SlideShare uma empresa Scribd logo
1 de 14
Baixar para ler offline
1
	
  
	
  
Therapeutic	
  intervention	
  for	
  
age	
  related	
  macular	
  
degeneration	
  
	
  
	
  
	
  
Nicholas	
  G.	
  P.	
  Harper	
  
	
  
	
  
	
  
MDEMO	
  	
  
29/03/2010	
  –	
  02/06/2010	
  
	
  
Word	
  count:	
  1995	
  
	
  
	
  
	
  
Candidate	
  No.	
  21019	
  
	
  
Tutor:	
  Mr	
  Kesavan	
  Ramanujam	
  
	
  
	
  
	
  
	
  
“This	
  project	
  is	
  all	
  my	
  own	
  work	
  unless	
  otherwise	
  stated.	
  All	
  text,	
  figures,	
  tables,	
  data	
  or	
  
results	
  which	
  are	
  not	
  my	
  own	
  work	
  are	
  indicated	
  and	
  the	
  sources	
  acknowledged.”	
  
	
  
2
Therapeutic	
  intervention	
  for	
  age	
  related	
  macular	
  
degeneration	
  
	
  
	
  
Introduction	
  
	
  
Age	
  related	
  macular	
  degeneration	
  was	
  first	
  described	
  in	
  1874	
  as	
  a	
  “symmetrical	
  
central	
  choroido-­‐retinal	
  disease	
  occurring	
  in	
  senile	
  persons”13
.	
  Today,	
  it	
  is	
  widely	
  
recognised	
  as	
  one	
  of	
  the	
  leading	
  causes	
  of	
  blindness	
  in	
  the	
  developed	
  world19
.	
  AMD	
  
mainly	
  affects	
  the	
  elderly,	
  with	
  a	
  prevalence	
  of	
  15%	
  for	
  those	
  80	
  years	
  or	
  older8
.	
  This	
  
figure	
  is	
  projected	
  to	
  increase	
  by	
  50%	
  over	
  the	
  next	
  10	
  years,	
  in	
  line	
  with	
  the	
  aging	
  
population21
.	
  
	
  
The macula is the area of the retina that contains the highest density of
photoreceptors. It is this area that is responsible for high-resolution vision, enabling
us to see fine detail crucial for reading and recognising face	
  
	
  
Clinical	
  features	
  
	
  
Progressive	
  loss	
  of	
  central	
  vision	
  
• Decrease	
  in	
  visual	
  acuity	
  
• Blurring	
  
• Central	
  scotomas	
  
• Decreased	
  contrast	
  sensitivity	
  
• Decreased	
  colour	
  discrimination	
  
	
  
Sparing	
  of	
  peripheral	
  vision	
  -­‐	
  The	
  area	
  of	
  the	
  retina	
  surrounding	
  the	
  
macula	
  is	
  responsible	
  for	
  peripheral	
  vision	
  important	
  for	
  navigation.	
  As	
  this	
  is	
  largely	
  
spared	
  in	
  AMD,	
  patients	
  are	
  usually	
  able	
  to	
  maintain	
  independent	
  lifestyles.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fig 1. A representation of the
vision experienced by patients
with AMD. (From 31)
3
Pathogenesis	
  
	
  
Age	
  related	
  changes	
  to	
  the	
  macula	
  can	
  be	
  viewed	
  as	
  a	
  progression.	
  Until	
  there	
  is	
  
visual	
  impairment,	
  they	
  are	
  classified	
  as	
  an	
  age	
  related	
  maculopathy.	
  Past	
  this	
  point,	
  
they	
  are	
  referred	
  to	
  as	
  age	
  related	
  macular	
  degeneration.	
  It	
  is	
  important	
  to	
  note	
  that	
  
this	
  is	
  a	
  distinction	
  based	
  purely	
  on	
  function	
  rather	
  than	
  pathogenesis.	
  	
  
	
  
	
  
Drusen	
  
The	
  principal	
  feature	
  of	
  AMD	
  is	
  the	
  deposition	
  of	
  
drusen	
  between	
  the	
  retinal	
  pigment	
  epithelium	
  and	
  
Bruch’s	
  membrane.	
  The	
  word	
  Druse	
  is	
  derived	
  from	
  the	
  
German,	
  meaning	
  Geode	
  (a	
  crystal	
  lined	
  rock).	
  They	
  are	
  
visible	
  on	
  opthalmoscopy	
  when	
  ≥25um	
  and	
  appear	
  as	
  
yellow/white	
  dots	
  within	
  the	
  macula.	
  
	
  
	
  
	
  
	
  
Geographic	
  atrophy	
  (GA)	
  
	
  
• Atrophy	
  of	
  the	
  retinal	
  pigment	
  epithelium	
  
• Causes	
  visual	
  loss	
  in	
  affected	
  areas	
  
	
  
	
  
	
  
	
  
	
  
	
  
Choroidal	
  neovascularisation	
  (CNV)	
  
	
  
• New	
  vessel	
  growth	
  within	
  the	
  choroid.	
  This	
  
can	
  lead	
  to	
  many	
  complications	
  including:	
  
subretinal	
  fluid,	
  hemorrhage,	
  retinal	
  
detachment	
  and	
  fibrotic	
  scars.	
  	
  
• Present	
  in	
  10%	
  of	
  patients	
  with	
  AMD	
  
• Referred	
  to	
  as	
  “wet”	
  AMD	
  
	
  
	
  
Fig 4. A.) Fundus photograph. B.)
fluorescein	
  angiogram	
  showing	
  
vascular	
  leakage.	
  (From	
  30)
Fig 2. From 34
Fig 3. From 33
A
B
4
Treatment	
  
	
  
	
  
Aetiology	
  
The	
  main	
  risk	
  factor	
  for	
  AMD	
  is	
  age35
.	
  Studies	
  have	
  however	
  consistently	
  found	
  
associations	
  between	
  AMD	
  and	
  smoking.	
  Zanke	
  et	
  al	
  (2010)	
  reports	
  that	
  current	
  
smokers	
  are	
  3.14	
  times	
  more	
  likely	
  to	
  develop	
  geographic	
  atrophy	
  or	
  choroidal	
  
neovascularisation	
  compared	
  to	
  non-­‐smokers35
.	
  	
  
	
  
On	
  the	
  grounds	
  of	
  this	
  research,	
  all	
  patients	
  with	
  AMD	
  should	
  be	
  advised	
  to	
  stop	
  
smoking.	
  Research	
  has	
  also	
  pointed	
  to	
  obesity,	
  hypertension,	
  high	
  fat	
  intake	
  and	
  low	
  
dietary	
  antioxidant	
  intake	
  as	
  further	
  modifiable	
  risk	
  factors	
  for	
  AMD14
.	
  
	
  
Treating	
  -­‐	
  CNV	
  
Although	
  only	
  present	
  in	
  about	
  10%	
  of	
  people	
  with	
  AMD,	
  choroidal	
  
neovascularisation	
  accounts	
  for	
  80%	
  of	
  all	
  severe	
  visual	
  loss	
  caused	
  by	
  AMD7
.	
  Due	
  to	
  
this	
  huge	
  impact	
  on	
  vision	
  and	
  the	
  fact	
  that	
  pathological	
  angiogenesis	
  occurs	
  in	
  
many	
  disease	
  processes,	
  this	
  is	
  the	
  area	
  of	
  AMD	
  research	
  that	
  has	
  seen	
  the	
  most	
  
progress.	
  The	
  following	
  are	
  some	
  of	
  the	
  methods	
  developed	
  for	
  halting	
  this	
  process.	
  
	
  
Vitreoretinal	
  surgery	
  
	
  
Surgical	
  methods	
  for	
  removing	
  CNV	
  have	
  been	
  described	
  since	
  the	
  1980s11
.	
  To	
  
investigate	
  their	
  effectiveness,	
  the	
  Submacular	
  Surgery	
  Trials	
  (SST)	
  carried	
  out	
  3	
  
RCTs	
  between	
  1997	
  and	
  2003.	
  Unfortunately,	
  results	
  showed	
  that	
  after	
  24	
  months,	
  
there	
  was	
  no	
  difference	
  in	
  visual	
  acuity	
  between	
  surgical	
  treatment	
  and	
  
observation11
.	
  
	
  
For	
  subfoveal	
  neovascular	
  AMD,	
  a	
  method	
  has	
  since	
  been	
  developed	
  where	
  instead	
  
of	
  removing	
  the	
  vessels	
  themselves,	
  the	
  fovea	
  is	
  moved	
  to	
  an	
  area	
  free	
  from	
  CNV.	
  
This	
  macular	
  translocation	
  has	
  shown	
  positive	
  results	
  in	
  a	
  small	
  study	
  in	
  which	
  50%	
  
of	
  treated	
  patients	
  experienced	
  a	
  1	
  line	
  improvement	
  in	
  visual	
  acuity	
  at	
  12	
  months	
  
26
.	
  Due	
  to	
  the	
  invasive	
  nature	
  and	
  only	
  mild	
  improvements	
  gained	
  from	
  this	
  
procedure,	
  it	
  is	
  not	
  considered	
  routine	
  treatment.	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
5
Laser	
  Photocoagulation	
  	
  
This	
  was	
  the	
  first	
  laser-­‐based	
  treatment	
  used	
  for	
  neovascular	
  AMD.	
  The	
  aim	
  was	
  to	
  
use	
  a	
  laser	
  to	
  coagulate	
  the	
  newly	
  formed	
  choroidal	
  vessels.	
  
	
  
The	
  Macular	
  Photocoagulation	
  Study	
  Group	
  
carried	
  out	
  a	
  number	
  of	
  clinical	
  trials	
  between	
  
1979	
  and	
  199417
.	
  They	
  showed	
  that	
  
compared	
  to	
  patients	
  treated	
  with	
  laser	
  
photocoagulation,	
  untreated	
  patients	
  had	
  a	
  
1.2-­‐1.5	
  relative	
  risk	
  of	
  significant	
  visual	
  
deterioration.	
  (Results	
  summarised	
  in	
  fig	
  6).	
  
There	
  are	
  however	
  serious	
  limitations	
  to	
  this	
  
treatment:	
  
	
  
	
  
	
  
1. The	
  laser	
  creates	
  a	
  burn	
  that	
  destroys	
  vision	
  in	
  that	
  area	
  of	
  the	
  retina.	
  As	
  
such,	
  this	
  treatment	
  is	
  only	
  appropriate	
  when	
  the	
  neovascularisation	
  is	
  
outside	
  the	
  central	
  area	
  of	
  the	
  macula.	
  Only	
  10-­‐15%	
  of	
  patients	
  with	
  CNV	
  
were	
  suitable	
  for	
  this	
  treatment17
.	
  
2. Inadvertent	
  coagulation	
  of	
  the	
  fovea	
  (rare)	
  
3. Subretinal	
  Haemorrhage 	
  
4. At	
  2	
  years,	
  >50%	
  of	
  the	
  patients	
  had	
  a	
  recurrence	
  of	
  neovascularisation17
.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fig 6. Relative risk of visual loss in
photocoagulation treated vs observed
patients for A.) All patients with
extrafoveal lesion, B.) New subfoveal
lesions C.) Recurrent subfoveal
lesions. (From 28)
Fig 5. Retinal scars produced by
photocoagulation. (From 32)
A C
B
6
Laser	
  Photodynamic	
  therapy	
  
Laser	
  photocoagulation	
  causes	
  irreversible,	
  non-­‐specific	
  thermal	
  damage.	
  In	
  the	
  aim	
  
of	
  minimising	
  this	
  retinal	
  damage,	
  the	
  method	
  of	
  laser	
  photodynamic	
  therapy	
  (PDT)	
  
was	
  developed	
  in	
  the	
  late	
  1990s:	
  
	
  
A	
  light	
  sensitive	
  dye,	
  which	
  concentrates	
  in	
  newly	
  formed	
  vessels,	
  is	
  injected	
  into	
  the	
  
patient.	
  when	
  excited	
  by	
  laser	
  light	
  of	
  a	
  specific	
  wavelength,	
  the	
  dye	
  undergoes	
  a	
  
reaction,	
  causing	
  selective	
  chemical	
  destruction	
  of	
  those	
  vessels.	
  	
  
	
  
The	
  groundbreaking	
  “treatment	
  of	
  age	
  related	
  macular	
  degeneration	
  with	
  
photodynamic	
  therapy”	
  (TAP)	
  study	
  used	
  a	
  verteporfin	
  (Visudyne)	
  as	
  their	
  light	
  
sensitive	
  dye24
.	
  Results	
  showed	
  that	
  photodynamic	
  treatment	
  lead	
  to	
  a	
  significant	
  
improvement	
  in	
  visual	
  acuity,	
  contrast	
  sensitivity	
  and	
  retinal	
  appearance	
  under	
  
fluorescein	
  angiography	
  compared	
  to	
  placebo	
  treated	
  patients	
  at	
  1	
  and	
  2	
  years	
  
follow	
  up24
.	
  Side	
  effects	
  included	
  transient	
  visual	
  disturbances	
  (18%),	
  an	
  adverse	
  
reaction	
  at	
  the	
  injection	
  site	
  (13%)	
  and	
  transient	
  photosensitivity	
  (3%)24
.	
  This	
  TAP	
  
study	
  lead	
  to	
  the	
  FDA’s	
  approval	
  of	
  verteporfin	
  photodynamic	
  therapy	
  in	
  2000.	
  	
  
	
  
The	
  main	
  drawback	
  of	
  photodynamic	
  therapy	
  is	
  that	
  for	
  macular	
  lesions	
  in	
  which	
  
CNV	
  accounted	
  for	
  <50%	
  of	
  the	
  total,	
  PDT	
  showed	
  no	
  significant	
  benefit	
  in	
  any	
  of	
  the	
  
measured	
  outcome	
  variables24
.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fig	
  7.	
  A	
  typical	
  patient	
  from	
  the	
  TAP	
  study	
  -­‐	
  Fundus	
  photographs	
  and	
  late-­‐phase	
  fluorescein	
  
angiograms	
  taken	
  at	
  baseline	
  (A,B),	
  3	
  months	
  (C&D)	
  and	
  12	
  months	
  (E,F),	
  during	
  the	
  12	
  month	
  
course	
  of	
  verteporfin	
  PDT	
  therapy.	
  Therapy	
  was	
  applied	
  every	
  3	
  months.	
  Images	
  clearly	
  show	
  an	
  
improvement	
  in	
  fundus	
  appearance,	
  with	
  no	
  deterioration	
  in	
  vascular	
  leakage.	
  (From	
  24)	
  
7
Anti	
  VEGF	
  
	
  
Vascular	
  Endothelial	
  Growth	
  Factor	
  A	
  (VEGF-­‐A)	
  is	
  a	
  key	
  regulatory	
  cytokine	
  in	
  the	
  
process	
  of	
  angiogenesis.	
  As	
  well	
  as	
  being	
  researched	
  extensively	
  in	
  the	
  fields	
  of	
  
oncology	
  and	
  cardiology,	
  it	
  has	
  been	
  shown	
  to	
  have	
  a	
  central	
  role	
  in	
  neovascular	
  
ocular	
  diseases20
.	
  
	
  
Pegaptanib	
  
The	
  first	
  anti-­‐VEGF	
  agent	
  shown	
  to	
  be	
  effective	
  in	
  AMD	
  was	
  pegaptanib	
  (Macugen),	
  
a	
  ribonucleic	
  acid	
  aptamer	
  that	
  prevents	
  VEGF	
  from	
  binding	
  to	
  its	
  receptor.	
  	
  
	
  
The	
  “VEGF	
  Inhibition	
  Study	
  in	
  Ocular	
  Neovascularization	
  Clinical	
  Trial	
  Group”	
  found	
  
pegaptanib	
  to	
  be	
  effective	
  in	
  70%	
  of	
  patients,	
  with	
  the	
  risk	
  of	
  severe	
  loss	
  in	
  visual	
  
acuity	
  12%	
  lower	
  in	
  pegaptanib	
  treated	
  patients	
  compared	
  to	
  controls10
.	
  They	
  also	
  
observed	
  a	
  43%	
  increase	
  in	
  the	
  number	
  of	
  patients	
  who	
  had	
  maintained	
  or	
  gained	
  
visual	
  acuity	
  after	
  the	
  1	
  year	
  duration	
  of	
  the	
  study10
.	
  Unlike	
  photodynamic	
  therapy,	
  
this	
  treatment	
  was	
  found	
  to	
  be	
  effective	
  in	
  neovascular	
  AMD	
  independently	
  of	
  
precise	
  lesion	
  composition.	
  On	
  the	
  basis	
  of	
  these	
  results	
  pegaptanib	
  became	
  the	
  first	
  
FDA	
  licensed	
  anti-­‐angiogenic	
  therapy	
  for	
  AMD	
  in	
  2004.	
  
	
  
Bevacizumab	
  
VEGF	
  can	
  also	
  be	
  silenced	
  effectively	
  using	
  monoclonal	
  antibodies.	
  Genentech	
  had	
  
indeed	
  already	
  developed	
  bevacizumab	
  (Avastin),	
  an	
  anti	
  VEGF	
  antibody	
  for	
  the	
  
treatment	
  of	
  colon	
  cancer.	
  Although	
  still	
  only	
  indicated	
  for	
  colon	
  cancer,	
  several	
  
small-­‐uncontrolled	
  pilot	
  studies	
  have	
  reported	
  improved	
  visual	
  outcome	
  and	
  
decreased	
  macular	
  oedema	
  when	
  used	
  for	
  AMD2,	
  22,	
  25
.	
  On	
  the	
  grounds	
  of	
  these	
  
results	
  and	
  its	
  low	
  cost,	
  bevacizumab	
  is	
  being	
  increasingly	
  used	
  off	
  label	
  for	
  the	
  
treatment	
  of	
  neovascular	
  AMD.	
  Due	
  to	
  a	
  lack	
  of	
  large	
  trials,	
  it	
  is	
  still	
  however	
  unclear	
  
as	
  to	
  its	
  safety	
  and	
  the	
  most	
  effective	
  method	
  and	
  timing	
  of	
  administration.	
  	
  
	
  
Ranibizumab	
  
In	
  trying	
  to	
  develop	
  the	
  most	
  effective	
  monoclonal	
  antibody	
  treatment	
  for	
  AMD,	
  
Genentech	
  developed	
  ranibizumab	
  (Lucentis).	
  Essentially	
  the	
  antigen-­‐binding	
  
fragment	
  of	
  bevacizumab,	
  engineered	
  to	
  have	
  an	
  even	
  higher	
  affinity	
  for	
  VEGF.	
  The	
  
first	
  RCT	
  to	
  assess	
  the	
  effectiveness	
  of	
  this	
  treatment	
  was	
  the	
  “Minimally	
  
Classic/Occult	
  Trial	
  of	
  the	
  Anti-­‐VEGF	
  Antibody	
  ranibizumab	
  in	
  the	
  Treatment	
  of	
  
Neovascular	
  Age-­‐	
  Related	
  Macular	
  Degeneration	
  (MARINA)”.	
  Results	
  showed	
  that	
  
after	
  24	
  months,	
  on	
  average,	
  ranibizumab	
  treated	
  patients	
  gained	
  6.5	
  letters	
  of	
  
visual	
  acuity,	
  whereas	
  sham	
  injected	
  patients	
  lost	
  10.4	
  letters23
.	
  Endopthalmitis	
  was	
  
observed	
  in	
  1%	
  of	
  treated	
  patients	
  and	
  uveitis	
  in	
  1.3%.	
  
	
  
	
  
	
  
	
  
	
  
8
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  “Anti	
  –VEGF	
  Antibody	
  for	
  the	
  Treatment	
  of	
  Predominantly	
  Classic	
  Choroidal	
  
Neovascularization	
  in	
  Age	
  –	
  related	
  Macular	
  Degeneration	
  (ANCHOR)	
  study	
  went	
  on	
  
to	
  compare	
  the	
  effectiveness	
  of	
  ranibizumab	
  against	
  verteporfin	
  PDT4
.	
  Results	
  
showed	
  that	
  fewer	
  Ranibizumab	
  patients	
  experienced	
  15	
  letters	
  visual	
  loss	
  (RR	
  0.13,	
  
NNT	
  3.33)	
  and	
  more	
  patients	
  experienced	
  visual	
  gain	
  (RR	
  6.79)4
.	
  
	
  
The	
  2008	
  Cochrane	
  review	
  comparing	
  pegaptanib,	
  ranibizumab	
  and	
  verteporfin	
  PDT	
  
concluded	
  that	
  whilst	
  all	
  three	
  significantly	
  decrease	
  visual	
  loss,	
  ranibizumab	
  is	
  most	
  
likely	
  to	
  actually	
  cause	
  an	
  improvement	
  in	
  visual	
  acuity27
.	
  
	
  
Cost	
  effectiveness	
  
	
  
As	
  can	
  be	
  seen	
  from	
  Table	
  1,	
  there	
  is	
  a	
  large	
  discrepancy	
  in	
  price	
  for	
  these	
  
treatments.	
  NICE	
  analysis	
  of	
  the	
  incremental	
  cost	
  effectiveness	
  ratio	
  (ICER)	
  per	
  
quality	
  adjusted	
  life	
  year	
  (QALY)	
  found	
  Ranibizumab	
  to	
  be	
  more	
  cost	
  effective	
  than	
  
pergaptanib18
.	
  As	
  a	
  result,	
  NICE	
  have	
  decided	
  not	
  to	
  recommend	
  the	
  use	
  of	
  
Pegaptanib	
  for	
  neovascular	
  AMD18
.	
  Note	
  that	
  Bevacizumab	
  could	
  not	
  be	
  included	
  in	
  
this	
  analysis	
  due	
  to	
  not	
  being	
  licensed	
  for	
  AMD	
  and	
  therefore	
  a	
  lack	
  of	
  data.	
  
	
  
	
  
Therapeutic	
   Cost	
  
Bevacizumab	
   £1.21	
  (a)	
  
Pegaptanib	
   £514.00	
  
Ranibizumab	
   £761.20	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Table 1. net prices of the anti-angiogenic drugs3
. (a) Based on using the same dose
(500ug) as for ranibizumab.
Month
Fig 8. Mean changes in visual acuity against time for ranibizumab (0.5mg &
0.3mg) and sham injection. (From 23)
9
Future	
  anti-­‐angiogenic	
  therapies	
  
	
  
	
  
Fusion	
  proteins	
  
These	
  proteins	
  are	
  formed	
  by	
  replacing	
  the	
  stop	
  codon	
  at	
  the	
  end	
  of	
  one	
  gene	
  with	
  
the	
  DNA	
  from	
  another.	
  The	
  resultant	
  hybrid	
  gene	
  is	
  inserted	
  into	
  bacteria	
  and	
  the	
  
protein	
  product	
  collected.	
  This	
  technique	
  has	
  been	
  used	
  to	
  combine	
  the	
  binding	
  
domains	
  of	
  several	
  VEGF	
  receptors	
  with	
  human	
  Immunuloglobulin	
  G	
  to	
  produce	
  a	
  
protein	
  that	
  will	
  tightly	
  bind	
  and	
  effectively	
  inactivate	
  VEGF12
.	
  This	
  therapeutic,	
  aptly	
  
named	
  VEGF	
  Trap	
  produced	
  promising	
  results	
  in	
  phase	
  II	
  clinical	
  trials	
  (Fig	
  9.)	
  with	
  no	
  
reported	
  adverse	
  effects6
.	
  Phase	
  III	
  Clinical	
  trials	
  comparing	
  VEGF	
  Trap	
  to	
  
Ranibizumab	
  were	
  initiated	
  in	
  2007	
  and	
  are	
  due	
  to	
  be	
  completed	
  in	
  December	
  
201129
.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Anti	
  VEGF	
  therapeutics	
  also	
  under	
  research	
  include,	
  Angiostatic	
  cortisenes,	
  RNA	
  
interference	
  agents,	
  Aminosterols	
  and	
  further	
  anti	
  VEGF	
  antibodies.	
  
	
  
	
  
Treatments	
  –	
  Drusen	
  
Drusen	
  only	
  cause	
  visual	
  loss	
  If	
  they	
  are	
  larger	
  than	
  125um	
  or	
  are	
  present	
  in	
  
extremely	
  large	
  numbers21
.	
  With	
  this	
  said,	
  they	
  are	
  present	
  to	
  some	
  degree	
  in	
  
almost	
  all	
  patients	
  with	
  AMD	
  and	
  may	
  represent	
  an	
  early	
  part	
  of	
  a	
  more	
  complex	
  
pathogenic	
  pathway	
  leading	
  to	
  GA	
  and	
  CNV.	
  	
  
Fig 9. Results from Phase II
Clinical trial comparing
VEGF Trap against laser
photocoagulation for
neovascular AMD (ref).
Graphs to show A.) Mean
change in visual acuity (Gain
in ETDRS letters) against
time in study. B.) Mean
change in central retinal
thickness against time in
study. (From 6)
10
Complement	
  
Drusen	
  contain	
  many	
  complement	
  and	
  complement	
  related	
  proteins,	
  research	
  has	
  
therefore	
  targeted	
  this	
  pathway	
  to	
  try	
  and	
  determine	
  a	
  method	
  of	
  halting	
  their	
  
development.	
  Many	
  complement	
  pathway	
  genes	
  have	
  since	
  been	
  linked	
  to	
  AMD.	
  
These	
  include9
:	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
With	
  this	
  in	
  mind,	
  it	
  could	
  be	
  possible	
  to	
  stop	
  drusen	
  formation	
  by	
  designing	
  
therapeutics	
  that	
  will	
  target	
  these	
  pathways.	
  Fig	
  10.	
  summarises	
  those	
  currently	
  in	
  
development	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
• CFH	
   • CFB	
  
	
  
• CFHR1	
  
	
  
• C2	
  
	
  
• CFHR2	
  
	
  
• C3	
  
	
  
Fig 10. A). The complement system. B). The actions of some of the many therapeutics
currently under development. Compstatin and eculizumab are currently in Phase 2 clinical
trials29
. (From 9)
11
Treatments	
  –	
  GA	
  
Due	
  to	
  progress	
  made	
  in	
  treating	
  the	
  “wet”	
  aspects	
  of	
  AMD,	
  research	
  into	
  
therapeutics	
  for	
  geographic	
  atrophy	
  has	
  become	
  somewhat	
  overshadowed.	
  
Although	
  there	
  are	
  currently	
  no	
  licensed	
  drugs	
  for	
  geographic	
  atrophy,	
  there	
  are	
  
numerous	
  therapeutics	
  currently	
  undergoing	
  clinical	
  trials29
.	
  
	
  
Drug	
   Mechanism	
  
Clinical	
  trial	
  
phase	
  
Estimated	
  completion	
  
Tandospirone	
  
(AL-­‐8309B)	
  
Neuroprotective	
  by	
  inhibiting	
  oxidative	
  stress	
  
within	
  the	
  retinal	
  pigment	
  epithelium	
  (RPE)	
  
III	
   February	
  2012	
  
Alprostadil	
  
Prostaglandin	
  E1	
  –	
  has	
  a	
  vasodilatory	
  effect	
  that	
  
is	
  hoped	
  will	
  increase	
  blood	
  flow	
  to	
  atrophic	
  
areas	
  and	
  slow/halt	
  disease	
  progression.	
  
III	
  
Terminated	
  as	
  study	
  
was	
  under	
  powered.	
  
Currently	
  re-­‐planning	
  
Fenretinide	
  
Retinol	
  metabolism	
  within	
  the	
  eye	
  creates	
  
lipofuscin	
  and	
  A2E,	
  which	
  can	
  cause	
  damage	
  to	
  
the	
  RPE.	
  Fenretindie	
  binds	
  Retinol	
  Binding	
  
Protein,	
  decreasing	
  serum	
  retinol	
  
concentrations.	
  This	
  reduces	
  retinol	
  uptake	
  by	
  
the	
  RPE	
  and	
  therefore	
  damage.	
  
II	
   June	
  2010	
  
NT501	
  
Implant	
  of	
  human	
  cells	
  genetically	
  modified	
  to	
  
release	
  Ciliary	
  Neurotrophic	
  Factor	
  (CNTF),	
  a	
  
neuroprotective	
  agent	
  shown	
  to	
  inhibit	
  
photoreceptor	
  apoptosis.	
  
II	
   unknown	
  
Brimonidine	
   Neuroprotective	
   II	
   December	
  2011	
  
OT551	
  
Antioxidant,	
  anti-­‐inflammatory	
  and	
  anti-­‐
angiogenic.	
  Phase	
  II	
  results	
  are	
  encouraging	
  
II	
   Completed	
  
	
  
	
  
	
  
	
  
	
  
Conclusion	
  
	
  
	
  
Much	
  progress	
  has	
  been	
  made	
  in	
  developing	
  therapeutics	
  for	
  this	
  potentially	
  sight	
  
threatening	
  disease.	
  Drugs	
  targeting	
  drusen	
  and	
  GA	
  are	
  in	
  advanced	
  clinical	
  trials	
  
and	
  with	
  the	
  new	
  anti-­‐VEGF	
  agents	
  we	
  are	
  now	
  in	
  a	
  position	
  to	
  give	
  real	
  benefit	
  to	
  
patients	
  with	
  CNV.	
  The	
  prevalence	
  of	
  age	
  related	
  macular	
  degeneration	
  will	
  continue	
  
to	
  increase	
  in	
  line	
  with	
  the	
  aging	
  population.	
  In	
  order	
  that	
  everyone	
  can	
  access	
  this	
  
treatment	
  however,	
  pharmaceutical	
  companies	
  need	
  to	
  recognise	
  the	
  need	
  to	
  lower	
  
their	
  prices.	
  	
  
	
  
Table 2. Summary of therapeutics for GA currently undergoing phase II and III clinical
trials29
.
12
References	
  
	
  
1.	
   Absent	
  from	
  final	
  version	
  
	
  
2.	
   Avery	
  RL,	
  Pieramici	
  DJ,	
  Rabena	
  MD,	
  et	
  al.	
  Intravitreal	
  bevacizumab	
  (Avastin)	
  for	
  
neovascular	
  age-­‐related	
  macular	
  degeneration.	
  Ophthalmology	
  2006;113:363-­‐
72	
  
	
  
3.	
   British	
  National	
  Formulary	
  59	
  (March	
  2010).	
  BMJ	
  Publishing	
  Group	
  Ltd.	
  
	
  
4.	
   Brown	
  DM,	
  Kaiser	
  PK,	
  Michels	
  M,	
  Soubrane	
  G,	
  Heier	
  JS,	
  Kim	
  R,	
  et	
  
al.Ranibizumab	
  versus	
  verteporfin	
  for	
  neovascular	
  age-­‐related	
  macular	
  
degeneration.	
  New	
  England	
  Journal	
  of	
  Medicine	
  2006;355	
  (14):1432–44.	
  
	
  
5.	
   D’Amico	
  DJ,	
  Goldberg	
  MF,	
  Hudson	
  H,	
  et	
  al.	
  Anecortave	
  Acetate	
  Clinical	
  Study	
  
Group:	
  anecortave	
  acetate	
  as	
  monotherapy	
  for	
  the	
  treatment	
  of	
  subfoveal	
  
lesions	
  in	
  patients	
  with	
  exudative	
  age-­‐related	
  macular	
  degeneration	
  (AMD):	
  
interim	
  (month	
  6)	
  analysis	
  of	
  clinical	
  safety	
  and	
  efficacy.	
  Retina	
  2003;23:14-­‐23	
  
	
  
6.	
   DME	
  And	
  VEGF	
  Trap-­‐Eye:	
  Investigation	
  of	
  Clinical	
  Impact	
  (DAVINCI).	
  (2010)	
  6-­‐
Month	
  Phase	
  2	
  Primary	
  Analysis	
  
	
  
7.	
   Ferris	
  FL	
  III,	
  Fine	
  SL,	
  Hyman	
  L.	
  Age-­‐	
  related	
  macular	
  degeneration	
  and	
  blindness	
  
due	
  to	
  neovascular	
  maculopathy.	
  Arch	
  Ophthalmol	
  1984;102:1640-­‐2.	
  
	
  
8.	
   Friedman	
  DS,	
  O’Colmain	
  BJ,	
  Muñoz	
  B,	
  et	
  al.	
  Eye	
  Diseases	
  Prevalence	
  Research	
  
Group:	
  Prevalence	
  of	
  age-­‐related	
  macular	
  degeneration	
  in	
  the	
  United	
  States.	
  
	
  
9.	
   Gehrs	
  KM,	
  Jackson	
  JR,	
  Brown	
  EN,	
  Allikmets	
  R,	
  Hageman	
  GS.	
  (2010)	
  
Complement,	
  age-­‐related	
  macular	
  degeneration	
  and	
  a	
  vision	
  of	
  the	
  future.	
  
Archives	
  of	
  Ophthalmology.	
  128(3):349-­‐58	
  
	
  
10.	
   Gragoudas	
  ES,	
  Adamis	
  AP,	
  Cunningham	
  ET	
  Jr,	
  Feinsod	
  M,	
  Guyer	
  DR,	
  VEGF	
  
Inhibition	
  Study	
  in	
  Ocular	
  Neovascularization	
  Clinical	
  Trial	
  Group.	
  (2004)	
  
Pegaptanib	
  for	
  neovascular	
  age-­‐related	
  macular	
  degeneration.	
  New	
  England	
  
Journal	
  of	
  Medicine.	
  351(27):2805-­‐16	
  
	
  
11.	
   Hawkins	
  BS,	
  Bressler	
  NM,	
  Miskala	
  PH,	
  Bressler	
  SB,	
  Holekamp	
  NM,	
  Marsh	
  MJ,	
  
Redford	
  M,	
  Schwartz	
  SD,	
  Sternberg	
  P	
  Jr,	
  Thomas	
  MA,	
  Wilson	
  DJ,	
  Submacular	
  
Surgery	
  Trials	
  (SST)	
  Research	
  Group	
  (2004)	
  Surgery	
  for	
  subfoveal	
  choroidal	
  
neovascularization	
  in	
  age-­‐related	
  macular	
  degeneration:	
  ophthalmic	
  findings:	
  
SST	
  report	
  no.	
  11.	
  Ophthalmology.	
  111(11):1967-­‐80	
  
	
  
12.	
   Holash	
  J,	
  Davis	
  S,	
  Papadopoulos	
  N,	
  et	
  al.	
  VEGF-­‐Trap:	
  A	
  VEGF	
  blocker	
  with	
  
potent	
  antitumor	
  effects.	
  PNAS	
  2002;99:11393-­‐8	
  
	
  
13
13.	
   Hutchinson	
  J,	
  Tay	
  W.	
  Symmetrical	
  central	
  choroido-­‐retinal	
  disease	
  occurring	
  in	
  
senile	
  persons.	
  R	
  Lond	
  Ophthalmic	
  Hosp	
  Rep	
  J	
  Ophthalmic	
  Med	
  Surg	
  1874;	
  
8:231-­‐44.	
  
	
  
14.	
   Jager	
  RD.	
  Mieler	
  WF.	
  Miller	
  JW.	
  (2008)	
  Age-­‐related	
  macular	
  degeneration.	
  New	
  
England	
  Journal	
  of	
  Medicine.	
  358(24):2606-­‐17	
  
	
  
15.	
   Klein	
  R,	
  Rowland	
  ML,	
  Harris	
  MI.	
  Racial/ethnic	
  differences	
  in	
  age-­‐related	
  
maculopathy:	
  Third	
  National	
  Health	
  and	
  Nutrition	
  Examination	
  Survey.	
  
Ophthal-­‐	
  mology	
  1995;102:371-­‐81.	
  Erratum,	
  Ophthalmology	
  1995;102:1126.	
  
	
  
16.	
   Klein	
  R.	
  Overview	
  of	
  progress	
  in	
  the	
  epidemiology	
  of	
  age-­‐related	
  macular	
  
degeneration.	
  Ophthalmic	
  Epidemiol.	
  2007;14(4):184-­‐187.	
  
	
  
17.	
   Macular	
  Photocoagulation	
  Study	
  Group.	
  (1994)	
  Laser	
  photocoagulation	
  for	
  
juxtafoveal	
  choroidal	
  neovascularization.	
  Five-­‐year	
  results	
  from	
  randomized	
  
clinical	
  trials.	
  Archives	
  of	
  Ophthalmology.	
  112(4):500-­‐9	
  
	
  
18.	
   NICE	
  TA155	
  (2008)	
  -­‐	
  Ranibizumab	
  and	
  pegaptanib	
  for	
  the	
  treatment	
  of	
  age-­‐
related	
  macular	
  degeneration.	
  The	
  National	
  Institute	
  for	
  Health	
  and	
  Clinical	
  
Excellence	
  
	
  
19.	
   Pascolini	
  D,	
  Mariotti	
  SP,	
  Pokharel	
  GP,	
  et	
  al.	
  2002	
  Global	
  update	
  of	
  available	
  
data	
  on	
  visual	
  impairment:	
  a	
  compilation	
  of	
  population-­‐based	
  prevalence	
  
studies.	
  Ophthalmic	
  Epidemiology	
  2004;11:67-­‐115.	
  
	
  
20	
   Pasqualetti	
  G,	
  Danesi	
  R,	
  Del	
  Tacca	
  M,	
  Bocci	
  G.	
  Vascular	
  endothelial	
  growth	
  
factor	
  pharmacogenetics:	
  a	
  new	
  perspective	
  for	
  anti-­‐angiogenic	
  therapy.	
  
Pharmacogenomics	
  2007;8:49-­‐66	
  
	
  
21	
   Paulus	
  T.V.M.	
  de	
  Jong.	
  (2006)	
  Age-­‐Related	
  Macular	
  Degeneration.	
  N	
  Engl	
  J	
  Med	
  
2006;355:1474-­‐85	
  
	
  
22.	
   Rich	
  RM,	
  Rosenfeld	
  PJ,	
  Puliafito	
  CA,	
  et	
  al.	
  Short-­‐term	
  safety	
  and	
  efficacy	
  of	
  
intravitreal	
  bevacizumab	
  (Avastin)	
  for	
  neovascular	
  age-­‐related	
  macular	
  
degeneration.	
  Retina	
  2006;26:495-­‐511	
  
	
  
23.	
   Rosenfeld	
  PJ,	
  Brown	
  DM,	
  Heier	
  JS,	
  Boyer	
  DS,	
  Kaiser	
  PK,	
  Chung	
  CY,	
  Kim	
  RY,	
  
MARINA	
  Study	
  Group.	
  (2006)	
  Ranibizumab	
  for	
  neovascular	
  age-­‐related	
  
macular	
  degeneration.	
  New	
  England	
  Journal	
  of	
  Medicine.	
  355(14):1419-­‐31	
  
	
  
24.	
   Treatment	
  of	
  age-­‐related	
  macular	
  degeneration	
  with	
  photodynamic	
  therapy	
  
(TAP)	
  Study	
  Group.	
  (1999)	
  Photodynamic	
  therapy	
  of	
  subfoveal	
  choroidal	
  
neovascularization	
  in	
  age-­‐related	
  macular	
  degeneration	
  with	
  verteporfin:	
  one-­‐
year	
  results	
  of	
  2	
  randomized	
  clinical	
  trials-­‐-­‐TAP	
  report.	
  Archives	
  of	
  
Ophthalmology.	
  117(10):1329-­‐45	
  
	
  
14
25.	
   Van	
  Wijngaarden	
  P,	
  Coster	
  DJ,	
  Williams	
  KA.	
  Inhibitors	
  of	
  ocular	
  
neovascularization:	
  promises	
  and	
  potential	
  problems.	
  JAMA	
  2005;293:1509-­‐13	
  
	
  
26.	
   Vander,	
  J	
  F.	
  (2000)	
  Macular	
  translocation.	
  Current	
  Opinion	
  in	
  Ophthalmology.	
  
11(3):159-­‐65	
  
	
  
27.	
   Vedula	
  SS,	
  Krzystolik	
  M.	
  (2008)	
  Cochrane	
  review	
  -­‐	
  Antiangiogenic	
  therapy	
  with	
  
anti-­‐vascular	
  endothelial	
  growth	
  factor	
  modalities	
  for	
  neovascular	
  age-­‐related	
  
macular	
  degeneration.	
  The	
  Cochrane	
  Collaboration	
  
	
  
28.	
   Virgili	
  G,	
  Bini	
  A.	
  (2009)	
  Cochrane	
  review	
  -­‐	
  Laser	
  photocoagulation	
  for	
  
neovascular	
  age-­‐related	
  macular	
  degeneration.	
  The	
  Cochrane	
  Collaboration	
  
	
  
29.	
   www.clinicaltrials.gov	
  (accessed	
  between	
  04/05/2010	
  to	
  23/05/2010)	
  
	
  
30.	
   www.kenteyesurgery.co.uk/a-­‐z-­‐of-­‐eyes-­‐view.php?/amd-­‐-­‐-­‐age-­‐related-­‐macular-­‐
degeneration	
  (Accessed	
  15/05/2010)	
  
	
  
31.	
   www.lowvisionclub.com/articles/seewhatisee.html	
  (Accessed	
  12/05/2010)	
  
	
  
32.	
   www.optimedica.com/PASCAL-­‐Method/fundus_images.aspx	
  (Accessed	
  
12/05/2010)	
  
	
  
33.	
   www.retinalphysician.com/article.aspx?article=101092	
  	
  (Accessed	
  07/05/2010)	
  
	
  
34.	
   www.salemretina.com/info/disease/drusen/	
  	
  (Accessed	
  07/05/2010)	
  
	
  
35.	
   Zanke,	
  B.,	
  Hawken,	
  S.,	
  Carter,	
  R.	
  &	
  Chow,	
  D.	
  (2010)	
  A	
  genetic	
  approach	
  to	
  
stratification	
  of	
  risk	
  for	
  age-­‐related	
  macular	
  degeneration.	
  Canadian	
  Journal	
  of	
  
Ophthalmology.	
  45(1):22-­‐7	
  

Mais conteúdo relacionado

Mais procurados

Age-Related Macular Degeneration
Age-Related Macular DegenerationAge-Related Macular Degeneration
Age-Related Macular Degeneration
Hossein Mirzaie
 
Central retinal artery occlusion
Central retinal artery occlusionCentral retinal artery occlusion
Central retinal artery occlusion
SSSIHMS-PG
 
Choroidal neovascularisation(cnv)
Choroidal neovascularisation(cnv)Choroidal neovascularisation(cnv)
Choroidal neovascularisation(cnv)
Nikhil Rp
 

Mais procurados (20)

Age-Related Macular Degeneration
Age-Related Macular DegenerationAge-Related Macular Degeneration
Age-Related Macular Degeneration
 
Retinitis pigmentosa
Retinitis pigmentosaRetinitis pigmentosa
Retinitis pigmentosa
 
Fuchs endothelial dystrophy.
Fuchs endothelial dystrophy.Fuchs endothelial dystrophy.
Fuchs endothelial dystrophy.
 
Retinitis pigmentosa
Retinitis pigmentosaRetinitis pigmentosa
Retinitis pigmentosa
 
neovascular glaucoma
neovascular glaucomaneovascular glaucoma
neovascular glaucoma
 
Glaucoma optic disc changes
Glaucoma optic disc changesGlaucoma optic disc changes
Glaucoma optic disc changes
 
Central retinal artery occlusion
Central retinal artery occlusionCentral retinal artery occlusion
Central retinal artery occlusion
 
16 superior oblique palsy
16 superior oblique palsy16 superior oblique palsy
16 superior oblique palsy
 
Age related macular degeneration
Age related macular degenerationAge related macular degeneration
Age related macular degeneration
 
Anti vegf
Anti vegfAnti vegf
Anti vegf
 
Retinal Vein Occlusion
Retinal Vein OcclusionRetinal Vein Occlusion
Retinal Vein Occlusion
 
Retinal vein occlusion
Retinal vein occlusionRetinal vein occlusion
Retinal vein occlusion
 
Coloboma
ColobomaColoboma
Coloboma
 
Chloroquine retinopathy
Chloroquine retinopathyChloroquine retinopathy
Chloroquine retinopathy
 
Congenital Cataract quick revision ( ophthalmology )
Congenital Cataract quick revision ( ophthalmology )Congenital Cataract quick revision ( ophthalmology )
Congenital Cataract quick revision ( ophthalmology )
 
Diabetic macular edema
Diabetic macular edemaDiabetic macular edema
Diabetic macular edema
 
Iol power calculation in pediatric patients
Iol power calculation in pediatric patientsIol power calculation in pediatric patients
Iol power calculation in pediatric patients
 
Choroidal neovascularisation(cnv)
Choroidal neovascularisation(cnv)Choroidal neovascularisation(cnv)
Choroidal neovascularisation(cnv)
 
Retinitis pigmentosa
Retinitis pigmentosaRetinitis pigmentosa
Retinitis pigmentosa
 
Corneal degeneration &amp; depos
Corneal degeneration &amp; deposCorneal degeneration &amp; depos
Corneal degeneration &amp; depos
 

Semelhante a macular degeneration therapy

Visual Impairment
Visual ImpairmentVisual Impairment
Visual Impairment
aniwilfi
 
role of oct in diagnosis and ttt of AMD
role of oct in diagnosis and ttt of AMDrole of oct in diagnosis and ttt of AMD
role of oct in diagnosis and ttt of AMD
Doaa Mahmoud
 

Semelhante a macular degeneration therapy (20)

AMA series design
AMA series designAMA series design
AMA series design
 
Dissertation
DissertationDissertation
Dissertation
 
Visual Impairment
Visual ImpairmentVisual Impairment
Visual Impairment
 
Diabetic macular edema 2011 (1)
Diabetic macular edema 2011 (1)Diabetic macular edema 2011 (1)
Diabetic macular edema 2011 (1)
 
Recent Treatment of DME
Recent Treatment of DMERecent Treatment of DME
Recent Treatment of DME
 
DME Management Guidelines
DME Management GuidelinesDME Management Guidelines
DME Management Guidelines
 
role of oct in diagnosis and ttt of AMD
role of oct in diagnosis and ttt of AMDrole of oct in diagnosis and ttt of AMD
role of oct in diagnosis and ttt of AMD
 
AMD
AMDAMD
AMD
 
Age Related Macular Degeneration
Age Related Macular DegenerationAge Related Macular Degeneration
Age Related Macular Degeneration
 
Guidelines for the Management of Diabetic Macular Edema.pdf
Guidelines for the Management of Diabetic Macular Edema.pdfGuidelines for the Management of Diabetic Macular Edema.pdf
Guidelines for the Management of Diabetic Macular Edema.pdf
 
Radiation
RadiationRadiation
Radiation
 
Retinoblastoma
RetinoblastomaRetinoblastoma
Retinoblastoma
 
Diabetic Retinopathy.. Faryal (1)cc.pptx
Diabetic Retinopathy.. Faryal (1)cc.pptxDiabetic Retinopathy.. Faryal (1)cc.pptx
Diabetic Retinopathy.. Faryal (1)cc.pptx
 
Diabetic retinopathy guidlines
Diabetic retinopathy guidlinesDiabetic retinopathy guidlines
Diabetic retinopathy guidlines
 
ARMD 2016
ARMD 2016ARMD 2016
ARMD 2016
 
Diabetic macula edema
Diabetic macula edemaDiabetic macula edema
Diabetic macula edema
 
Advances in Amd And Oct
Advances in Amd And OctAdvances in Amd And Oct
Advances in Amd And Oct
 
Angioid streaks
Angioid streaksAngioid streaks
Angioid streaks
 
preservingeyesight
preservingeyesightpreservingeyesight
preservingeyesight
 
Preserving Eyesight
Preserving EyesightPreserving Eyesight
Preserving Eyesight
 

Mais de meducationdotnet

Mais de meducationdotnet (20)

No Title
No TitleNo Title
No Title
 
Spondylarthropathy
SpondylarthropathySpondylarthropathy
Spondylarthropathy
 
Diagnosing Lung cancer
Diagnosing Lung cancerDiagnosing Lung cancer
Diagnosing Lung cancer
 
Eczema Herpeticum
Eczema HerpeticumEczema Herpeticum
Eczema Herpeticum
 
The Vagus Nerve
The Vagus NerveThe Vagus Nerve
The Vagus Nerve
 
Water and sanitation and their impact on health
Water and sanitation and their impact on healthWater and sanitation and their impact on health
Water and sanitation and their impact on health
 
The ethics of electives
The ethics of electivesThe ethics of electives
The ethics of electives
 
Intro to Global Health
Intro to Global HealthIntro to Global Health
Intro to Global Health
 
WTO and Health
WTO and HealthWTO and Health
WTO and Health
 
Globalisation and Health
Globalisation and HealthGlobalisation and Health
Globalisation and Health
 
Health Care Worker Migration
Health Care Worker MigrationHealth Care Worker Migration
Health Care Worker Migration
 
International Institutions
International InstitutionsInternational Institutions
International Institutions
 
Haemochromotosis brief overview
Haemochromotosis brief overviewHaemochromotosis brief overview
Haemochromotosis brief overview
 
Ascities overview
Ascities overviewAscities overview
Ascities overview
 
Overview of the Liver
Overview of the LiverOverview of the Liver
Overview of the Liver
 
Overview of Antidepressants
Overview of AntidepressantsOverview of Antidepressants
Overview of Antidepressants
 
Gout Presentation
Gout PresentationGout Presentation
Gout Presentation
 
Review of orthopaedic services: Prepared for the Auditor General for Scotland...
Review of orthopaedic services: Prepared for the Auditor General for Scotland...Review of orthopaedic services: Prepared for the Auditor General for Scotland...
Review of orthopaedic services: Prepared for the Auditor General for Scotland...
 
Sugammadex - a revolution in anaesthesia?
Sugammadex - a revolution in anaesthesia?Sugammadex - a revolution in anaesthesia?
Sugammadex - a revolution in anaesthesia?
 
Ophthamology Revision
Ophthamology RevisionOphthamology Revision
Ophthamology Revision
 

macular degeneration therapy

  • 1. 1     Therapeutic  intervention  for   age  related  macular   degeneration         Nicholas  G.  P.  Harper         MDEMO     29/03/2010  –  02/06/2010     Word  count:  1995         Candidate  No.  21019     Tutor:  Mr  Kesavan  Ramanujam           “This  project  is  all  my  own  work  unless  otherwise  stated.  All  text,  figures,  tables,  data  or   results  which  are  not  my  own  work  are  indicated  and  the  sources  acknowledged.”    
  • 2. 2 Therapeutic  intervention  for  age  related  macular   degeneration       Introduction     Age  related  macular  degeneration  was  first  described  in  1874  as  a  “symmetrical   central  choroido-­‐retinal  disease  occurring  in  senile  persons”13 .  Today,  it  is  widely   recognised  as  one  of  the  leading  causes  of  blindness  in  the  developed  world19 .  AMD   mainly  affects  the  elderly,  with  a  prevalence  of  15%  for  those  80  years  or  older8 .  This   figure  is  projected  to  increase  by  50%  over  the  next  10  years,  in  line  with  the  aging   population21 .     The macula is the area of the retina that contains the highest density of photoreceptors. It is this area that is responsible for high-resolution vision, enabling us to see fine detail crucial for reading and recognising face     Clinical  features     Progressive  loss  of  central  vision   • Decrease  in  visual  acuity   • Blurring   • Central  scotomas   • Decreased  contrast  sensitivity   • Decreased  colour  discrimination     Sparing  of  peripheral  vision  -­‐  The  area  of  the  retina  surrounding  the   macula  is  responsible  for  peripheral  vision  important  for  navigation.  As  this  is  largely   spared  in  AMD,  patients  are  usually  able  to  maintain  independent  lifestyles.                   Fig 1. A representation of the vision experienced by patients with AMD. (From 31)
  • 3. 3 Pathogenesis     Age  related  changes  to  the  macula  can  be  viewed  as  a  progression.  Until  there  is   visual  impairment,  they  are  classified  as  an  age  related  maculopathy.  Past  this  point,   they  are  referred  to  as  age  related  macular  degeneration.  It  is  important  to  note  that   this  is  a  distinction  based  purely  on  function  rather  than  pathogenesis.         Drusen   The  principal  feature  of  AMD  is  the  deposition  of   drusen  between  the  retinal  pigment  epithelium  and   Bruch’s  membrane.  The  word  Druse  is  derived  from  the   German,  meaning  Geode  (a  crystal  lined  rock).  They  are   visible  on  opthalmoscopy  when  ≥25um  and  appear  as   yellow/white  dots  within  the  macula.           Geographic  atrophy  (GA)     • Atrophy  of  the  retinal  pigment  epithelium   • Causes  visual  loss  in  affected  areas               Choroidal  neovascularisation  (CNV)     • New  vessel  growth  within  the  choroid.  This   can  lead  to  many  complications  including:   subretinal  fluid,  hemorrhage,  retinal   detachment  and  fibrotic  scars.     • Present  in  10%  of  patients  with  AMD   • Referred  to  as  “wet”  AMD       Fig 4. A.) Fundus photograph. B.) fluorescein  angiogram  showing   vascular  leakage.  (From  30) Fig 2. From 34 Fig 3. From 33 A B
  • 4. 4 Treatment       Aetiology   The  main  risk  factor  for  AMD  is  age35 .  Studies  have  however  consistently  found   associations  between  AMD  and  smoking.  Zanke  et  al  (2010)  reports  that  current   smokers  are  3.14  times  more  likely  to  develop  geographic  atrophy  or  choroidal   neovascularisation  compared  to  non-­‐smokers35 .       On  the  grounds  of  this  research,  all  patients  with  AMD  should  be  advised  to  stop   smoking.  Research  has  also  pointed  to  obesity,  hypertension,  high  fat  intake  and  low   dietary  antioxidant  intake  as  further  modifiable  risk  factors  for  AMD14 .     Treating  -­‐  CNV   Although  only  present  in  about  10%  of  people  with  AMD,  choroidal   neovascularisation  accounts  for  80%  of  all  severe  visual  loss  caused  by  AMD7 .  Due  to   this  huge  impact  on  vision  and  the  fact  that  pathological  angiogenesis  occurs  in   many  disease  processes,  this  is  the  area  of  AMD  research  that  has  seen  the  most   progress.  The  following  are  some  of  the  methods  developed  for  halting  this  process.     Vitreoretinal  surgery     Surgical  methods  for  removing  CNV  have  been  described  since  the  1980s11 .  To   investigate  their  effectiveness,  the  Submacular  Surgery  Trials  (SST)  carried  out  3   RCTs  between  1997  and  2003.  Unfortunately,  results  showed  that  after  24  months,   there  was  no  difference  in  visual  acuity  between  surgical  treatment  and   observation11 .     For  subfoveal  neovascular  AMD,  a  method  has  since  been  developed  where  instead   of  removing  the  vessels  themselves,  the  fovea  is  moved  to  an  area  free  from  CNV.   This  macular  translocation  has  shown  positive  results  in  a  small  study  in  which  50%   of  treated  patients  experienced  a  1  line  improvement  in  visual  acuity  at  12  months   26 .  Due  to  the  invasive  nature  and  only  mild  improvements  gained  from  this   procedure,  it  is  not  considered  routine  treatment.                      
  • 5. 5 Laser  Photocoagulation     This  was  the  first  laser-­‐based  treatment  used  for  neovascular  AMD.  The  aim  was  to   use  a  laser  to  coagulate  the  newly  formed  choroidal  vessels.     The  Macular  Photocoagulation  Study  Group   carried  out  a  number  of  clinical  trials  between   1979  and  199417 .  They  showed  that   compared  to  patients  treated  with  laser   photocoagulation,  untreated  patients  had  a   1.2-­‐1.5  relative  risk  of  significant  visual   deterioration.  (Results  summarised  in  fig  6).   There  are  however  serious  limitations  to  this   treatment:         1. The  laser  creates  a  burn  that  destroys  vision  in  that  area  of  the  retina.  As   such,  this  treatment  is  only  appropriate  when  the  neovascularisation  is   outside  the  central  area  of  the  macula.  Only  10-­‐15%  of  patients  with  CNV   were  suitable  for  this  treatment17 .   2. Inadvertent  coagulation  of  the  fovea  (rare)   3. Subretinal  Haemorrhage   4. At  2  years,  >50%  of  the  patients  had  a  recurrence  of  neovascularisation17 .                                               Fig 6. Relative risk of visual loss in photocoagulation treated vs observed patients for A.) All patients with extrafoveal lesion, B.) New subfoveal lesions C.) Recurrent subfoveal lesions. (From 28) Fig 5. Retinal scars produced by photocoagulation. (From 32) A C B
  • 6. 6 Laser  Photodynamic  therapy   Laser  photocoagulation  causes  irreversible,  non-­‐specific  thermal  damage.  In  the  aim   of  minimising  this  retinal  damage,  the  method  of  laser  photodynamic  therapy  (PDT)   was  developed  in  the  late  1990s:     A  light  sensitive  dye,  which  concentrates  in  newly  formed  vessels,  is  injected  into  the   patient.  when  excited  by  laser  light  of  a  specific  wavelength,  the  dye  undergoes  a   reaction,  causing  selective  chemical  destruction  of  those  vessels.       The  groundbreaking  “treatment  of  age  related  macular  degeneration  with   photodynamic  therapy”  (TAP)  study  used  a  verteporfin  (Visudyne)  as  their  light   sensitive  dye24 .  Results  showed  that  photodynamic  treatment  lead  to  a  significant   improvement  in  visual  acuity,  contrast  sensitivity  and  retinal  appearance  under   fluorescein  angiography  compared  to  placebo  treated  patients  at  1  and  2  years   follow  up24 .  Side  effects  included  transient  visual  disturbances  (18%),  an  adverse   reaction  at  the  injection  site  (13%)  and  transient  photosensitivity  (3%)24 .  This  TAP   study  lead  to  the  FDA’s  approval  of  verteporfin  photodynamic  therapy  in  2000.       The  main  drawback  of  photodynamic  therapy  is  that  for  macular  lesions  in  which   CNV  accounted  for  <50%  of  the  total,  PDT  showed  no  significant  benefit  in  any  of  the   measured  outcome  variables24 .                                                     Fig  7.  A  typical  patient  from  the  TAP  study  -­‐  Fundus  photographs  and  late-­‐phase  fluorescein   angiograms  taken  at  baseline  (A,B),  3  months  (C&D)  and  12  months  (E,F),  during  the  12  month   course  of  verteporfin  PDT  therapy.  Therapy  was  applied  every  3  months.  Images  clearly  show  an   improvement  in  fundus  appearance,  with  no  deterioration  in  vascular  leakage.  (From  24)  
  • 7. 7 Anti  VEGF     Vascular  Endothelial  Growth  Factor  A  (VEGF-­‐A)  is  a  key  regulatory  cytokine  in  the   process  of  angiogenesis.  As  well  as  being  researched  extensively  in  the  fields  of   oncology  and  cardiology,  it  has  been  shown  to  have  a  central  role  in  neovascular   ocular  diseases20 .     Pegaptanib   The  first  anti-­‐VEGF  agent  shown  to  be  effective  in  AMD  was  pegaptanib  (Macugen),   a  ribonucleic  acid  aptamer  that  prevents  VEGF  from  binding  to  its  receptor.       The  “VEGF  Inhibition  Study  in  Ocular  Neovascularization  Clinical  Trial  Group”  found   pegaptanib  to  be  effective  in  70%  of  patients,  with  the  risk  of  severe  loss  in  visual   acuity  12%  lower  in  pegaptanib  treated  patients  compared  to  controls10 .  They  also   observed  a  43%  increase  in  the  number  of  patients  who  had  maintained  or  gained   visual  acuity  after  the  1  year  duration  of  the  study10 .  Unlike  photodynamic  therapy,   this  treatment  was  found  to  be  effective  in  neovascular  AMD  independently  of   precise  lesion  composition.  On  the  basis  of  these  results  pegaptanib  became  the  first   FDA  licensed  anti-­‐angiogenic  therapy  for  AMD  in  2004.     Bevacizumab   VEGF  can  also  be  silenced  effectively  using  monoclonal  antibodies.  Genentech  had   indeed  already  developed  bevacizumab  (Avastin),  an  anti  VEGF  antibody  for  the   treatment  of  colon  cancer.  Although  still  only  indicated  for  colon  cancer,  several   small-­‐uncontrolled  pilot  studies  have  reported  improved  visual  outcome  and   decreased  macular  oedema  when  used  for  AMD2,  22,  25 .  On  the  grounds  of  these   results  and  its  low  cost,  bevacizumab  is  being  increasingly  used  off  label  for  the   treatment  of  neovascular  AMD.  Due  to  a  lack  of  large  trials,  it  is  still  however  unclear   as  to  its  safety  and  the  most  effective  method  and  timing  of  administration.       Ranibizumab   In  trying  to  develop  the  most  effective  monoclonal  antibody  treatment  for  AMD,   Genentech  developed  ranibizumab  (Lucentis).  Essentially  the  antigen-­‐binding   fragment  of  bevacizumab,  engineered  to  have  an  even  higher  affinity  for  VEGF.  The   first  RCT  to  assess  the  effectiveness  of  this  treatment  was  the  “Minimally   Classic/Occult  Trial  of  the  Anti-­‐VEGF  Antibody  ranibizumab  in  the  Treatment  of   Neovascular  Age-­‐  Related  Macular  Degeneration  (MARINA)”.  Results  showed  that   after  24  months,  on  average,  ranibizumab  treated  patients  gained  6.5  letters  of   visual  acuity,  whereas  sham  injected  patients  lost  10.4  letters23 .  Endopthalmitis  was   observed  in  1%  of  treated  patients  and  uveitis  in  1.3%.            
  • 8. 8                               The  “Anti  –VEGF  Antibody  for  the  Treatment  of  Predominantly  Classic  Choroidal   Neovascularization  in  Age  –  related  Macular  Degeneration  (ANCHOR)  study  went  on   to  compare  the  effectiveness  of  ranibizumab  against  verteporfin  PDT4 .  Results   showed  that  fewer  Ranibizumab  patients  experienced  15  letters  visual  loss  (RR  0.13,   NNT  3.33)  and  more  patients  experienced  visual  gain  (RR  6.79)4 .     The  2008  Cochrane  review  comparing  pegaptanib,  ranibizumab  and  verteporfin  PDT   concluded  that  whilst  all  three  significantly  decrease  visual  loss,  ranibizumab  is  most   likely  to  actually  cause  an  improvement  in  visual  acuity27 .     Cost  effectiveness     As  can  be  seen  from  Table  1,  there  is  a  large  discrepancy  in  price  for  these   treatments.  NICE  analysis  of  the  incremental  cost  effectiveness  ratio  (ICER)  per   quality  adjusted  life  year  (QALY)  found  Ranibizumab  to  be  more  cost  effective  than   pergaptanib18 .  As  a  result,  NICE  have  decided  not  to  recommend  the  use  of   Pegaptanib  for  neovascular  AMD18 .  Note  that  Bevacizumab  could  not  be  included  in   this  analysis  due  to  not  being  licensed  for  AMD  and  therefore  a  lack  of  data.       Therapeutic   Cost   Bevacizumab   £1.21  (a)   Pegaptanib   £514.00   Ranibizumab   £761.20                 Table 1. net prices of the anti-angiogenic drugs3 . (a) Based on using the same dose (500ug) as for ranibizumab. Month Fig 8. Mean changes in visual acuity against time for ranibizumab (0.5mg & 0.3mg) and sham injection. (From 23)
  • 9. 9 Future  anti-­‐angiogenic  therapies       Fusion  proteins   These  proteins  are  formed  by  replacing  the  stop  codon  at  the  end  of  one  gene  with   the  DNA  from  another.  The  resultant  hybrid  gene  is  inserted  into  bacteria  and  the   protein  product  collected.  This  technique  has  been  used  to  combine  the  binding   domains  of  several  VEGF  receptors  with  human  Immunuloglobulin  G  to  produce  a   protein  that  will  tightly  bind  and  effectively  inactivate  VEGF12 .  This  therapeutic,  aptly   named  VEGF  Trap  produced  promising  results  in  phase  II  clinical  trials  (Fig  9.)  with  no   reported  adverse  effects6 .  Phase  III  Clinical  trials  comparing  VEGF  Trap  to   Ranibizumab  were  initiated  in  2007  and  are  due  to  be  completed  in  December   201129 .                                                 Anti  VEGF  therapeutics  also  under  research  include,  Angiostatic  cortisenes,  RNA   interference  agents,  Aminosterols  and  further  anti  VEGF  antibodies.       Treatments  –  Drusen   Drusen  only  cause  visual  loss  If  they  are  larger  than  125um  or  are  present  in   extremely  large  numbers21 .  With  this  said,  they  are  present  to  some  degree  in   almost  all  patients  with  AMD  and  may  represent  an  early  part  of  a  more  complex   pathogenic  pathway  leading  to  GA  and  CNV.     Fig 9. Results from Phase II Clinical trial comparing VEGF Trap against laser photocoagulation for neovascular AMD (ref). Graphs to show A.) Mean change in visual acuity (Gain in ETDRS letters) against time in study. B.) Mean change in central retinal thickness against time in study. (From 6)
  • 10. 10 Complement   Drusen  contain  many  complement  and  complement  related  proteins,  research  has   therefore  targeted  this  pathway  to  try  and  determine  a  method  of  halting  their   development.  Many  complement  pathway  genes  have  since  been  linked  to  AMD.   These  include9 :                   With  this  in  mind,  it  could  be  possible  to  stop  drusen  formation  by  designing   therapeutics  that  will  target  these  pathways.  Fig  10.  summarises  those  currently  in   development                                                                 • CFH   • CFB     • CFHR1     • C2     • CFHR2     • C3     Fig 10. A). The complement system. B). The actions of some of the many therapeutics currently under development. Compstatin and eculizumab are currently in Phase 2 clinical trials29 . (From 9)
  • 11. 11 Treatments  –  GA   Due  to  progress  made  in  treating  the  “wet”  aspects  of  AMD,  research  into   therapeutics  for  geographic  atrophy  has  become  somewhat  overshadowed.   Although  there  are  currently  no  licensed  drugs  for  geographic  atrophy,  there  are   numerous  therapeutics  currently  undergoing  clinical  trials29 .     Drug   Mechanism   Clinical  trial   phase   Estimated  completion   Tandospirone   (AL-­‐8309B)   Neuroprotective  by  inhibiting  oxidative  stress   within  the  retinal  pigment  epithelium  (RPE)   III   February  2012   Alprostadil   Prostaglandin  E1  –  has  a  vasodilatory  effect  that   is  hoped  will  increase  blood  flow  to  atrophic   areas  and  slow/halt  disease  progression.   III   Terminated  as  study   was  under  powered.   Currently  re-­‐planning   Fenretinide   Retinol  metabolism  within  the  eye  creates   lipofuscin  and  A2E,  which  can  cause  damage  to   the  RPE.  Fenretindie  binds  Retinol  Binding   Protein,  decreasing  serum  retinol   concentrations.  This  reduces  retinol  uptake  by   the  RPE  and  therefore  damage.   II   June  2010   NT501   Implant  of  human  cells  genetically  modified  to   release  Ciliary  Neurotrophic  Factor  (CNTF),  a   neuroprotective  agent  shown  to  inhibit   photoreceptor  apoptosis.   II   unknown   Brimonidine   Neuroprotective   II   December  2011   OT551   Antioxidant,  anti-­‐inflammatory  and  anti-­‐ angiogenic.  Phase  II  results  are  encouraging   II   Completed             Conclusion       Much  progress  has  been  made  in  developing  therapeutics  for  this  potentially  sight   threatening  disease.  Drugs  targeting  drusen  and  GA  are  in  advanced  clinical  trials   and  with  the  new  anti-­‐VEGF  agents  we  are  now  in  a  position  to  give  real  benefit  to   patients  with  CNV.  The  prevalence  of  age  related  macular  degeneration  will  continue   to  increase  in  line  with  the  aging  population.  In  order  that  everyone  can  access  this   treatment  however,  pharmaceutical  companies  need  to  recognise  the  need  to  lower   their  prices.       Table 2. Summary of therapeutics for GA currently undergoing phase II and III clinical trials29 .
  • 12. 12 References     1.   Absent  from  final  version     2.   Avery  RL,  Pieramici  DJ,  Rabena  MD,  et  al.  Intravitreal  bevacizumab  (Avastin)  for   neovascular  age-­‐related  macular  degeneration.  Ophthalmology  2006;113:363-­‐ 72     3.   British  National  Formulary  59  (March  2010).  BMJ  Publishing  Group  Ltd.     4.   Brown  DM,  Kaiser  PK,  Michels  M,  Soubrane  G,  Heier  JS,  Kim  R,  et   al.Ranibizumab  versus  verteporfin  for  neovascular  age-­‐related  macular   degeneration.  New  England  Journal  of  Medicine  2006;355  (14):1432–44.     5.   D’Amico  DJ,  Goldberg  MF,  Hudson  H,  et  al.  Anecortave  Acetate  Clinical  Study   Group:  anecortave  acetate  as  monotherapy  for  the  treatment  of  subfoveal   lesions  in  patients  with  exudative  age-­‐related  macular  degeneration  (AMD):   interim  (month  6)  analysis  of  clinical  safety  and  efficacy.  Retina  2003;23:14-­‐23     6.   DME  And  VEGF  Trap-­‐Eye:  Investigation  of  Clinical  Impact  (DAVINCI).  (2010)  6-­‐ Month  Phase  2  Primary  Analysis     7.   Ferris  FL  III,  Fine  SL,  Hyman  L.  Age-­‐  related  macular  degeneration  and  blindness   due  to  neovascular  maculopathy.  Arch  Ophthalmol  1984;102:1640-­‐2.     8.   Friedman  DS,  O’Colmain  BJ,  Muñoz  B,  et  al.  Eye  Diseases  Prevalence  Research   Group:  Prevalence  of  age-­‐related  macular  degeneration  in  the  United  States.     9.   Gehrs  KM,  Jackson  JR,  Brown  EN,  Allikmets  R,  Hageman  GS.  (2010)   Complement,  age-­‐related  macular  degeneration  and  a  vision  of  the  future.   Archives  of  Ophthalmology.  128(3):349-­‐58     10.   Gragoudas  ES,  Adamis  AP,  Cunningham  ET  Jr,  Feinsod  M,  Guyer  DR,  VEGF   Inhibition  Study  in  Ocular  Neovascularization  Clinical  Trial  Group.  (2004)   Pegaptanib  for  neovascular  age-­‐related  macular  degeneration.  New  England   Journal  of  Medicine.  351(27):2805-­‐16     11.   Hawkins  BS,  Bressler  NM,  Miskala  PH,  Bressler  SB,  Holekamp  NM,  Marsh  MJ,   Redford  M,  Schwartz  SD,  Sternberg  P  Jr,  Thomas  MA,  Wilson  DJ,  Submacular   Surgery  Trials  (SST)  Research  Group  (2004)  Surgery  for  subfoveal  choroidal   neovascularization  in  age-­‐related  macular  degeneration:  ophthalmic  findings:   SST  report  no.  11.  Ophthalmology.  111(11):1967-­‐80     12.   Holash  J,  Davis  S,  Papadopoulos  N,  et  al.  VEGF-­‐Trap:  A  VEGF  blocker  with   potent  antitumor  effects.  PNAS  2002;99:11393-­‐8    
  • 13. 13 13.   Hutchinson  J,  Tay  W.  Symmetrical  central  choroido-­‐retinal  disease  occurring  in   senile  persons.  R  Lond  Ophthalmic  Hosp  Rep  J  Ophthalmic  Med  Surg  1874;   8:231-­‐44.     14.   Jager  RD.  Mieler  WF.  Miller  JW.  (2008)  Age-­‐related  macular  degeneration.  New   England  Journal  of  Medicine.  358(24):2606-­‐17     15.   Klein  R,  Rowland  ML,  Harris  MI.  Racial/ethnic  differences  in  age-­‐related   maculopathy:  Third  National  Health  and  Nutrition  Examination  Survey.   Ophthal-­‐  mology  1995;102:371-­‐81.  Erratum,  Ophthalmology  1995;102:1126.     16.   Klein  R.  Overview  of  progress  in  the  epidemiology  of  age-­‐related  macular   degeneration.  Ophthalmic  Epidemiol.  2007;14(4):184-­‐187.     17.   Macular  Photocoagulation  Study  Group.  (1994)  Laser  photocoagulation  for   juxtafoveal  choroidal  neovascularization.  Five-­‐year  results  from  randomized   clinical  trials.  Archives  of  Ophthalmology.  112(4):500-­‐9     18.   NICE  TA155  (2008)  -­‐  Ranibizumab  and  pegaptanib  for  the  treatment  of  age-­‐ related  macular  degeneration.  The  National  Institute  for  Health  and  Clinical   Excellence     19.   Pascolini  D,  Mariotti  SP,  Pokharel  GP,  et  al.  2002  Global  update  of  available   data  on  visual  impairment:  a  compilation  of  population-­‐based  prevalence   studies.  Ophthalmic  Epidemiology  2004;11:67-­‐115.     20   Pasqualetti  G,  Danesi  R,  Del  Tacca  M,  Bocci  G.  Vascular  endothelial  growth   factor  pharmacogenetics:  a  new  perspective  for  anti-­‐angiogenic  therapy.   Pharmacogenomics  2007;8:49-­‐66     21   Paulus  T.V.M.  de  Jong.  (2006)  Age-­‐Related  Macular  Degeneration.  N  Engl  J  Med   2006;355:1474-­‐85     22.   Rich  RM,  Rosenfeld  PJ,  Puliafito  CA,  et  al.  Short-­‐term  safety  and  efficacy  of   intravitreal  bevacizumab  (Avastin)  for  neovascular  age-­‐related  macular   degeneration.  Retina  2006;26:495-­‐511     23.   Rosenfeld  PJ,  Brown  DM,  Heier  JS,  Boyer  DS,  Kaiser  PK,  Chung  CY,  Kim  RY,   MARINA  Study  Group.  (2006)  Ranibizumab  for  neovascular  age-­‐related   macular  degeneration.  New  England  Journal  of  Medicine.  355(14):1419-­‐31     24.   Treatment  of  age-­‐related  macular  degeneration  with  photodynamic  therapy   (TAP)  Study  Group.  (1999)  Photodynamic  therapy  of  subfoveal  choroidal   neovascularization  in  age-­‐related  macular  degeneration  with  verteporfin:  one-­‐ year  results  of  2  randomized  clinical  trials-­‐-­‐TAP  report.  Archives  of   Ophthalmology.  117(10):1329-­‐45    
  • 14. 14 25.   Van  Wijngaarden  P,  Coster  DJ,  Williams  KA.  Inhibitors  of  ocular   neovascularization:  promises  and  potential  problems.  JAMA  2005;293:1509-­‐13     26.   Vander,  J  F.  (2000)  Macular  translocation.  Current  Opinion  in  Ophthalmology.   11(3):159-­‐65     27.   Vedula  SS,  Krzystolik  M.  (2008)  Cochrane  review  -­‐  Antiangiogenic  therapy  with   anti-­‐vascular  endothelial  growth  factor  modalities  for  neovascular  age-­‐related   macular  degeneration.  The  Cochrane  Collaboration     28.   Virgili  G,  Bini  A.  (2009)  Cochrane  review  -­‐  Laser  photocoagulation  for   neovascular  age-­‐related  macular  degeneration.  The  Cochrane  Collaboration     29.   www.clinicaltrials.gov  (accessed  between  04/05/2010  to  23/05/2010)     30.   www.kenteyesurgery.co.uk/a-­‐z-­‐of-­‐eyes-­‐view.php?/amd-­‐-­‐-­‐age-­‐related-­‐macular-­‐ degeneration  (Accessed  15/05/2010)     31.   www.lowvisionclub.com/articles/seewhatisee.html  (Accessed  12/05/2010)     32.   www.optimedica.com/PASCAL-­‐Method/fundus_images.aspx  (Accessed   12/05/2010)     33.   www.retinalphysician.com/article.aspx?article=101092    (Accessed  07/05/2010)     34.   www.salemretina.com/info/disease/drusen/    (Accessed  07/05/2010)     35.   Zanke,  B.,  Hawken,  S.,  Carter,  R.  &  Chow,  D.  (2010)  A  genetic  approach  to   stratification  of  risk  for  age-­‐related  macular  degeneration.  Canadian  Journal  of   Ophthalmology.  45(1):22-­‐7