SlideShare uma empresa Scribd logo
1 de 82
Baixar para ler offline
Section 3.5
       Inverse Trigonometric
             Functions
                      V63.0121.041, Calculus I

                           New York University


                         November 1, 2010

Announcements

   Midterm grades have been submitted
   Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2
   Thank you for the evaluations
                                                 .   .   .   .    .   .
Announcements




         Midterm grades have been
         submitted
         Quiz 3 this week in
         recitation on Section 2.6,
         2.8, 3.1, 3.2
         Thank you for the
         evaluations




                                                                          .     .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010       2 / 32
Objectives



         Know the definitions,
         domains, ranges, and
         other properties of the
         inverse trignometric
         functions: arcsin, arccos,
         arctan, arcsec, arccsc,
         arccot.
         Know the derivatives of the
         inverse trignometric
         functions.



                                                                          .     .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010       3 / 32
What is an inverse function?



Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1 defined by:
                              f−1 (b) = a,
where a is chosen so that f(a) = b.




                                                                          .     .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010       4 / 32
What is an inverse function?



Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1 defined by:
                              f−1 (b) = a,
where a is chosen so that f(a) = b.

So
                                  f−1 (f(x)) = x,              f(f−1 (x)) = x




                                                                             .     .   .         .      .     .

 V63.0121.041, Calculus I (NYU)      Section 3.5 Inverse Trigonometric Functions           November 1, 2010       4 / 32
What functions are invertible?




In order for f−1 to be a function, there must be only one a in D
corresponding to each b in E.
      Such a function is called one-to-one
      The graph of such a function passes the horizontal line test: any
      horizontal line intersects the graph in exactly one point if at all.
      If f is continuous, then f−1 is continuous.




                                                                          .     .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010       5 / 32
Outline



Inverse Trigonometric Functions


Derivatives of Inverse Trigonometric Functions
   Arcsine
   Arccosine
   Arctangent
   Arcsecant


Applications




                                                                          .     .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010       6 / 32
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .



                                       .             .           .                                       x
                                                                                                         .
                                       π                       π                                  s
                                                                                                  . in
                                     −
                                     .                         .
                                       2                       2




                                                                          .     .   .         .      .       .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010         7 / 32
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .

                                                                 .
                                       .             .           .                                       x
                                                                                                         .
                                       π                       π                                  s
                                                                                                  . in
                                     −
                                     . .                       .
                                       2                       2




                                                                          .     .   .         .      .       .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010         7 / 32
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .
                                                                      y
                                                                      . =x
                                                                 .
                                       .             .           .                                       x
                                                                                                         .
                                       π                       π                                  s
                                                                                                  . in
                                     −
                                     . .                       .
                                       2                       2




                                                                          .     .   .         .      .       .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010         7 / 32
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .
                                                            . . rcsin
                                                              a
                                                                 .
                                       .             .           .                                       x
                                                                                                         .
                                       π                       π                                  s
                                                                                                  . in
                                     −
                                     . .                       .
                                       2                       2
                                             .


      The domain of arcsin is [−1, 1]
                            [ π π]
      The range of arcsin is − ,
                               2 2

                                                                          .     .   .         .      .       .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010         7 / 32
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]


                                                    y
                                                    .


                                                                                                      c
                                                                                                      . os
                                                      .                         .                         x
                                                                                                          .
                                                    0
                                                    .                         .
                                                                              π




                                                                          .         .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 1, 2010       8 / 32
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]


                                                    y
                                                    .

                                                     .
                                                                                                      c
                                                                                                      . os
                                                      .                         .                         x
                                                                                                          .
                                                    0
                                                    .                         .
                                                                              π
                                                                                .




                                                                          .         .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 1, 2010       8 / 32
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]


                                                    y
                                                    .
                                                                      y
                                                                      . =x
                                                     .
                                                                                                      c
                                                                                                      . os
                                                      .                         .                         x
                                                                                                          .
                                                    0
                                                    .                         .
                                                                              π
                                                                                .




                                                                          .         .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 1, 2010       8 / 32
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]
                                             . . rccos
                                               a
                                                    y
                                                    .

                                                     .
                                                                                                      c
                                                                                                      . os
                                                      .     .                   .                         x
                                                                                                          .
                                                    0
                                                    .                         .
                                                                              π
                                                                                .



      The domain of arccos is [−1, 1]
      The range of arccos is [0, π]

                                                                          .         .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 1, 2010       8 / 32
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .




                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                                          t
                                                                                          .an


                                                                          .     .    .         .      .         .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010           9 / 32
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .




                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                                          t
                                                                                          .an


                                                                          .     .    .         .      .         .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010           9 / 32
arctan
                                                       y
                                                       . =x
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .




                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                                          t
                                                                                          .an


                                                                          .     .    .         .      .         .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010           9 / 32
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .

                                                π
                                                .                                                          a
                                                                                                           . rctan
                                                2

                                                     .                                                     x
                                                                                                           .

                                                 π
                                             −
                                             .
                                                 2

      The domain of arctan is (−∞, ∞)
                            ( π π)
      The range of arctan is − ,
                                2 2
                     π                   π
       lim arctan x = , lim arctan x = −
      x→∞            2 x→−∞              2
                                                                          .     .   .         .      .         .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010           9 / 32
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].             y
                                  .




                                                     .                                                  x
                                                                                                        .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                    s
                                                                    . ec


                                                                          .     .    .      .      .        .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        November 1, 2010       10 / 32
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].             y
                                  .



                                                     .
                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                       3π
                 −
                 .                    −
                                      .                         .               .       .
                    2                   2                       2                         2




                                                                    s
                                                                    . ec


                                                                          .         .    .      .      .        .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010       10 / 32
arcsec
Arcsecant is the inverse of secant after restriction to . = x
                                                        y
[0, π/2) ∪ (π, 3π/2].             y
                                  .



                                                     .
                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                       3π
                 −
                 .                    −
                                      .                         .               .       .
                    2                   2                       2                         2




                                                                    s
                                                                    . ec


                                                                          .         .    .      .      .        .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010       10 / 32
arcsec                         3π
                               .
                                 2
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].         . .  y

                                                π
                                                .
                                                2 .

                                                     .       .                                             x
                                                                                                           .
                                                                                .



      The domain of arcsec is (−∞, −1] ∪ [1, ∞)
                            [ π ) (π ]
      The range of arcsec is 0,   ∪    ,π
                                2    2
                      π                  3π
       lim arcsec x = , lim arcsec x =
      x→∞             2 x→−∞              2
                                                                          .         .   .      .      .        .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010       10 / 32
Values of Trigonometric Functions

                                  π                      π                        π                π
       x 0
                                  6                      4                        3                2
                                                         √                        √
                                  1                        2                        3
  sin x 0                                                                                         1
                                  2                       2                        2
                                  √                      √
                                    3                      2                      1
 cos x 1                                                                                          0
                                   2                      2                       2
                                   1                                              √
 tan x 0                          √                      1                          3             undef
                                    3
                                  √                                                1
  cot x undef                       3                    1                        √               0
                                                                                    3
                                  2                      2
 sec x 1                          √                      √                        2               undef
                                   3                      2
                                                         2                         2
 csc x undef                      2                      √                        √               1
                                                          2                         3
                                                                              .         .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions           November 1, 2010   11 / 32
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   12 / 32
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2


Solution
    π
    6




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   12 / 32
What is arctan(−1)?

                                  .


    3
    . π/4
              .




                                  .                                     .




                                                         .
                                                             −
                                                             . π/4

                                                                              .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions       November 1, 2010   13 / 32
What is arctan(−1)?

                                  .

                                                                                        (        )
    3
    . π/4                                                                                   3π
              .                                                         Yes, tan                     = −1
                                                                                             4
                               √
                                2
                  s
                  . in(3π/4) =
                               2
                        .
                        √                                               .
                           2
         . os(3π/4) = −
         c
                          2

                                                         .
                                                             −
                                                             . π/4

                                                                              .     .        .       .      .   .

 V63.0121.041, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions            November 1, 2010   13 / 32
What is arctan(−1)?

                                  .

                                                                                     )  (
    3
    . π/4                                                                         3π
              .                                                         Yes, tan       = −1
                                                                                   4
                               √                                        But, the)
                                                                        ( π π range of arctan is
                                2
                  s
                  . in(3π/4) =                                           − ,
                               2                                           2 2
                        .
                        √                                               .
                           2
         . os(3π/4) = −
         c
                          2

                                                         .
                                                             −
                                                             . π/4

                                                                              .     .       .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions           November 1, 2010   13 / 32
What is arctan(−1)?

                                   .

                                                                                         (
                                                                                         )
    3
    . π/4                                                                             3π
              .                                                          Yes, tan          = −1
                                                                                       4
                                                                         But, the)
                                                                         ( π π range of arctan is
                                              √                            − ,
                                                2                            2 2
                                  c
                                  . os(π/4) =
                                    .          2                         Another angle whose
                                                                         .                     π
                                                                         tangent is −1 is − , and
                                                   √                                           4
                                                     2                   this is in the right range.
                          . in(π/4) = −
                          s
                                                    2
                                                          .
                                                              −
                                                              . π/4

                                                                               .     .       .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 3.5 Inverse Trigonometric Functions           November 1, 2010   13 / 32
What is arctan(−1)?

                                   .

                                                                                         (
                                                                                         )
    3
    . π/4                                                                             3π
              .                                                          Yes, tan          = −1
                                                                                       4
                                                                         But, the)
                                                                         ( π π range of arctan is
                                              √                            − ,
                                                2                            2 2
                                  c
                                  . os(π/4) =
                                    .          2                         Another angle whose
                                                                         .                     π
                                                                         tangent is −1 is − , and
                                                   √                                           4
                                                     2                   this is in the right range.
                          . in(π/4) = −
                          s                                                                     π
                                                    2                    So arctan(−1) = −
                                                                                                4
                                                          .
                                                              −
                                                              . π/4

                                                                               .     .       .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 3.5 Inverse Trigonometric Functions           November 1, 2010   13 / 32
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2


Solution
    π
    6
      π
    −
      4


                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   14 / 32
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2


Solution
    π
    6
      π
    −
      4
    3π
     4
                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   14 / 32
Caution: Notational ambiguity




                    . in2 x =.(sin x)2
                    s                                            . in−1 x = (sin x)−1
                                                                 s




      sinn x means the nth power of sin x, except when n = −1!
      The book uses sin−1 x for the inverse of sin x, and never for
      (sin x)−1 .
                        1
      I use csc x for       and arcsin x for the inverse of sin x.
                      sin x
                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   15 / 32
Outline



Inverse Trigonometric Functions


Derivatives of Inverse Trigonometric Functions
   Arcsine
   Arccosine
   Arctangent
   Arcsecant


Applications




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   16 / 32
The Inverse Function Theorem

Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an
open interval containing b = f(a), and

                                                                1
                                     (f−1 )′ (b) =        ′ −1
                                                         f (f     (b))

In Leibniz notation we have
                                             dx     1
                                                =
                                             dy   dy/dx




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   17 / 32
The Inverse Function Theorem

Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an
open interval containing b = f(a), and

                                                                1
                                     (f−1 )′ (b) =        ′ −1
                                                         f (f     (b))

In Leibniz notation we have
                                             dx     1
                                                =
                                             dy   dy/dx


Upshot: Many times the derivative of f−1 (x) can be found by implicit
differentiation and the derivative of f:
                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   17 / 32
Illustrating the Inverse Function Theorem
.
Example
Use the inverse function theorem to find the derivative of the square root
function.




.                                                                            .     .   .      .      .    .

    V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   18 / 32
Illustrating the Inverse Function Theorem
.
Example
Use the inverse function theorem to find the derivative of the square root
function.

Solution (Newtonian notation)
                               √
Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have

                                                         1
                                           (f−1 )′ (b) = √
                                                        2 b




.                                                                            .     .   .      .      .    .

    V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   18 / 32
Illustrating the Inverse Function Theorem
.
Example
Use the inverse function theorem to find the derivative of the square root
function.

Solution (Newtonian notation)
                               √
Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have

                                                         1
                                           (f−1 )′ (b) = √
                                                        2 b


Solution (Leibniz notation)
If the original function is y = x2 , then the inverse function is defined by x = y2 .
Differentiate implicitly:

                                              dy    dy   1
                                     1 = 2y      =⇒    = √
                                              dx    dx  2 x
.                                                                            .     .   .      .      .    .

    V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   18 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   19 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:




                                                                              .


                                                                          .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions         November 1, 2010   19 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:

                                                                                      1
                                                                                      .
                                                                                                     x
                                                                                                     .



                                                                              .


                                                                          .       .       .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions             November 1, 2010   19 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:

                                                                                       1
                                                                                       .
                                                                                                      x
                                                                                                      .


                                                                                  y
                                                                                  . = arcsin x
                                                                              .


                                                                          .        .       .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions              November 1, 2010   19 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:

                                                                                     1
                                                                                     .
                                                                                                    x
                                                                                                    .


                                                                                y
                                                                                . = arcsin x
                                                                              . √
                                                                                . 1 − x2

                                                                          .      .       .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010   19 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:
                      √
     cos(arcsin x) = 1 − x2                                                          1
                                                                                     .
                                                                                                    x
                                                                                                    .


                                                                                y
                                                                                . = arcsin x
                                                                              . √
                                                                                . 1 − x2

                                                                          .      .       .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010   19 / 32
Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:
                      √
     cos(arcsin x) = 1 − x2                                                          1
                                                                                     .
                                                                                                    x
                                                                                                    .
  So
       d                 1
          arcsin(x) = √                                                         y
                                                                                . = arcsin x
       dx              1 − x2                                                 . √
                                                                                . 1 − x2

                                                                          .      .       .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 1, 2010   19 / 32
Graphing arcsin and its derivative


                                                                                                 1
                                                                                             .√
                                                                                               1 − x2
       The domain of f is [−1, 1],
       but the domain of f′ is                                                               . . rcsin
                                                                                               a
       (−1, 1)
         lim f′ (x) = +∞
       x→1−
          lim f′ (x) = +∞                                                 .
                                                                          |         .        .
                                                                                             |
       x→−1+                                                            −
                                                                        . 1                 1
                                                                                            .


                                                                          .



                                                                          .     .       .        .    .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   20 / 32
Composing with arcsin


Example
Let f(x) = arcsin(x3 + 1). Find f′ (x).




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   21 / 32
Composing with arcsin


Example
Let f(x) = arcsin(x3 + 1). Find f′ (x).

Solution
We have
                   d                          1        d 3
                      arcsin(x3 + 1) = √                  (x + 1)
                   dx                    1 − (x3 + 1)2 dx
                                                 3x2
                                             =√
                                               −x6 − 2x3



                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   21 / 32
Derivation: The derivative of arccos

Let y = arccos x, so x = cos y. Then

                          dy        dy     1              1
              − sin y        = 1 =⇒    =         =
                          dx        dx   − sin y   − sin(arccos x)




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   22 / 32
Derivation: The derivative of arccos

Let y = arccos x, so x = cos y. Then

                          dy        dy     1              1
              − sin y        = 1 =⇒    =         =
                          dx        dx   − sin y   − sin(arccos x)

To simplify, look at a right
triangle:
                      √
     sin(arccos x) = 1 − x2                                                     1
                                                                                .           √
                                                                                            . 1 − x2
So
     d                   1                                                y
                                                                          . = arccos x
        arccos(x) = − √                                               .
     dx                1 − x2                                                   x
                                                                                .

                                                                           .        .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   22 / 32
Graphing arcsin and arccos



         . . rccos
           a


                             . . rcsin
                               a


         .
         |         .         |.
                             .
       −
       . 1                  1
                            .


         .


                                                                           .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions       November 1, 2010   23 / 32
Graphing arcsin and arccos



         . . rccos
           a
                                                 Note
                                                                             (π    )
                                                                 cos θ = sin    −θ
                             . . rcsin
                               a                                              2
                                                                         π
                                                           =⇒ arccos x = − arcsin x
                                                                         2
         .
         |         .         |.
                             .                   So it’s not a surprise that their
       −
       . 1                  1
                            .                    derivatives are opposites.

         .


                                                                           .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions       November 1, 2010   23 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   24 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:




                                                                                .


                                                                          .         .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   24 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:



                                                                                                   x
                                                                                                   .



                                                                                .
                                                                                        1
                                                                                        .

                                                                          .         .   .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   24 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:



                                                                                                   x
                                                                                                   .


                                                                                    y
                                                                                    . = arctan x
                                                                                .
                                                                                        1
                                                                                        .

                                                                          .         .   .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   24 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:


                                                                         √
                                                                         . 1 + x2                  x
                                                                                                   .


                                                                                    y
                                                                                    . = arctan x
                                                                                .
                                                                                        1
                                                                                        .

                                                                          .         .   .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   24 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:

                        1
     cos(arctan x) = √
                      1 + x2                                             √
                                                                         . 1 + x2                  x
                                                                                                   .


                                                                                    y
                                                                                    . = arctan x
                                                                                .
                                                                                        1
                                                                                        .

                                                                          .         .   .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   24 / 32
Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:

                        1
     cos(arctan x) = √
                      1 + x2                                             √
                                                                         . 1 + x2                  x
                                                                                                   .
  So
        d                1                                                          y
                                                                                    . = arctan x
           arctan(x) =                                                          .
        dx             1 + x2
                                                                                        1
                                                                                        .

                                                                          .         .   .      .       .   .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   24 / 32
Graphing arctan and its derivative

                                               y
                                               .
                                                    . /2
                                                    π
                                                                                               a
                                                                                               . rctan
                                                                                                   1
                                                                                               .
                                                                                               1 + x2
                                                .                                              x
                                                                                               .



                                                    −
                                                    . π/2


      The domain of f and f′ are both (−∞, ∞)
      Because of the horizontal asymptotes, lim f′ (x) = 0
                                                                     x→±∞

                                                                          .     .   .      .      .      .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010     25 / 32
Composing with arctan


Example
                           √
Let f(x) = arctan           x. Find f′ (x).




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   26 / 32
Composing with arctan


Example
                           √
Let f(x) = arctan           x. Find f′ (x).

Solution


                  d        √       1     d√    1   1
                     arctan x =    (√ )2   x=    · √
                  dx            1+    x dx    1+x 2 x
                                    1
                              = √       √
                                2 x + 2x x



                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   26 / 32
Derivation: The derivative of arcsec

Try this first.




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))

To simplify, look at a right
triangle:




                                                                      .


                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))

To simplify, look at a right
triangle:




                                                                      .


                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))

To simplify, look at a right
triangle:



                                                                              x
                                                                              .



                                                                      .
                                                                                  1
                                                                                  .

                                                                          .           .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions             November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))

To simplify, look at a right
triangle:



                                                                               x
                                                                               .


                                                                          y
                                                                          . = arcsec x
                                                                      .
                                                                                   1
                                                                                   .

                                                                           .           .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions              November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))

To simplify, look at a right
triangle:
                      √
                        x2 − 1
    tan(arcsec x) =                                                                            √
                          1
                                                                               x
                                                                               .               . x2 − 1


                                                                          y
                                                                          . = arcsec x
                                                                      .
                                                                                   1
                                                                                   .

                                                                           .           .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions              November 1, 2010   27 / 32
Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))

To simplify, look at a right
triangle:
                      √
                        x2 − 1
    tan(arcsec x) =                                                                            √
                          1
                                                                               x
                                                                               .               . x2 − 1
  So
     d                1
        arcsec(x) = √                                                 .
                                                                          y
                                                                          . = arcsec x
     dx            x x2 − 1
                                                                                   1
                                                                                   .

                                                                           .           .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions              November 1, 2010   27 / 32
Another Example


Example
Let f(x) = earcsec 3x . Find f′ (x).




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   28 / 32
Another Example


Example
Let f(x) = earcsec 3x . Find f′ (x).

Solution


                                                             1
                             f′ (x) = earcsec 3x ·        √          ·3
                                                        3x (3x)2 − 1
                                        3earcsec 3x
                                   =     √
                                       3x 9x2 − 1



                                                                           .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions       November 1, 2010   28 / 32
Outline



Inverse Trigonometric Functions


Derivatives of Inverse Trigonometric Functions
   Arcsine
   Arccosine
   Arctangent
   Arcsecant


Applications




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   29 / 32
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?




                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   30 / 32
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?

Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
                                                                          .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 1, 2010   30 / 32
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.




                                                                                            y
                                                                                            .


                                                                                            1
                                                                                            . 30 ft/sec

                                                                                .
                                                                                θ
                                                                        .
                                                                   .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   31 / 32
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
 We have θ = arctan(y/2). Thus

       dθ        1      1 dy
          =           ·
       dt   1 + (y/2)2 2 dt


                                                                                            y
                                                                                            .


                                                                                            1
                                                                                            . 30 ft/sec

                                                                                .
                                                                                θ
                                                                        .
                                                                   .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   31 / 32
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
 We have θ = arctan(y/2). Thus

       dθ        1      1 dy
          =           ·
       dt   1 + (y/2)2 2 dt

 When y = 0 and y′ = −130,
then                                                                                        y
                                                                                            .

 dθ               1 1
            =       · (−130) = −65 rad/sec                                                  1
                                                                                            . 30 ft/sec
 dt   y=0        1+0 2
                                                                                .
                                                                                θ
                                                                        .
                                                                   .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   31 / 32
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
 We have θ = arctan(y/2). Thus

       dθ        1      1 dy
          =           ·
       dt   1 + (y/2)2 2 dt

 When y = 0 and y′ = −130,
then                                                                                        y
                                                                                            .

 dθ               1 1
            =       · (−130) = −65 rad/sec                                                  1
                                                                                            . 30 ft/sec
 dt   y=0        1+0 2

The human eye can only track                                                    .
                                                                                θ
                                                                        .
at 3 rad/sec!                                                      .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.041, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 1, 2010   31 / 32
Summary

             y                   y′

                      1
        arcsin x  √
                    1 − x2
                       1
       arccos x − √                                                     Remarkable that the
                     1 − x2
                                                                        derivatives of these
                      1
       arctan x                                                         transcendental functions
                   1 + x2                                               are algebraic (or even
                       1                                                rational!)
       arccot x  −
                    1 + x2
                      1
       arcsec x   √
                 x x2 − 1
                       1
       arccsc x − √
                  x x2 − 1
                                                                              .     .   .      .      .    .

V63.0121.041, Calculus I (NYU)        Section 3.5 Inverse Trigonometric Functions       November 1, 2010   32 / 32

Mais conteúdo relacionado

Mais procurados

Lesson 13: Exponential and Logarithmic Functions (handout)
Lesson 13: Exponential and Logarithmic Functions (handout)Lesson 13: Exponential and Logarithmic Functions (handout)
Lesson 13: Exponential and Logarithmic Functions (handout)Matthew Leingang
 
Lesson 12: Linear Approximations and Differentials (handout)
Lesson 12: Linear Approximations and Differentials (handout)Lesson 12: Linear Approximations and Differentials (handout)
Lesson 12: Linear Approximations and Differentials (handout)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)Matthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)Matthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
What is Odd about Binary Parseval Frames
What is Odd about Binary Parseval FramesWhat is Odd about Binary Parseval Frames
What is Odd about Binary Parseval FramesMicah Bullock
 
Reading the Lindley-Smith 1973 paper on linear Bayes estimators
Reading the Lindley-Smith 1973 paper on linear Bayes estimatorsReading the Lindley-Smith 1973 paper on linear Bayes estimators
Reading the Lindley-Smith 1973 paper on linear Bayes estimatorsChristian Robert
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Matthew Leingang
 
Variational Principle
Variational PrincipleVariational Principle
Variational PrincipleAmeenSoomro1
 

Mais procurados (18)

Lesson 13: Exponential and Logarithmic Functions (handout)
Lesson 13: Exponential and Logarithmic Functions (handout)Lesson 13: Exponential and Logarithmic Functions (handout)
Lesson 13: Exponential and Logarithmic Functions (handout)
 
Lesson 12: Linear Approximations and Differentials (handout)
Lesson 12: Linear Approximations and Differentials (handout)Lesson 12: Linear Approximations and Differentials (handout)
Lesson 12: Linear Approximations and Differentials (handout)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)
Lesson 13: Exponential and Logarithmic Functions (Section 021 handout)
 
Joint angle variations
Joint angle variationsJoint angle variations
Joint angle variations
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (handout)
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
What is Odd about Binary Parseval Frames
What is Odd about Binary Parseval FramesWhat is Odd about Binary Parseval Frames
What is Odd about Binary Parseval Frames
 
smtlectures.1
smtlectures.1smtlectures.1
smtlectures.1
 
Reading the Lindley-Smith 1973 paper on linear Bayes estimators
Reading the Lindley-Smith 1973 paper on linear Bayes estimatorsReading the Lindley-Smith 1973 paper on linear Bayes estimators
Reading the Lindley-Smith 1973 paper on linear Bayes estimators
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Ic ii-10
Ic ii-10Ic ii-10
Ic ii-10
 
Bp31457463
Bp31457463Bp31457463
Bp31457463
 
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
 
9 th math
9 th math9 th math
9 th math
 
EE8120_Projecte_15
EE8120_Projecte_15EE8120_Projecte_15
EE8120_Projecte_15
 
Variational Principle
Variational PrincipleVariational Principle
Variational Principle
 

Destaque

Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides) Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides) Mel Anthony Pepito
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleMel Anthony Pepito
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMel Anthony Pepito
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Mel Anthony Pepito
 
Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Mel Anthony Pepito
 
Calculus 45S Slides April 30, 2008
Calculus 45S Slides April 30, 2008Calculus 45S Slides April 30, 2008
Calculus 45S Slides April 30, 2008Darren Kuropatwa
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Mel Anthony Pepito
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Mel Anthony Pepito
 
KP Compass & Game Theory
KP Compass & Game TheoryKP Compass & Game Theory
KP Compass & Game TheoryNai Wang
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesMel Anthony Pepito
 
Lesson 4: Calculating Limits (Section 41 slides)
Lesson 4: Calculating Limits (Section 41 slides)Lesson 4: Calculating Limits (Section 41 slides)
Lesson 4: Calculating Limits (Section 41 slides)Mel Anthony Pepito
 
Lesson 22: Optimization II (Section 021 slides)
Lesson 22: Optimization II (Section 021 slides)Lesson 22: Optimization II (Section 021 slides)
Lesson 22: Optimization II (Section 021 slides)Mel Anthony Pepito
 
Lesson 4: Calculating Limits (Section 21 slides)
Lesson 4: Calculating Limits (Section 21 slides)Lesson 4: Calculating Limits (Section 21 slides)
Lesson 4: Calculating Limits (Section 21 slides)Mel Anthony Pepito
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Mel Anthony Pepito
 
Numerical analysis m2 l4slides
Numerical analysis  m2 l4slidesNumerical analysis  m2 l4slides
Numerical analysis m2 l4slidesSHAMJITH KM
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMel Anthony Pepito
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMel Anthony Pepito
 
Methods from Mathematical Data Mining (Supported by Optimization)
Methods from Mathematical Data Mining (Supported by Optimization)Methods from Mathematical Data Mining (Supported by Optimization)
Methods from Mathematical Data Mining (Supported by Optimization)SSA KPI
 
Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)Mel Anthony Pepito
 

Destaque (20)

Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides) Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)
 
Lecture7
Lecture7Lecture7
Lecture7
 
Calculus 45S Slides April 30, 2008
Calculus 45S Slides April 30, 2008Calculus 45S Slides April 30, 2008
Calculus 45S Slides April 30, 2008
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 
KP Compass & Game Theory
KP Compass & Game TheoryKP Compass & Game Theory
KP Compass & Game Theory
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
 
Lesson 4: Calculating Limits (Section 41 slides)
Lesson 4: Calculating Limits (Section 41 slides)Lesson 4: Calculating Limits (Section 41 slides)
Lesson 4: Calculating Limits (Section 41 slides)
 
Lesson 22: Optimization II (Section 021 slides)
Lesson 22: Optimization II (Section 021 slides)Lesson 22: Optimization II (Section 021 slides)
Lesson 22: Optimization II (Section 021 slides)
 
Lesson 4: Calculating Limits (Section 21 slides)
Lesson 4: Calculating Limits (Section 21 slides)Lesson 4: Calculating Limits (Section 21 slides)
Lesson 4: Calculating Limits (Section 21 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Numerical analysis m2 l4slides
Numerical analysis  m2 l4slidesNumerical analysis  m2 l4slides
Numerical analysis m2 l4slides
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Methods from Mathematical Data Mining (Supported by Optimization)
Methods from Mathematical Data Mining (Supported by Optimization)Methods from Mathematical Data Mining (Supported by Optimization)
Methods from Mathematical Data Mining (Supported by Optimization)
 
Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)
 

Semelhante a Lesson 16: Inverse Trigonometric Functions (Section 041 slides)

Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson16 -inverse_trigonometric_functions_041_slides
Lesson16  -inverse_trigonometric_functions_041_slidesLesson16  -inverse_trigonometric_functions_041_slides
Lesson16 -inverse_trigonometric_functions_041_slidesMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMel Anthony Pepito
 
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)Matthew Leingang
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handoutMatthew Leingang
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handoutMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)Mel Anthony Pepito
 
Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Mel Anthony Pepito
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMatthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMel Anthony Pepito
 
Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)Mel Anthony Pepito
 
Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)Matthew Leingang
 
Lesson 23: The Definite Integral (slides)
Lesson 23: The Definite Integral (slides)Lesson 23: The Definite Integral (slides)
Lesson 23: The Definite Integral (slides)Matthew Leingang
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMel Anthony Pepito
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMatthew Leingang
 

Semelhante a Lesson 16: Inverse Trigonometric Functions (Section 041 slides) (20)

Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Lesson16 -inverse_trigonometric_functions_041_slides
Lesson16  -inverse_trigonometric_functions_041_slidesLesson16  -inverse_trigonometric_functions_041_slides
Lesson16 -inverse_trigonometric_functions_041_slides
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handout
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handout
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)
 
Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)Lesson 7: The Derivative (Section 41 slides)
Lesson 7: The Derivative (Section 41 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)
 
Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)Lesson 7: The Derivative (Section 21 slide)
Lesson 7: The Derivative (Section 21 slide)
 
Lesson 23: The Definite Integral (slides)
Lesson 23: The Definite Integral (slides)Lesson 23: The Definite Integral (slides)
Lesson 23: The Definite Integral (slides)
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 

Mais de Mel Anthony Pepito

Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsMel Anthony Pepito
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMel Anthony Pepito
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremMel Anthony Pepito
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesMel Anthony Pepito
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Mel Anthony Pepito
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionMel Anthony Pepito
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Mel Anthony Pepito
 
Lesson 6: Limits Involving ∞ (Section 41 slides)
Lesson 6: Limits Involving ∞ (Section 41 slides)Lesson 6: Limits Involving ∞ (Section 41 slides)
Lesson 6: Limits Involving ∞ (Section 41 slides)Mel Anthony Pepito
 

Mais de Mel Anthony Pepito (17)

Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
Lesson 6: Limits Involving ∞ (Section 41 slides)
Lesson 6: Limits Involving ∞ (Section 41 slides)Lesson 6: Limits Involving ∞ (Section 41 slides)
Lesson 6: Limits Involving ∞ (Section 41 slides)
 

Lesson 16: Inverse Trigonometric Functions (Section 041 slides)

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121.041, Calculus I New York University November 1, 2010 Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations . . . . . .
  • 2. Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 2 / 32
  • 3. Objectives Know the definitions, domains, ranges, and other properties of the inverse trignometric functions: arcsin, arccos, arctan, arcsec, arccsc, arccot. Know the derivatives of the inverse trignometric functions. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 3 / 32
  • 4. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32
  • 5. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32
  • 6. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 5 / 32
  • 7. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 6 / 32
  • 8. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . π π s . in − . . 2 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 9. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . . x . π π s . in − . . . 2 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 10. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . y . =x . . . . x . π π s . in − . . . 2 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 11. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . rcsin a . . . . x . π π s . in − . . . 2 2 . The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 2 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32
  • 12. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . 0 . . π . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 13. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . c . os . . x . 0 . . π . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 14. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . y . =x . c . os . . x . 0 . . π . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 15. arccos Arccos is the inverse of the cosine function after restriction to [0, π] . . rccos a y . . c . os . . . x . 0 . . π . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32
  • 16. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 17. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 18. arctan y . =x Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 19. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 2 2 π π lim arctan x = , lim arctan x = − x→∞ 2 x→−∞ 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32
  • 20. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 s . ec . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 21. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 22. arcsec Arcsecant is the inverse of secant after restriction to . = x y [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 23. arcsec 3π . 2 Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . . y π . 2 . . . x . . The domain of arcsec is (−∞, −1] ∪ [1, ∞) [ π ) (π ] The range of arcsec is 0, ∪ ,π 2 2 π 3π lim arcsec x = , lim arcsec x = x→∞ 2 x→−∞ 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32
  • 24. Values of Trigonometric Functions π π π π x 0 6 4 3 2 √ √ 1 2 3 sin x 0 1 2 2 2 √ √ 3 2 1 cos x 1 0 2 2 2 1 √ tan x 0 √ 1 3 undef 3 √ 1 cot x undef 3 1 √ 0 3 2 2 sec x 1 √ √ 2 undef 3 2 2 2 csc x undef 2 √ √ 1 2 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 11 / 32
  • 25. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32
  • 26. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32
  • 27. What is arctan(−1)? . 3 . π/4 . . . . − . π/4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 28. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 √ 2 s . in(3π/4) = 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 29. What is arctan(−1)? . ) ( 3 . π/4 3π . Yes, tan = −1 4 √ But, the) ( π π range of arctan is 2 s . in(3π/4) = − , 2 2 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 30. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the) ( π π range of arctan is √ − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s 2 . − . π/4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 31. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the) ( π π range of arctan is √ − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s π 2 So arctan(−1) = − 4 . − . π/4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32
  • 32. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32
  • 33. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 3π 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32
  • 34. Caution: Notational ambiguity . in2 x =.(sin x)2 s . in−1 x = (sin x)−1 s sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . 1 I use csc x for and arcsin x for the inverse of sin x. sin x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 15 / 32
  • 35. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 16 / 32
  • 36. The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) In Leibniz notation we have dx 1 = dy dy/dx . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32
  • 37. The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) In Leibniz notation we have dx 1 = dy dy/dx Upshot: Many times the derivative of f−1 (x) can be found by implicit differentiation and the derivative of f: . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32
  • 38. Illustrating the Inverse Function Theorem . Example Use the inverse function theorem to find the derivative of the square root function. . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
  • 39. Illustrating the Inverse Function Theorem . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) √ Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have 1 (f−1 )′ (b) = √ 2 b . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
  • 40. Illustrating the Inverse Function Theorem . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) √ Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have 1 (f−1 )′ (b) = √ 2 b Solution (Leibniz notation) If the original function is y = x2 , then the inverse function is defined by x = y2 . Differentiate implicitly: dy dy 1 1 = 2y =⇒ = √ dx dx 2 x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32
  • 41. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 42. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 43. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 44. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 45. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 46. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 47. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 arcsin(x) = √ y . = arcsin x dx 1 − x2 . √ . 1 − x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32
  • 48. Graphing arcsin and its derivative 1 .√ 1 − x2 The domain of f is [−1, 1], but the domain of f′ is . . rcsin a (−1, 1) lim f′ (x) = +∞ x→1− lim f′ (x) = +∞ . | . . | x→−1+ − . 1 1 . . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 20 / 32
  • 49. Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32
  • 50. Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). Solution We have d 1 d 3 arcsin(x3 + 1) = √ (x + 1) dx 1 − (x3 + 1)2 dx 3x2 =√ −x6 − 2x3 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32
  • 51. Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32
  • 52. Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 1 . √ . 1 − x2 So d 1 y . = arccos x arccos(x) = − √ . dx 1 − x2 x . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32
  • 53. Graphing arcsin and arccos . . rccos a . . rcsin a . | . |. . − . 1 1 . . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32
  • 54. Graphing arcsin and arccos . . rccos a Note (π ) cos θ = sin −θ . . rcsin a 2 π =⇒ arccos x = − arcsin x 2 . | . |. . So it’s not a surprise that their − . 1 1 . derivatives are opposites. . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32
  • 55. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 56. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 57. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 58. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . y . = arctan x . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 59. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: √ . 1 + x2 x . y . = arctan x . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 60. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . y . = arctan x . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 61. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . So d 1 y . = arctan x arctan(x) = . dx 1 + x2 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32
  • 62. Graphing arctan and its derivative y . . /2 π a . rctan 1 . 1 + x2 . x . − . π/2 The domain of f and f′ are both (−∞, ∞) Because of the horizontal asymptotes, lim f′ (x) = 0 x→±∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 25 / 32
  • 63. Composing with arctan Example √ Let f(x) = arctan x. Find f′ (x). . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32
  • 64. Composing with arctan Example √ Let f(x) = arctan x. Find f′ (x). Solution d √ 1 d√ 1 1 arctan x = (√ )2 x= · √ dx 1+ x dx 1+x 2 x 1 = √ √ 2 x + 2x x . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32
  • 65. Derivation: The derivative of arcsec Try this first. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 66. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 67. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 68. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 69. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 70. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . y . = arcsec x . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 71. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 y . = arcsec x . 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 72. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 So d 1 arcsec(x) = √ . y . = arcsec x dx x x2 − 1 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32
  • 73. Another Example Example Let f(x) = earcsec 3x . Find f′ (x). . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32
  • 74. Another Example Example Let f(x) = earcsec 3x . Find f′ (x). Solution 1 f′ (x) = earcsec 3x · √ ·3 3x (3x)2 − 1 3earcsec 3x = √ 3x 9x2 − 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32
  • 75. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 29 / 32
  • 76. Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32
  • 77. Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32
  • 78. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 79. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · dt 1 + (y/2)2 2 dt y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 80. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · dt 1 + (y/2)2 2 dt When y = 0 and y′ = −130, then y . dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y=0 1+0 2 . θ . . 2 . ft . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 81. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · dt 1 + (y/2)2 2 dt When y = 0 and y′ = −130, then y . dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y=0 1+0 2 The human eye can only track . θ . at 3 rad/sec! . 2 . ft . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32
  • 82. Summary y y′ 1 arcsin x √ 1 − x2 1 arccos x − √ Remarkable that the 1 − x2 derivatives of these 1 arctan x transcendental functions 1 + x2 are algebraic (or even 1 rational!) arccot x − 1 + x2 1 arcsec x √ x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 32 / 32