have
                                 ex H     ex H     ex
                              lim   = lim    = lim    = ∞.
                             x→∞ x2   x→∞ 2x   x→∞ 2



Example
                       ex
What about lim            ?
                   x→∞ x3




                                                                   .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 3.7 L’Hôpital’s Rule           November 3, 2010   22 / 34
Exponential versus geometric growth
Example
           ex
Find lim      , if it exists.
       x→∞ x2


Solution
We have
                                 ex H     ex H     ex
                              lim   = lim    = lim    = ∞.
                             x→∞ x2   x→∞ 2x   x→∞ 2



Example
                       ex
What about lim            ?
                   x→∞ x3


Answer
Still ∞. (Why?)
                                                                   .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 3.7 L’Hôpital’s Rule           November 3, 2010   22 / 34
Exponential versus fractional powers
Example
         ex
Find lim √ , if it exists.
    x→∞   x




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   23 / 34
Exponential versus fractional powers
Example
         ex
Find lim √ , if it exists.
    x→∞   x

Solution (without L’Hôpital)
We have for all x  1, x1/2  x1 , so
                                        ex    ex
                                            
                                       x1/2   x
The right hand side tends to ∞, so the left-hand side must, too.




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   23 / 34
Exponential versus fractional powers
Example
         ex
Find lim √ , if it exists.
    x→∞   x

Solution (without L’Hôpital)
We have for all x  1, x1/2  x1 , so
                                        ex    ex
                                            
                                       x1/2   x
The right hand side tends to ∞, so the left-hand side must, too.

Solution (with L’Hôpital)

                           ex        ex         √
                       lim √ = lim 1     = lim 2 xex = ∞
                      x→∞   x x→∞ 2 x−1/2 x→∞
                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   23 / 34
Exponential versus any power
Theorem
Let r be any positive number. Then

                                       ex
                                     lim  = ∞.
                                   x→∞ xr




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   24 / 34
Exponential versus any power
Theorem
Let r be any positive number. Then

                                             ex
                                           lim  = ∞.
                                         x→∞ xr



Proof.
If r is a positive integer, then apply L’Hôpital’s rule r times to the
fraction. You get

                                      ex H       H     ex
                                  lim    = . . . = lim    = ∞.
                                  x→∞ xr           x→∞ r!

If r is not an integer, let m be the smallest integer greater than r. Then
                        ex    ex
if x  1, xr  xm , so r  m . The right-hand side tends to ∞ by the
                        x     x
previous step.                                                         .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)         Section 3.7 L’Hôpital’s Rule           November 3, 2010   24 / 34
Any exponential versus any power

Theorem
Let a  1 and r  0. Then
                                       ax
                                     lim  = ∞.
                                   x→∞ xr




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   25 / 34
Any exponential versus any power

Theorem
Let a  1 and r  0. Then
                                           ax
                                         lim  = ∞.
                                       x→∞ xr



Proof.
If r is a positive integer, we have

                                ax H       H     (ln a)r ax
                             lim   = . . . = lim            = ∞.
                            x→∞ xr           x→∞     r!
If r isn’t an integer, we can compare it as before.


                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   25 / 34
Any exponential versus any power

Theorem
Let a  1 and r  0. Then
                                           ax
                                         lim  = ∞.
                                       x→∞ xr



Proof.
If r is a positive integer, we have

                                ax H       H     (ln a)r ax
                             lim   = . . . = lim            = ∞.
                            x→∞ xr           x→∞     r!
If r isn’t an integer, we can compare it as before.
                 (1.00000001)x
So even lim                    = ∞!
             x→∞    x100000000
                                                                     .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule           November 3, 2010   25 / 34
Logarithmic versus power growth


Theorem
Let r be any positive number. Then

                                      ln x
                                     lim   = 0.
                                   x→∞ xr




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   26 / 34
Logarithmic versus power growth


Theorem
Let r be any positive number. Then

                                      ln x
                                     lim   = 0.
                                   x→∞ xr



Proof.
One application of L’Hôpital’s Rule here suffices:

                             ln x H      1/x      1
                            limr
                                  = lim r−1 = lim r = 0.
                          x→∞ x     x→∞ rx   x→∞ rx




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   26 / 34
Outline



L’Hôpital’s Rule


Relative Rates of Growth


Other Indeterminate Limits
   Indeterminate Products
   Indeterminate Differences
   Indeterminate Powers




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   27 / 34
Indeterminate products

Example
Find                                          √
                                      lim+        x ln x
                                     x→0


This limit is of the form 0 · (−∞).




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   28 / 34
Indeterminate products

Example
Find                                                    √
                                                lim+        x ln x
                                               x→0


This limit is of the form 0 · (−∞).

Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:

                                  √
                        lim        x ln x
                       x→0+




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 3.7 L’Hôpital’s Rule           November 3, 2010   28 / 34
Indeterminate products

Example
Find                                           √
                                       lim+        x ln x
                                      x→0


This limit is of the form 0 · (−∞).

Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:

                            √              ln x
                        lim  x ln x = lim+ 1 √
                       x→0+          x→0 / x




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   28 / 34
Indeterminate products

Example
Find                                           √
                                       lim+        x ln x
                                      x→0


This limit is of the form 0 · (−∞).

Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:

                            √              ln x H        x−1
                        lim  x ln x = lim+ 1 √ = lim+ 1
                       x→0+          x→0 / x      x→0 − 2 x−3/2




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   28 / 34
Indeterminate products

Example
Find                                           √
                                       lim+        x ln x
                                      x→0


This limit is of the form 0 · (−∞).

Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:

                            √              ln x H        x−1
                        lim  x ln x = lim+ 1 √ = lim+ 1
                       x→0+          x→0 / x      x→0 − 2 x−3/2
                                              √
                                    = lim+ −2 x
                                      x→0

                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   28 / 34
Indeterminate products

Example
Find                                           √
                                       lim+        x ln x
                                      x→0


This limit is of the form 0 · (−∞).

Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:

                            √              ln x H        x−1
                        lim  x ln x = lim+ 1 √ = lim+ 1
                       x→0+          x→0 / x      x→0 − 2 x−3/2
                                              √
                                    = lim+ −2 x = 0
                                      x→0

                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   28 / 34
Indeterminate differences
Example
                                         (             )
                                             1
                                  lim+         − cot 2x
                                  x→0        x

This limit is of the form ∞ − ∞.




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   29 / 34
Indeterminate differences
Example
                                         (             )
                                             1
                                  lim+         − cot 2x
                                  x→0        x

This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.

                      sin(2x) − x cos(2x)
              lim+
             x→0           x sin(2x)




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   29 / 34
Indeterminate differences
Example
                                         (             )
                                             1
                                  lim+         − cot 2x
                                  x→0        x

This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.

                      sin(2x) − x cos(2x) H      cos(2x) + 2x sin(2x)
              lim+                        = lim+
             x→0           x sin(2x)        x→0 2x cos(2x) + sin(2x)




                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   29 / 34
Indeterminate differences
Example
                                         (             )
                                             1
                                  lim+         − cot 2x
                                  x→0        x

This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.

                      sin(2x) − x cos(2x) H      cos(2x) + 2x sin(2x)
              lim+                        = lim+
             x→0           x sin(2x)        x→0 2x cos(2x) + sin(2x)
                                          =∞



                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   29 / 34
Indeterminate differences
Example
                                         (             )
                                             1
                                  lim+         − cot 2x
                                  x→0        x

This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.

                      sin(2x) − x cos(2x) H      cos(2x) + 2x sin(2x)
              lim+                        = lim+
             x→0           x sin(2x)        x→0 2x cos(2x) + sin(2x)
                                          =∞

The limit is +∞ becuase the numerator tends to 1 while the
denominator tends to zero but remains positive.
                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule           November 3, 2010   29 / 34
Checking your work




                                  .
                                      tan 2x
                                  lim        = 1, so for small x,
                                  x→0 2x
                                                           1
                                  tan 2x ≈ 2x. So cot 2x ≈    and
                                                   .       2x
                                   1           1  1   1
                                     − cot 2x ≈ −   =    →∞
                                   x           x 2x   2x
                                  as x → 0+ .




                                                                    .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)      Section 3.7 L’Hôpital’s Rule           November 3, 2010   30 / 34
Indeterminate powers

Example
Find lim+ (1 − 2x)1/x
       x→0




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   31 / 34
Indeterminate powers

Example
Find lim+ (1 − 2x)1/x
       x→0

Take the logarithm:
      (                 )          (           )       ln(1 − 2x)
   ln lim+ (1 − 2x) 1/x
                          = lim+ ln (1 − 2x)1/x = lim+
       x→0                 x→0                   x→0        x




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   31 / 34
Indeterminate powers

Example
Find lim+ (1 − 2x)1/x
       x→0

Take the logarithm:
      (                 )          (           )       ln(1 − 2x)
   ln lim+ (1 − 2x) 1/x
                          = lim+ ln (1 − 2x)1/x = lim+
       x→0                 x→0                   x→0        x

                                  0
This limit is of the form           , so we can use L’Hôpital:
                                  0
                                                                 −2
                                   ln(1 − 2x) H                 1−2x
                              lim+            = lim+                         = −2
                             x→0        x       x→0                  1


                                                                         .     .    .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule                  November 3, 2010   31 / 34
Indeterminate powers

Example
Find lim+ (1 − 2x)1/x
       x→0

Take the logarithm:
      (                 )          (           )       ln(1 − 2x)
   ln lim+ (1 − 2x) 1/x
                          = lim+ ln (1 − 2x)1/x = lim+
       x→0                 x→0                   x→0        x

                                  0
This limit is of the form           , so we can use L’Hôpital:
                                  0
                                                                 −2
                                   ln(1 − 2x) H                 1−2x
                              lim+            = lim+                         = −2
                             x→0        x       x→0                  1

This is not the answer, it’s the log of the answer! So the answer we
want is e−2 .
                                                                         .     .    .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.7 L’Hôpital’s Rule                  November 3, 2010   31 / 34
Another indeterminate power limit

Example


                                       lim (3x)4x
                                       x→0




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   32 / 34
Another indeterminate power limit

Example


                                        lim (3x)4x
                                        x→0



Solution


                    ln lim+ (3x)4x = lim+ ln(3x)4x = lim+ 4x ln(3x)
                       x→0          x→0                           x→0
                                          ln(3x) H                       3/3x
                                  = lim+ 1       = lim+                 −1/4x2
                                   x→0      /4x    x→0
                                  = lim+ (−4x) = 0
                                    x→0

So the answer is e0 = 1.
                                                                   .      .      .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.7 L’Hôpital’s Rule                  November 3, 2010   32 / 34
Summary



 Form           Method
    0
    0           L’Hôpital’s rule directly
    ∞
    ∞           L’Hôpital’s rule directly
0·∞             jiggle to make 0 or ∞ .
                                0
                                     ∞
∞−∞             combine to make an indeterminate product or quotient
 00             take ln to make an indeterminate product
 ∞0             ditto
 1∞             ditto




                                                                .   .   .      .      .    .

V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   33 / 34
Final Thoughts




      L’Hôpital’s Rule only works on indeterminate quotients
      Luckily, most indeterminate limits can be transformed into
      indeterminate quotients
      L’Hôpital’s Rule gives wrong answers for non-indeterminate limits!




                                                                 .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.7 L’Hôpital’s Rule           November 3, 2010   34 / 34

Mais conteúdo relacionado

Mais de Mel Anthony Pepito

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMel Anthony Pepito
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMel Anthony Pepito
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsMel Anthony Pepito
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMel Anthony Pepito
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesMel Anthony Pepito
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremMel Anthony Pepito
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMel Anthony Pepito
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesMel Anthony Pepito
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMel Anthony Pepito
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Mel Anthony Pepito
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionMel Anthony Pepito
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Mel Anthony Pepito
 

Mais de Mel Anthony Pepito (20)

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 

Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)

  • 1. Section 3.7 Indeterminate Forms and L’Hôpital’s Rule V63.0121.041, Calculus I New York University November 3, 2010 Announcements Quiz 3 in recitation this week on Sections 2.6, 2.8, 3.1, and 3.2 . . . . . .
  • 2. Announcements Quiz 3 in recitation this week on Sections 2.6, 2.8, 3.1, and 3.2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 2 / 34
  • 3. Objectives Know when a limit is of indeterminate form: indeterminate quotients: 0/0, ∞/∞ indeterminate products: 0×∞ indeterminate differences: ∞ − ∞ indeterminate powers: 00 , ∞0 , and 1∞ Resolve limits in indeterminate form . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 3 / 34
  • 4. Experiments with funny limits sin2 x lim x→0 x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 5. Experiments with funny limits sin2 x lim =0 x→0 x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 6. Experiments with funny limits sin2 x lim =0 x→0 x x lim x→0 sin2 x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 7. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 8. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x . sin2 x lim x→0 sin(x2 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 9. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x . sin2 x lim =1 x→0 sin(x2 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 10. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x . sin2 x lim =1 x→0 sin(x2 ) sin 3x lim x→0 sin x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 11. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x . sin2 x lim =1 x→0 sin(x2 ) sin 3x lim =3 x→0 sin x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 12. Experiments with funny limits sin2 x lim =0 x→0 x x lim does not exist x→0 sin2 x . sin2 x lim =1 x→0 sin(x2 ) sin 3x lim =3 x→0 sin x 0 All of these are of the form , and since we can get different answers 0 in different cases, we say this form is indeterminate. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 13. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 14. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a difference is the difference of the limits . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 15. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a difference is the difference of the limits Limit of a product is the product of the limits . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 16. Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a difference is the difference of the limits Limit of a product is the product of the limits Limit of a quotient is the quotient of the limits ... whoops! This is true as long as you don’t try to divide by zero. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 17. More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a finite number and denominator approaches zero, the quotient approaches some kind of infinity. For example: 1 cos x lim+ = +∞ lim = −∞ x→0 x x→0 − x3 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
  • 18. More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a finite number and denominator approaches zero, the quotient approaches some kind of infinity. For example: 1 cos x lim+ = +∞ lim = −∞ x→0 x x→0 − x3 An exception would be something like 1 lim = lim x csc x. x→∞ 1 sin x x→∞ x which does not exist and is not infinite. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
  • 19. More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a finite number and denominator approaches zero, the quotient approaches some kind of infinity. For example: 1 cos x lim+ = +∞ lim = −∞ x→0 x x→0 − x3 An exception would be something like 1 lim = lim x csc x. x→∞ 1 sin x x→∞ x which does not exist and is not infinite. Even less predictable: numerator and denominator both go to zero. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
  • 20. Language Note It depends on what the meaning of the word “is" is Be careful with the language here. We are not saying that the limit in each 0 case “is” , and therefore 0 nonexistent because this expression is undefined. 0 The limit is of the form , 0 which means we cannot evaluate it with our limit laws. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 7 / 34
  • 21. Indeterminate forms are like Tug Of War Which side wins depends on which side is stronger. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 8 / 34
  • 22. Outline L’Hôpital’s Rule Relative Rates of Growth Other Indeterminate Limits Indeterminate Products Indeterminate Differences Indeterminate Powers . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 9 / 34
  • 23. The Linear Case Question If f and g are lines and f(a) = g(a) = 0, what is f(x) lim ? x→a g(x) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 10 / 34
  • 24. The Linear Case Question If f and g are lines and f(a) = g(a) = 0, what is f(x) lim ? x→a g(x) Solution The functions f and g can be written in the form f(x) = m1 (x − a) g(x) = m2 (x − a) So f(x) m = 1 g(x) m2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 10 / 34
  • 25. The Linear Case, Illustrated y . y . = g(x) y . = f(x) g . (x) a . f .(x) . . . x . x . f(x) f(x) − f(a) (f(x) − f(a))/(x − a) m = = = 1 g(x) g(x) − g(a) (g(x) − g(a))/(x − a) m2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 11 / 34
  • 26. What then? But what if the functions aren’t linear? . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 27. What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 28. What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? What would be the slope of that linear function? . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 29. What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? What would be the slope of that linear function? The derivative! . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 30. Theorem of the Day Theorem (L’Hopital’s Rule) Suppose f and g are differentiable functions and g′ (x) ̸= 0 near a (except possibly at a). Suppose that lim f(x) = 0 and lim g(x) = 0 x→a x→a or lim f(x) = ±∞ and lim g(x) = ±∞ x→a x→a Then f(x) f′ (x) lim = lim ′ , x→a g(x) x→a g (x) if the limit on the right-hand side is finite, ∞, or −∞. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 13 / 34
  • 31. Meet the Mathematician: L'H_pital wanted to be a military man, but poor eyesight forced him into math did some math on his own (solved the “brachistocrone problem”) paid a stipend to Johann Bernoulli, who proved this theorem and named it after him! Guillaume François Antoine, Marquis de L’Hôpital (French, 1661–1704) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 14 / 34
  • 32. Revisiting the previous examples Example sin2 x lim x→0 x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 33. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim x→0 x x→0 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 34. Revisiting the previous examples Example . in x → 0 s . sin2 x H 2 sin x cos x lim = lim x→0 x x→0 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 35. Revisiting the previous examples Example . in x → 0 s . sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 36. Revisiting the previous examples Example . in x → 0 s . sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x lim x→0 sin x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 37. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 0 n . sin2 x lim x→0 sin x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 38. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 0 n . sin2 x lim . x→0 sin x2 . enominator → 0 d . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 39. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 0 n . sin2 x H sin x cos x 2 lim 2. = lim ( ) x→0 sin x x→0 cos x2 (x) 2 . enominator → 0 d . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 40. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 0 n . sin2 x H sin x cos x 2 lim = lim ( ) x→0 sin x2 x→0 cos x2 (x) 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 41. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 0 n . sin2 x H sin x cos x 2 lim = lim ( ) . x→0 sin x2 x→0 cos x2 (x ) 2 . enominator → 0 d . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 42. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 0 n . sin2 x H sin x cos x H 2 cos2 x − sin2 x lim = lim ( ) . = lim x→0 sin x2 x→0 cos x2 (x ) 2 x→0 cos x2 − 2x2 sin(x2 ) . enominator → 0 d . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 43. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 1 n . sin2 x H sin x cos x H 2 cos2 x − sin2 x lim = lim ( ) = lim x→0 sin x2 x→0 cos x2 (x) 2 x→0 cos x2 − 2x2 sin(x2 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 44. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example . umerator → 1 n . sin2 x H sin x cos x H 2 cos2 x − sin2 x lim = lim ( ) = lim . x→0 sin x2 x→0 cos x2 (x) 2 x→0 cos x2 − 2x2 sin(x2 ) . enominator → 1 d . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 45. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x H sin x cos x H 2 cos2 x − sin2 x lim = lim ( ) = lim =1 x→0 sin x2 x→0 cos x2 (x) 2 x→0 cos x2 − 2x2 sin(x2 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 46. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x H sin x cos x H 2 cos2 x − sin2 x lim = lim ( ) = lim =1 x→0 sin x2 x→0 cos x2 (x) 2 x→0 cos x2 − 2x2 sin(x2 ) Example sin 3x lim x→0 sin x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 47. Revisiting the previous examples Example sin2 x H 2 sin x cos x lim = lim =0 x→0 x x→0 1 Example sin2 x H sin x cos x H 2 cos2 x − sin2 x lim = lim ( ) = lim =1 x→0 sin x2 x→0 cos x2 (x) 2 x→0 cos x2 − 2x2 sin(x2 ) Example sin 3x H 3 cos 3x lim = lim = 3. x→0 sin x x→0 cos x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 48. Another Example Example Find x lim x→0 cos x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 16 / 34
  • 49. Beware of Red Herrings Example Find x lim x→0 cos x Solution The limit of the denominator is 1, not 0, so L’Hôpital’s rule does not apply. The limit is 0. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 16 / 34
  • 50. Outline L’Hôpital’s Rule Relative Rates of Growth Other Indeterminate Limits Indeterminate Products Indeterminate Differences Indeterminate Powers . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 17 / 34
  • 51. Limits of Rational Functions revisited Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 3x2 + 7x + 27 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 52. Limits of Rational Functions revisited Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 lim x→∞ 3x2 + 7x + 27 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 53. Limits of Rational Functions revisited Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 H 10x + 3 lim = lim x→∞ 3x2 + 7x + 27 x→∞ 6x + 7 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 54. Limits of Rational Functions revisited Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 H 10x + 3 H 10 5 lim = lim = lim = x→∞ 3x2 + 7x + 27 x→∞ 6x + 7 x→∞ 6 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 55. Limits of Rational Functions revisited Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 H 10x + 3 H 10 5 lim = lim = lim = x→∞ 3x2 + 7x + 27 x→∞ 6x + 7 x→∞ 6 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 56. Limits of Rational Functions revisited II Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 7x + 27 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 57. Limits of Rational Functions revisited II Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 lim x→∞ 7x + 27 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 58. Limits of Rational Functions revisited II Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 H 10x + 3 lim = lim x→∞ 7x + 27 x→∞ 7 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 59. Limits of Rational Functions revisited II Example 5x2 + 3x − 1 Find lim if it exists. x→∞ 7x + 27 Solution Using L’Hôpital: 5x2 + 3x − 1 H 10x + 3 lim = lim =∞ x→∞ 7x + 27 x→∞ 7 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 60. Limits of Rational Functions revisited III Example 4x + 7 Find lim if it exists. x→∞ 3x2 + 7x + 27 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 61. Limits of Rational Functions revisited III Example 4x + 7 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 4x + 7 lim x→∞ 3x2 + 7x + 27 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 62. Limits of Rational Functions revisited III Example 4x + 7 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 4x + 7 H 4 lim = lim x→∞ 3x2 + 7x + 27 x→∞ 6x + 7 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 63. Limits of Rational Functions revisited III Example 4x + 7 Find lim if it exists. x→∞ 3x2 + 7x + 27 Solution Using L’Hôpital: 4x + 7 H 4 lim = lim =0 x→∞ 3x2 + 7x + 27 x→∞ 6x + 7 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 64. Limits of Rational Functions Fact Let f(x) and g(x) be polynomials of degree p and q. f(x) If p q, then lim =∞ x→∞ g(x) f(x) If p q, then lim =0 x→∞ g(x) f(x) If p = q, then lim is the ratio of the leading coefficients of f x→∞ g(x) and g. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 21 / 34
  • 65. Exponential versus geometric growth Example ex Find lim , if it exists. x→∞ x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 66. Exponential versus geometric growth Example ex Find lim , if it exists. x→∞ x2 Solution We have ex H ex H ex lim = lim = lim = ∞. x→∞ x2 x→∞ 2x x→∞ 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 67. Exponential versus geometric growth Example ex Find lim , if it exists. x→∞ x2 Solution We have ex H ex H ex lim = lim = lim = ∞. x→∞ x2 x→∞ 2x x→∞ 2 Example ex What about lim ? x→∞ x3 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 68. Exponential versus geometric growth Example ex Find lim , if it exists. x→∞ x2 Solution We have ex H ex H ex lim = lim = lim = ∞. x→∞ x2 x→∞ 2x x→∞ 2 Example ex What about lim ? x→∞ x3 Answer Still ∞. (Why?) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 69. Exponential versus fractional powers Example ex Find lim √ , if it exists. x→∞ x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
  • 70. Exponential versus fractional powers Example ex Find lim √ , if it exists. x→∞ x Solution (without L’Hôpital) We have for all x 1, x1/2 x1 , so ex ex x1/2 x The right hand side tends to ∞, so the left-hand side must, too. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
  • 71. Exponential versus fractional powers Example ex Find lim √ , if it exists. x→∞ x Solution (without L’Hôpital) We have for all x 1, x1/2 x1 , so ex ex x1/2 x The right hand side tends to ∞, so the left-hand side must, too. Solution (with L’Hôpital) ex ex √ lim √ = lim 1 = lim 2 xex = ∞ x→∞ x x→∞ 2 x−1/2 x→∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
  • 72. Exponential versus any power Theorem Let r be any positive number. Then ex lim = ∞. x→∞ xr . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 24 / 34
  • 73. Exponential versus any power Theorem Let r be any positive number. Then ex lim = ∞. x→∞ xr Proof. If r is a positive integer, then apply L’Hôpital’s rule r times to the fraction. You get ex H H ex lim = . . . = lim = ∞. x→∞ xr x→∞ r! If r is not an integer, let m be the smallest integer greater than r. Then ex ex if x 1, xr xm , so r m . The right-hand side tends to ∞ by the x x previous step. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 24 / 34
  • 74. Any exponential versus any power Theorem Let a 1 and r 0. Then ax lim = ∞. x→∞ xr . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
  • 75. Any exponential versus any power Theorem Let a 1 and r 0. Then ax lim = ∞. x→∞ xr Proof. If r is a positive integer, we have ax H H (ln a)r ax lim = . . . = lim = ∞. x→∞ xr x→∞ r! If r isn’t an integer, we can compare it as before. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
  • 76. Any exponential versus any power Theorem Let a 1 and r 0. Then ax lim = ∞. x→∞ xr Proof. If r is a positive integer, we have ax H H (ln a)r ax lim = . . . = lim = ∞. x→∞ xr x→∞ r! If r isn’t an integer, we can compare it as before. (1.00000001)x So even lim = ∞! x→∞ x100000000 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
  • 77. Logarithmic versus power growth Theorem Let r be any positive number. Then ln x lim = 0. x→∞ xr . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 26 / 34
  • 78. Logarithmic versus power growth Theorem Let r be any positive number. Then ln x lim = 0. x→∞ xr Proof. One application of L’Hôpital’s Rule here suffices: ln x H 1/x 1 limr = lim r−1 = lim r = 0. x→∞ x x→∞ rx x→∞ rx . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 26 / 34
  • 79. Outline L’Hôpital’s Rule Relative Rates of Growth Other Indeterminate Limits Indeterminate Products Indeterminate Differences Indeterminate Powers . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 27 / 34
  • 80. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 81. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: √ lim x ln x x→0+ . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 82. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: √ ln x lim x ln x = lim+ 1 √ x→0+ x→0 / x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 83. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: √ ln x H x−1 lim x ln x = lim+ 1 √ = lim+ 1 x→0+ x→0 / x x→0 − 2 x−3/2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 84. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: √ ln x H x−1 lim x ln x = lim+ 1 √ = lim+ 1 x→0+ x→0 / x x→0 − 2 x−3/2 √ = lim+ −2 x x→0 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 85. Indeterminate products Example Find √ lim+ x ln x x→0 This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: √ ln x H x−1 lim x ln x = lim+ 1 √ = lim+ 1 x→0+ x→0 / x x→0 − 2 x−3/2 √ = lim+ −2 x = 0 x→0 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 86. Indeterminate differences Example ( ) 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 87. Indeterminate differences Example ( ) 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) lim+ x→0 x sin(2x) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 88. Indeterminate differences Example ( ) 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) H cos(2x) + 2x sin(2x) lim+ = lim+ x→0 x sin(2x) x→0 2x cos(2x) + sin(2x) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 89. Indeterminate differences Example ( ) 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) H cos(2x) + 2x sin(2x) lim+ = lim+ x→0 x sin(2x) x→0 2x cos(2x) + sin(2x) =∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 90. Indeterminate differences Example ( ) 1 lim+ − cot 2x x→0 x This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. sin(2x) − x cos(2x) H cos(2x) + 2x sin(2x) lim+ = lim+ x→0 x sin(2x) x→0 2x cos(2x) + sin(2x) =∞ The limit is +∞ becuase the numerator tends to 1 while the denominator tends to zero but remains positive. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 91. Checking your work . tan 2x lim = 1, so for small x, x→0 2x 1 tan 2x ≈ 2x. So cot 2x ≈ and . 2x 1 1 1 1 − cot 2x ≈ − = →∞ x x 2x 2x as x → 0+ . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 30 / 34
  • 92. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 93. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 Take the logarithm: ( ) ( ) ln(1 − 2x) ln lim+ (1 − 2x) 1/x = lim+ ln (1 − 2x)1/x = lim+ x→0 x→0 x→0 x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 94. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 Take the logarithm: ( ) ( ) ln(1 − 2x) ln lim+ (1 − 2x) 1/x = lim+ ln (1 − 2x)1/x = lim+ x→0 x→0 x→0 x 0 This limit is of the form , so we can use L’Hôpital: 0 −2 ln(1 − 2x) H 1−2x lim+ = lim+ = −2 x→0 x x→0 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 95. Indeterminate powers Example Find lim+ (1 − 2x)1/x x→0 Take the logarithm: ( ) ( ) ln(1 − 2x) ln lim+ (1 − 2x) 1/x = lim+ ln (1 − 2x)1/x = lim+ x→0 x→0 x→0 x 0 This limit is of the form , so we can use L’Hôpital: 0 −2 ln(1 − 2x) H 1−2x lim+ = lim+ = −2 x→0 x x→0 1 This is not the answer, it’s the log of the answer! So the answer we want is e−2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 96. Another indeterminate power limit Example lim (3x)4x x→0 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 32 / 34
  • 97. Another indeterminate power limit Example lim (3x)4x x→0 Solution ln lim+ (3x)4x = lim+ ln(3x)4x = lim+ 4x ln(3x) x→0 x→0 x→0 ln(3x) H 3/3x = lim+ 1 = lim+ −1/4x2 x→0 /4x x→0 = lim+ (−4x) = 0 x→0 So the answer is e0 = 1. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 32 / 34
  • 98. Summary Form Method 0 0 L’Hôpital’s rule directly ∞ ∞ L’Hôpital’s rule directly 0·∞ jiggle to make 0 or ∞ . 0 ∞ ∞−∞ combine to make an indeterminate product or quotient 00 take ln to make an indeterminate product ∞0 ditto 1∞ ditto . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 33 / 34
  • 99. Final Thoughts L’Hôpital’s Rule only works on indeterminate quotients Luckily, most indeterminate limits can be transformed into indeterminate quotients L’Hôpital’s Rule gives wrong answers for non-indeterminate limits! . . . . . . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 34 / 34