SlideShare uma empresa Scribd logo
1 de 27
Baixar para ler offline
www.quartzco.com
COPENHAGEN
Ryesgade 3A
2200 Copenhagen N
Denmark
T: +45 33 17 00 00
OSLO
Wergelandsveien 21
0167 Oslo
Norway
T: +47 22 59 36 00
STOCKHOLM
Birger Jarlsgatan 7
111 45 Stockholm
Sweden
T: +46 (0)8 614 19 00
www.mecintelligence.com
INDIA
112, Udyog Vihar Phase 4
122015 Gurgaon
Haryana, India
T: +91124 480 2700
DENMARK
Nordre Fasanvej 113, 2
2000 Frederiksberg
Copenhagen, Denmark
T: +45 3543 3277
Month day, year
Foundations for larger & deeper offshore wind
Which foundation type is cost effective for larger turbines and increasingly complex projects?
A commercial study comparing price for various offshore wind foundation technologies
February 2015
2
– Currently there are 43 installation vessels suitable for offshore wind construction in EU; daily rate ranges between EUR 70k to
290k
– The current vessel days are just enough to meet the demand from conventional foundations
– In <800 tonne lifting category, new foundations eliminate the need for higher capacity vessel to meet the increase
– In, 800-1200 tonne lifting category, new foundation adoption increases the vessel oversupply by 141% percent by 2020
– In >1200 tonne lifting category, new foundations increase the vessel oversupply by 32% percent by 2020
New foundation
designs could
lead to major
oversupply in the
vessels market
II
New foundation designs could be cost effective as compared to conventional designs and also
reduce vessel demand for construction
Source: MEC+ analysis
SUMMARY
– Foundation cost are primary driven by Material and installation costs with 65-85 % share of the total cost and have been
considered in this study
– New foundation designs have lower costs as turbines become larger and installed in deeper sea
– For 6 MW, new foundations are ~4-20% lower in material cost when compared to monopiles & jackets while for turbine sizes 8
MW and larger, new designs reduce the cost by ~21-24%
– Installation cost does not vary much in comparison to material costs, but can be a bottleneck in timely execution of the OW
farm. New foundation designs can reduce the installation cost by ~50% as compared to the conventional designs
– Mono-suction bucket is cost effective for 4-6 MW turbine size at lower to medium depths, while CraneFree Gravity is most
suitable for even larger turbines at medium to larger depths
– Cost reduction potential of 5-15% is observed for foundations at select 5 farms in Europe. However, developers need to manage
risk and other associated premium costs with appropriate contracting
New foundation
designs could be
10 percent to 30
percent cheaper
as compared to
conventional
designs
I
3
Around 5600 turbines are expected to be
installed by 2020
..resulting in cumulative capacity of 27 GW
expected to start construction by 2020
Innovation is being driven to reduce the high cost of energy from offshore wind planned in EU
INTRODUCTION
2,9
2019
5,9
2018
7,9
2017
5,5
2016
4,8
2015
1,3
2020
OW annual capacity in GW*
654
954
286
20202019
1.050
2018
1.493
2017
1.245
20162015
No. Of Foundations
* Based on the construction start year of the farms
Source: Windpower database, News articles, MEC+ analysis
4-6 MW 6-8 MW
Dominating Turbine Sizes
..the offshore wind energy industry
needs to attract between €90 bn. and
€123 bn. by 2020 to meet its
deployment targets, increasing its
installed capacity from 6 GW in mid-
2013 to 40 GW….
EWEA, 2013
..supply chain is innovating to reduce
costs and deliver a competitive product
for UK and international
markets….costs can be reduced to
around £100/ MWh for a project
financed in 2020…. main areas of cost
reduction are larger turbines, supply
chain competition, better design and
economies of scale,…risk reduction
and lower costs of capital..
UK Trade & Investment, 2014
Large investment is planned in OW…
1.8 10 6.3 5.6 2.5 2.8
XX Contracted capacity in the year
Expected annual capacity to start construction by
2020
4
New foundation designs claim to reduce the cost of foundation and also of the entire offshore
windfarm
* Others include risks, insurances, noise mitigation, sea fastening, onshore logistics etc.
Source: IRENA 2012, MEC+ Analysis
LOW MATERIAL COSTS
• Lesser quantity of materials
• Use of Cheaper Material
1
OTHER ADVANTAGES
• Noise mitigation regulations compliance
• Easier decommissioning
• Reusable designs
3
INSTALLATION COSTS
• Less installation time
• No use of expensive installation vessels
2
INTRODUCTION
21%
18%
22%
100%
Wind
Turbine
Foundation
Grid
Connection
Planning &
Miscellaneous
Cost breakup of
OW Installation
39%
Others
100%
Cost Breakup of
OW Foundation
Installation
Cost
Material
Cost
100
15-20%
15-25%
50-60%
Foundations are a large
investment on a farm level
Costs are divided into three
major components
New designs are being offered in the market which
lower the cost
5
Three new designs have been considered to compare their cost effectiveness against the
conventional monopiles and jackets
Jacket
CraneFree Gravity
(CFG)
Suction Bucket Jacket
(SBJ)
Mono Suction Bucket
(MSB)
Source: Windpower.net, Company websites, News articles, MEC+ analysis
Monopile
Structural Design Column of steel
Steel lattice frame
with piles
Concrete base
with steel column
Steel lattice with
bucket in bottom
Steel bucket with
column on top
• London Array, UK
• Horn Rev I, DK
• Nordsee One, DE
• Egmond aan Zee, NL
Prototype at:
• Borkum Riffgrund 1
• Ormonde, UK
• Alpha Ventus, DE
• Thronton Bank, BE
• Beatrice, UK
Prototype at:
• Fecamp, FR
Prototype at:
• Dogger Bank, UK
• Frederikshavn, DKProminent Projects
The three new innovative designs considered for the analysis, benchmark their two main advantages:
• Material cost effectiveness
• Alternative installation techniques and cost savings
INTRODUCTION
• Easier to fabricate
• Cutting and Rolling of
steel
• Complex design,
difficult to fabricate
• Requires intensive
welding at joints
• Difficult to fabricate
• Requires extensive
welding at joints
• Requires fabrication
yard to be setup at port
for mass production
• Intricate design but
relatively easier to
fabricate due to
symmetrical design
Fabrication
• Installation through
OW construction
vessels with significant
lifting capabilities
• Requires drilling/pilling,
grouting, scour
protection
• Installation through
OW construction
vessels with significant
lifting capabilities
• Requires drilling/piling,
grouting, scour
protection
• Requires OW
construction vessels
with significant lifting
capabilities
• Installation through
suction action of three
suction pumps working
in tandem
• Installation through
Tugboats and position
assisting OW vessels
• Requires sand
ballasting, scour
protection
• Installation through
Tugboats, OW
construction vessels;
through specialized
suction pumpInstallation
Commercial Designs New Designs
6
Material and installation costs are the largest cost constituents with 65-85 % share of the total cost
and have been considered in this study
Indicative cost breakup of a typical OW foundation
Note: Cost shares vary in a broad range due to varying foundation design, risks and insurances based on local industries experience, and contracting models
* Game changers refers to large cost shares which have potential to change the COST based analysis
Source: MEC+ analysis
Material used to
manufacture the
foundation, e.g.
• Different types of
steel
• Concrete
• Others
Installation at
offshore site using
• Installation
vessels
• Drilling/pilling/
suction pumps,
• Sand ballasting,
Grouting, Scour
protection
• Others
• Noise mitigation
• Onshore logistics
• Sea-fastening
• Risk premiums
• Insurances
• Profit margins
Out of Scope
Depend on market factors, driven by
local needs
Material Cost
50-60%
Total
100%
15-25%
Installation Cost Other costs Market Costs
5%
15-20%
INTRODUCTION
In Scope
Depend on design
Includes costs that are
due to design advantages
but are not ‘game
changer’* in light of
comparisons
• Noise mitigation
• Decommissioning
7
Material cost depends upon the quantities and unit prices of variable types of materials
used in the foundations
Source: Scholar articles and thesis from various research institutions, Industry expert inputs, foundation manufacturers, MEC+ analysis
Monopile,
Transition
piece
-4 pre-piles Top
cylindrical
structure, bottom
skirt
Top
shaft
Primary Steel
- Jacket body,
3 suction
buckets
Jacket body,
Transition
piece
- Bottom bucket,
middle inter-
connecting lid
Higher Grade
Primary Steel
Boat-
landing, J-
tubes, platforms
etc.
Boat
landing, J-
tubes, platforms
etc.
Boat
landing, J-
tubes, platforms
etc.
Boat
landing, J-
tubes, platforms
etc.
Boat
landing, J-
tubes, platforms
etc.
Secondary Steel
- -- Bottom
cement
gravity structure
-
Concrete
- -- Sand
ballasting
material: 62.500
EUR/foundation
-
Miscellaneous
1.600
3.200-4.500
7.800
170
MATERIAL COST ANALYSIS
Low
High
Jacket
CraneFree
Gravity (CFG)
Suction Bucket
Jacket (SBJ)
Mono Suction
Bucket (MSB)Monopile
Unit Rate
(EUR per tonne)
Relative
quantity used
Materials
Utilisation in designMaterial Cost
8
The quantity of material used in foundation is driven mainly by the depth of the seabed and turbine
size
• Material cost has been
analyzed as a variation of the
depth of the seabed and
turbine size
• Factors like physical conditions
of the site have been
considered too, though
affecting the cost marginally
10 20 30 40 50 60
2.500
0
5.000
10 20 30 40 50 60
3.000
0
Depth of the seabed
Turbine Size
Others
• Physical condition e.g.
Seabed, Weather
• No. Of Foundations
• Physical soil conditions have very little effect
on the weight of the foundation
• No. Of foundations contribute only as the
economy of scale factor and are highly
variable according to the contracting model
Weight comparison of the foundation types
Tonne
MATERIAL COST ANALYSIS
SBJ
Monopile (8 MW)
Jacket (6 MW)
MSB
Jacket (8 MW)
Monopile (6 MW)
CFG
Various factors affect the weight
of the foundation and in turn the
material cost
9
For 6 MW, new foundations have ~4-20% lower material cost when compared to monopiles &
jackets
Steel quantity* for different foundation designs for 6 MW
Tonnes
Note: CFG uses steel in upper cone, cylindrical tower and reinforced bars for concrete cone. The steel quantity graph excludes the reinforced bars. Steel tonnage for CFG not
available for >4MW turbine sizes;
* Monopile’s steel tonnage includes monopile, TP and secondary structures; Jacket includes lattice structure, TP, pre-piles, secondary structure; MSB includes bucket/skirt,
lid, shaft, secondary structure; SBJ includes 3 buckets, lattice structure, secondary structure
Source: MEC+ analysis
Depth (in m)
10 20 30 40 50 60
0
3.000
2.000
1.000
Tonnes
JacketMonopile SBJMSB
10 20 30 40 50 60
0
7
6
5
4
3
2
1
-20%
-4%
EUR mil.
Total material cost for different foundation designs for 6 MW
Euro millions per foundation
SBJMSBCFGJacketMonopile
MATERIAL COST ANALYSIS
Introduction of
XL/XXL monopiles
By weight, the new designs are similar to monopiles and jackets (up
to 30 m)…
..While the cost reflects a different trend due to variable mix of
material component
10
For turbine sizes 8 MW and larger, new designs reduce the cost by ~21-24%
Note: CFG uses steel in upper cone, cylindrical tower and reinforced bars for concrete cone. The steel quantity graph excludes the reinforced bars. Steel tonnage for CFG not
available for >4MW turbine sizes;
* Monopile’s steel tonnage includes monopile, TP and secondary structures; Jacket includes lattice structure, TP, pre-piles, secondary structure; MSB includes bucket/skirt,
lid, shaft, secondary structure; SBJ includes 3 buckets, lattice structure, secondary structure
Source: MEC+ analysis
Steel quantity* for different foundation designs for 8 MW
Tonnes
Total material cost for different foundation design for 8 MW
Euro millions per foundation
Depth (in m)
10 20 30 40 50 60
3.000
2.000
1.000
0
Tonnes
SBJMSBJacketMonopile
10 20 30 40 50 60
5
4
3
2
1
7
6
0
-21%
-24%
EUR mil.
SBJMSBCFGJacketMonopile
MATERIAL COST ANALYSIS
Introduction of
XL/XXL monopiles
Even with larger turbine to support, new designs have steadier
weight trends, while monopile weight increases exponentially..
…which is reflected in material cost as new designs could be cost
effective
11
Installation cost depends on the various processes, unique to each foundation design,
affecting its installation duration and cost
* Days are estimated based on assumption that there are no delays like supply chain delays, unavailability of vessels/boats
Source: Seatower, Universal foundations, Dong Energy, DTU, MEC+ analysis
Brief description on installation concept and number of days required
• New foundation
designs can be
installed in 1-3 days-
decreasing the total
time for installation of
foundations
• The OW farm can
therefore be installed
in shorter
construction
schedules saving cost
and faster generation
of revenues
Total Days
Installation Process
Duration
Cost
INSTALLATION COST ANALYSIS
Pilling
Upending/
Lowering
Drilling GroutingSuction
Sand
Ballasting
Scour
Protection

















2-3
2-3*
4-6
1-2*
1-2*
Stability Ensuring Process
High
Low
 Required
12
Installation cost do not vary much as compared to the material cost, but can be a bottleneck in timely
execution of the OW farm
• Installation cost is a minor factor
approx. 5- 25 % of the material
cost for a typical** farm
configurations
• Therefore, its minor variation
does not affect the cost trend
obtained from material cost
• However, farm construction
duration and installation cost are
significantly affected by the
vessel availability in market
necessitating easier installation
concept
Installation cost range compared to material costs
for a single foundation for variable configurations*
* Configuration used for determining cost: Turbine size= 6 & 8 MW, Depth= 0 to 60 m, Distance= 0 to 90 km, Seabed= soft for pilling & rocky for drilling, Wind farm size = 50-100
** Configuration for calculating typical cost: Turbine size= 6 MW, Depth= 30 m, Distance= 0 -30 km Seabed= soft, Wind farm size = 50-100
Source: MEC+ analysis
4,0
3,0
2,0
1,0
0,0
0,5
2,5
1,5
3,5
4,5
Euro millions
per foundation
SBJMSBCFGJacketMonopile
Installation cost has been estimated
based on the variation across
following factors
• Installation Concepts-
– Feeder concept- transit through
barges or floating pulled by
tugboats and/or installation via
installation vessel
– Installation vessels for end to end
installation
• Turbine size & depth of the seabed
determining the foundation weight,
crane capacity, and therefore vessel
day-rate
• No. of days of foundation
installation
• Seabed type determining the need
for pilling or drilling
• Distance from the shore
determining transit time
INSTALLATION COST ANALYSIS
Typical** Material Cost for 6 MW
Installation* cost range
13
New foundation designs can reduce the installation cost by ~50% as compared to the conventional
designs
Indicative installation cost in for different foundation types*
Euro millions per Foundation
* All calculations done for base case configuration (Turbine size = 6MW, Depth = 30 m, Distance = 0-30 km, Sea Type = North Sea, Wind farm size = 50-100, Seabed = Soft)
Source: MEC+ analysis
0,31
MSB CFG
0,56
MonopileJacket
0,42
0,33
0,27
SBJ
EUR mil
0,19
(50%)
INSTALLATION COST ANALYSIS
Average for
conventional designs
Average for new
designs
New foundations have drastically lower
installation cost mainly due to the
cumulative effect of
− Less number of installation days
− Less expensive vessels
corresponding to lower lifting
capacity required or not needed at
all
14
Cumulative cost of material and installation indicates that new foundations could be a more cost
effective solution than traditional designs for higher turbine sizes and greater depths
10 20 30 40 50 60
7
6
5
4
3
2
1
0
EUR mil.
6 MW 8 MW
Depth (in m)
• For a 6 MW turbine, CFG and MSB would offer cost advantage than the conventional Monopile and Jacket foundations at depths > 30m
• CFG, a gravity based design could potentially be the most economical foundation design at all depths for turbine sizes > 6MW
Total cost for different foundation types*
Euro Millions / foundation
Note: *All calculations done for base case configuration (Distance = 0-30 km, Sea Type = North Sea, Wind farm size = 50-100, Seabed = Soft)
Source: MEC+ analysis
10 20 30 40 50 60
4
3
2
1
0
7
6
5
EUR mil.
SBJMSBCFGJacketMonopile
COST ANALYSIS
15
Most cost effective offshore wind foundations across different project configurations
Mono-suction bucket is cost effective for 4-6 MW turbine size at lower to
medium depths, while CraneFree Gravity is most suitable for even larger
turbines at medium to larger depths
Note: 1. Cost includes mainly material cost, seabed preparation costs, installation costs. However, cost doesn’t include EPC margins, profits, insurance costs, manpower expenses,
transportation costs incurred from manufacturing location to the port
2. CFG is not applicable for depth <15 m, as the structure would be too light to be stable at lower depths
3. All calculations done for base case configuration (Distance = 0-30 KM, Sea Type = North Sea, Wind farm size = 50 - 100, Seabed = Soft)
* The cost reduction potential has been estimated based on the comparison of the lowest cost design to the monopile cost for depths <30 m and with jacket cost for
depths >30 m
Cost Reduction* Potential
10MW8MW6MW4MW
10 m 20 m 60 m50 m40 m30 m
Depth
Turbinesize
COST EFFECTIVE FOUNDATION
05-10%
10-15%
15-20%
20-25%
>25
Figure in the grid depicts the lowest cost foundation (within 10% error margin)
16
Inch Cape, United Kingdom
Seabed: Soft
No. of turbines: 213
Distance: 22 KM
Turbine size: 5 MW
Average depth: 47,5
m (40 – 55 m)
SBJ 5,7
MSB 4,2
CFG 3,6
J 4,3
M 4,7
Transport and Installation
Seabed Prep
Material
Baltic Blue C, Estonia*
Seabed: Rocky
No. of turbines: 60
Distance: 6,7 KM
Turbine size: 7 MW
Average depth: 30 m
(24 - 36 m)
SBJ 0,0
MSB 0,0
CFG 3,4
J 4,0
M 4,6
Wikinger, Germany
Seabed: Soft
No. of turbines: 70
Distance: 35 KM
Turbine size: 6 MW
Average depth: 35m
(25 - 45 m)
SBJ 4,7
MSB 2,8
CFG 3,3
J 3,6
M 3,4
Oost Friesland, Netherlands
Seabed: Soft
No. of turbines: 90-150
Distance: 23 KM
Turbine size: 4 MW
Average depth: 20 m
SBJ 3,8
MSB 2,3
CFG 2,9
J 2,8
M 2,7
Saint-Nazaire, France
Seabed: Medium
No. of turbines: 80
Distance: 12 KM
Turbine size: 6 MW
Average depth: 17,5
m
4,3
MSB
SBJ
2,6
CFG 3,1
J 3,2
M 3,0
Different foundations will be attractive for different farm configurations. Cost simulation results for some upcoming OW farms in Europe are presented below
Total cost per foundation (EUR Millions)
EUROPE - KEY PROJECTS AND FOUNDATION COSTS
Note: This mapping is based on the results of the cost simulation model built by MEC+, Transportation cost is computed from the nearest manufacturer
*Since practical application of the suction bucket concepts in rocky seabed are highly unlikely, the cost comparisons are therefore not shown
Source: MEC+ analysis, The Wind Power database
Cost reduction potential of 5-15% is observed for foundations at select 5 farms in
Europe
17
Developers need to manage risk and other associated premium costs with appropriate
contracting High
Low
* The definition of risks is limited to systematic project risks inherent in the business and excludes unexpected weather, geotechnical & political risks
** Suitability is based on the key need to manage risk at project level for the developer or contractor
Source: MEC+ analysis
RISK ANALYSIS
Value proposition
to developer
Suitable
foundation**
Construction
contracts are given
out in packages of
turbines,
foundations, etc
Brief Description
Project owner signs
many contracts
within each
segment, while
managing the
project
Construction
management is
out sourced
One contract for
the entire project
Package EPC
Contracting
Structure
Multi contract
EPCM
Project EPC
Benefits to the developer
Risk* Cost
No risk premium
attached and has
full project control
Limited EPC
capabilities
needed, which
takes time and are
costly to develop
Sub package risks
are with the
supplier and
limited risk
premium and
project control
Limited EPC
capabilities
needed, which
takes time and are
costly to develop
18
– Currently there are 43 installation vessels suitable for offshore wind construction in EU; daily rate ranges between EUR 70k to
290k
– The current vessel days are just enough to meet the demand from conventional foundations
– In <800 tonne lifting category, new foundations eliminate the need for higher capacity vessel to meet the increase
– In, 800-1200 tonne lifting category, new foundation adoption increases the vessel oversupply by 141% percent by 2020
– In >1200 tonne lifting category, new foundations increase the vessel oversupply by 32% percent by 2020
New foundation
designs could
lead to major
oversupply in the
vessels market
II
New foundation designs could be cost effective as compared to conventional designs and also
reduce vessel demand for construction
Source: MEC+ analysis
SUMMARY
– Foundation cost are primary driven by Material and installation costs with 65-85 % share of the total cost and have
been considered in this study
– New foundation designs have lower costs as turbines become larger and installed in deeper sea
– For 6 MW, new foundations are ~4-20% lower in material cost when compared to monopiles & jackets while for turbine
sizes 8 MW and larger, new designs reduce the cost by ~21-24%
– Installation cost does not vary much in comparison to material costs, but can be a bottleneck in timely execution of the
OW farm. New foundation designs can reduce the installation cost by ~50% as compared to the conventional designs
– Mono-suction bucket is cost effective for 4-6 MW turbine size at lower to medium depths, while CraneFree Gravity is
most suitable for even larger turbines at medium to larger depths
– Cost reduction potential of 5-15% is observed for foundations at select 5 farms in Europe. However, developers need to
manage risk and other associated premium costs with appropriate contracting
New foundation
designs could be
10 percent to 30
percent cheaper
as compared to
conventional
designs
I
19
Currently there are 43 installation vessels suitable for offshore wind construction in EU; daily rate
ranges between EUR 70k to 290k
Source: Ballast Nedam, IT Power UK, Windpower Offshore, News articles and research papers, MEC+ analysis
Supply of OW vessels in Europe
# of vessels by lifting categories
VESSEL DEMAND-SUPPLY
0
2
4
6
8
10
12
14
>20001600-20001200-1600800-1200400-8000-400
Cranes(Sheerleg+Monohull)
HLV(HLVs+WIVs)
Jack Ups(Vessels+Barges)
Lifting capacity in tonnes
0,30
0,00
0,25
0,15
0,20
0,05
0,10
>20001600-20001200-1600800-1200400-8000-400
Day rate range
Day rates of OW vessels in EU
Indicative day rates in EUR mil.
Lifting capacity in tonnes
EUR
millions
20
The planned OW pipeline is prone unavailability risk of appropriate installation vessel, if conventional
foundations are considered to scale with expected demand thereby impacting costs
10.000
5.000
0
2020
2.006
2019
7.670
2018
4.569
2017
3.703
2016
3.029
2015
2.089
6.494
00
2020
2.779
20192018
5.609
2017
1.595
2016
4.060
2015
3.212
001360
721
2015
2.920
20202019201820172016
3.534
800 - 1200 tonne0 - 800 tonne >1200 tonne
Scenario I: Vessel supply demand based on installation of only conventional designs
In Vessel Days
Minor Shortfall
• Can be met with higher capacity
cranes at higher cost
Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has
been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered.
Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year
Source: Windpower, Wind energy update, NREL, Offshore Wind Energy Cost Modelling By Mark J Kaiser, Brian F Snyde, MEC+ analysis
Crane lifting
capacity
VESSEL DEMAND-SUPPLY
Shortfall
• Can be met with higher capacity
cranes at high cost
• Prone to project delays
Minor Shortfall
• Cannot be met with the existing fleet
• Most likely to cause project delays
• Alternate: use multple support vessels
to ensure timely execution
SupplyDemand
21
In <800 tonne lifting category, though the demand is less than supply except slight increase in 2019,
new foundations eliminate the need for higher capacity vessel to meet the increase
3.000
2.000
1.000
0
-1.000
-2.000
-3.000
-4.000
-5.000
-4.405
2020
-4.223
2019
-2.462
2018
-2.037
2017
-3.471
2016
-3.465
2015
Demand-supply analysis for 0-800 T lifting capacity vessels
In Vessel Days
Supply
Shortage
Excessive
Supply
VESSEL DEMAND-SUPPLY
2.000
1.000
3.000
0
-1.000
-2.000
-3.000
-4.000
-5.000
-3.465
-2.791
2016 2017 2018
-1.925
2015
-4.405
2019
1.176
2020
-4.488
Scenario 2:
Most cost effective foundation is considered; including the innovative
foundations; post 2017*
Scenario 1:
Conventional designs are installed in the planned OW farms till 2020
Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has
been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Average days for installation of new foundation
designs is 2. CFG does not require a lifting vessel
Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year
Source: MEC+ analysis
New foundation
designs considered
22
In, 800-1200 tonne lifting category, vessel demand declines significantly post 2016 due to the
introduction of new foundations, reducing risk of cost overruns by using higher capacity vessels
Demand-supply analysis for 800-1200 T lifting capacity vessels
In Vessel Days
VESSEL DEMAND-SUPPLY
848
-433
-5.000
3.000
2.000
1.000
0
-1.000
-2.000
-3.000
-4.000
-3.212
20202019
-3.212
2018
2.397
2017
-1.617
20162015
Scenario 2:
Most cost effective foundation is considered; including the innovative
foundations; post 2017*
Scenario 1:
Conventional designs are installed in the planned OW farms till 2020
Supply
Shortage
Excessive
Supply
848
3.000
-5.000
1.000
2.000
0
-1.000
-2.000
-3.000
-4.000
2020
-2.940
2019
-3.212
2018
-2.151
2017
-1.945
20162015
-3.212
Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has
been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Average days for installation of new foundation
designs is 2. CFG does not require a lifting vessel
Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year
Source: MEC+ analysis
New foundation
designs considered
23
In >1200 tonne lifting category, marginal high demand in 2017 could be reduced by new foundation
designs and no supply risk would be envisaged, preventing the minor delay risk expected
Demand-supply analysis for > 1200 T lifting capacity vessels
In Vessel Days
VESSEL DEMAND-SUPPLY
3.000
2.000
1.000
0
-1.000
-2.000
-3.000
-4.000
-5.000
2020
-2.920
2019
-2.920
2018
-2.199
2017
614
2016
-2.784
2015
-2.920
Supply
Shortage
Excessive
Supply
Scenario 2:
Most cost effective foundation is considered; including the innovative
foundations; post 2017*
Scenario 1:
Conventional designs are installed in the planned OW farms till 2020
3.000
2.000
1.000
0
-1.000
-2.000
-3.000
-4.000
-5.000
2020
-2.920
2019
-2.920
2018
-2.920
2017
-2.838
2016
-2.784
2015
-2.920
Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has
been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Average days for installation of new foundation
designs is 2. CFG does not require a lifting vessel
Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year
Source: MEC+ analysis
New foundation
designs considered
24
Abbreviations used
• OW Offshore Wind
• EPC Engineering, Procurement and Construction
• T ton (= 1000 kg)
• TP Transition piece
• EUR Euro
• MP Monopiles
• J Jackets
• CFG CraneFree Gravity
• MSB Mono Suction Bucket
• SBJ Suction Bucket Jacket
• m metre
• KM Kilometre
• NM Nautical mile
• GW/MW Giga / Mega Watt
All numbers are in European number format
APPENDIX
25
References and Disclaimer
This report has been prepared by MEC Intelligence using a wide range of resources and databases. MEC Intelligence’s internal databases on OW farms and OW
installation vessels have been the base for the analysis. Extensive secondary research through continues wind industry monitoring through news and press
releases, primary research with OW EPC contractors, foundation designers, vessel operators and independent OW experts in the industry have all contributed to
the depth of the analysis conducted.
For any further queries, please contact:
Jacob Jensen Sidharth Jain
(jj@mecintelligence.com) (sidharth@mecintelligence.com)
MEC Intelligence Denmark MEC Intelligence India
Nordre Fasanvej 113, 2 112, Udyog Vihar Phase 4
2000 Frederiksberg 122015 Gurgaon
Copenhagen, Denmark Haryana, India
www.mecintelligence.com www.mecintelligence.com
Disclaimer
The information contained herein has been obtained from sources believed to be reliable. MEC Intelligence disclaims all warranties as to the accuracy,
completeness or adequacy of such information. MEC Intelligence shall have no liability for errors, omissions or inadequacies in the information contained herein or
for the interpretation thereof. Therefore MEC is not liable for any indirect, incidental, consequential damage or loss of revenues or profits in any case.
APPENDIX
26
MEC+ experience and resources are a valuable asset for insights in offshore wind strategy decisions
MEC EXPERIENCE – QUALITY ASSURANCE ON CRITICAL DECISIONS
MEC+ provides insights by combining its granular data, cost and forecasting models, and primary information along with deep experience and understanding
of players and concepts. Client assurance is guaranteed in the results with high-touch transparent processes.
MEC+ has done more than 60 analyses in the offshore wind industry covering demand, supply, business models for contracting strategies, WTG, foundations,
cables, vessels, installation concepts, and O&M
Expert contacts
Our work has led to a strong network of
relations with industry experts who have
deep offshore experience.
Relevant experience & Concepts
We have worked extensively on and
developing concepts within Cost of
Energy, Pipeline, Procurement, ,
construction management and O&M.
Our reputation and trust has been
built on our knowledge and very
structured and transparent process.
-
Farm Level Data (Operation) and Proven
cost and forecasting models
We have an extensive library of in-house and
high-quality third-party offshore wind data
which we update regularly – 1) wind farms,
2) turbine technology 3)foundation & electrical
systems technology 4) historic costs and
benchmarks 5) cost and forecasting models
-MEC+ approach
leverages the rich
resources that the
firm has access to
27
The team at MEC Intelligence has published industry leading reports on the maritime, energy and clean-tech industries.
In addition, multiple insights have been published to provide perspectives on the market.
MEC Intelligence || Offshore Wind Reports
MEC WIND REPORTS

Mais conteúdo relacionado

Mais procurados

E profiil references
E profiil referencesE profiil references
E profiil referencesheavyindustry
 
Maximizing Profit of Steel Production by Integrated Optimisation Technology
Maximizing Profit of Steel Production by Integrated Optimisation TechnologyMaximizing Profit of Steel Production by Integrated Optimisation Technology
Maximizing Profit of Steel Production by Integrated Optimisation TechnologyN-SIDE
 
Loksa Shipyard presentation
Loksa Shipyard presentationLoksa Shipyard presentation
Loksa Shipyard presentationLoksaShipyard
 
Future Shipbuilding & Offshore Opportunities in Myanmar Shipyards
Future Shipbuilding & Offshore Opportunities in Myanmar ShipyardsFuture Shipbuilding & Offshore Opportunities in Myanmar Shipyards
Future Shipbuilding & Offshore Opportunities in Myanmar ShipyardsDr. Oliver Massmann
 
Sustainability of Corrugated Steel Pipe
Sustainability of Corrugated Steel PipeSustainability of Corrugated Steel Pipe
Sustainability of Corrugated Steel PipeKyle Hardy
 
Get Fit For The Future - Dry Ore Comminution Technology
Get Fit For The Future - Dry Ore Comminution TechnologyGet Fit For The Future - Dry Ore Comminution Technology
Get Fit For The Future - Dry Ore Comminution TechnologyLOESCHE
 

Mais procurados (6)

E profiil references
E profiil referencesE profiil references
E profiil references
 
Maximizing Profit of Steel Production by Integrated Optimisation Technology
Maximizing Profit of Steel Production by Integrated Optimisation TechnologyMaximizing Profit of Steel Production by Integrated Optimisation Technology
Maximizing Profit of Steel Production by Integrated Optimisation Technology
 
Loksa Shipyard presentation
Loksa Shipyard presentationLoksa Shipyard presentation
Loksa Shipyard presentation
 
Future Shipbuilding & Offshore Opportunities in Myanmar Shipyards
Future Shipbuilding & Offshore Opportunities in Myanmar ShipyardsFuture Shipbuilding & Offshore Opportunities in Myanmar Shipyards
Future Shipbuilding & Offshore Opportunities in Myanmar Shipyards
 
Sustainability of Corrugated Steel Pipe
Sustainability of Corrugated Steel PipeSustainability of Corrugated Steel Pipe
Sustainability of Corrugated Steel Pipe
 
Get Fit For The Future - Dry Ore Comminution Technology
Get Fit For The Future - Dry Ore Comminution TechnologyGet Fit For The Future - Dry Ore Comminution Technology
Get Fit For The Future - Dry Ore Comminution Technology
 

Semelhante a 2015 Foundations for larger and deeper Offshore Wind

Which foundation type is the most cost-effective for larger wind turbines?
Which foundation type is the most cost-effective for larger wind turbines?Which foundation type is the most cost-effective for larger wind turbines?
Which foundation type is the most cost-effective for larger wind turbines?Torben Haagh
 
Adu all energy diversification 160505
Adu all energy diversification 160505Adu all energy diversification 160505
Adu all energy diversification 160505BVG Associates
 
Spreading the risk, piling up the opportunities - offshore wind diversification
Spreading the risk, piling up the opportunities - offshore wind diversification Spreading the risk, piling up the opportunities - offshore wind diversification
Spreading the risk, piling up the opportunities - offshore wind diversification StephenGeoMills
 
Rotor Blades: The use of composites in rotor blade design
Rotor Blades: The use of composites in rotor blade designRotor Blades: The use of composites in rotor blade design
Rotor Blades: The use of composites in rotor blade designTorben Haagh
 
Innovation landscape All Energy 2017
Innovation landscape All Energy 2017Innovation landscape All Energy 2017
Innovation landscape All Energy 2017BVG Associates
 
Visite du parc éolien Thorntonbank - Introduction to offshore wind
Visite du parc éolien Thorntonbank - Introduction to offshore windVisite du parc éolien Thorntonbank - Introduction to offshore wind
Visite du parc éolien Thorntonbank - Introduction to offshore windCCILVN
 
Romax consulting: De-risking investment in the wind industry by Yann Rageul
Romax consulting: De-risking investment in the wind industry by Yann RageulRomax consulting: De-risking investment in the wind industry by Yann Rageul
Romax consulting: De-risking investment in the wind industry by Yann RageulYann Rageul
 
Lcoe offshore
Lcoe offshoreLcoe offshore
Lcoe offshoreinesgs
 
OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...
OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...
OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...Pieter Jan Jordaens
 
Installation challenges
Installation challengesInstallation challenges
Installation challengesAndrea Intieri
 
Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...
Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...
Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...Torben Haagh
 
Offshore structures plate market
Offshore structures plate marketOffshore structures plate market
Offshore structures plate marketAndrey Deryugin
 
ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...
ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...
ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...IRJET Journal
 
ROTOPILE - Helical Piles
ROTOPILE - Helical PilesROTOPILE - Helical Piles
ROTOPILE - Helical PilesRotopileLda
 
Concrete wind towers: a low-tech innovation for a high-tech sector
Concrete wind towers: a low-tech innovation for a high-tech sectorConcrete wind towers: a low-tech innovation for a high-tech sector
Concrete wind towers: a low-tech innovation for a high-tech sectorRomeu Gaspar
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plantKrishna Teja
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plantKrishna Teja
 
STUDY OF HYDRO FORMING PROCESS
STUDY OF HYDRO FORMING PROCESSSTUDY OF HYDRO FORMING PROCESS
STUDY OF HYDRO FORMING PROCESSChetan Patil
 
2. sunum alliances and trends&developments in MARITIME
2. sunum alliances and trends&developments in MARITIME2. sunum alliances and trends&developments in MARITIME
2. sunum alliances and trends&developments in MARITIMEBARITEMEL
 

Semelhante a 2015 Foundations for larger and deeper Offshore Wind (20)

Which foundation type is the most cost-effective for larger wind turbines?
Which foundation type is the most cost-effective for larger wind turbines?Which foundation type is the most cost-effective for larger wind turbines?
Which foundation type is the most cost-effective for larger wind turbines?
 
Adu all energy diversification 160505
Adu all energy diversification 160505Adu all energy diversification 160505
Adu all energy diversification 160505
 
Spreading the risk, piling up the opportunities - offshore wind diversification
Spreading the risk, piling up the opportunities - offshore wind diversification Spreading the risk, piling up the opportunities - offshore wind diversification
Spreading the risk, piling up the opportunities - offshore wind diversification
 
Rotor Blades: The use of composites in rotor blade design
Rotor Blades: The use of composites in rotor blade designRotor Blades: The use of composites in rotor blade design
Rotor Blades: The use of composites in rotor blade design
 
Innovation landscape All Energy 2017
Innovation landscape All Energy 2017Innovation landscape All Energy 2017
Innovation landscape All Energy 2017
 
Visite du parc éolien Thorntonbank - Introduction to offshore wind
Visite du parc éolien Thorntonbank - Introduction to offshore windVisite du parc éolien Thorntonbank - Introduction to offshore wind
Visite du parc éolien Thorntonbank - Introduction to offshore wind
 
Romax consulting: De-risking investment in the wind industry by Yann Rageul
Romax consulting: De-risking investment in the wind industry by Yann RageulRomax consulting: De-risking investment in the wind industry by Yann Rageul
Romax consulting: De-risking investment in the wind industry by Yann Rageul
 
Lcoe offshore
Lcoe offshoreLcoe offshore
Lcoe offshore
 
OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...
OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...
OWI-Lab presentation - Cleantech Noctrune Powerlink - Blue Energy: a new oppo...
 
Installation challenges
Installation challengesInstallation challenges
Installation challenges
 
Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...
Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...
Vattenfall: Challenges for next generation offshore WTGs from a developer’s p...
 
Offshore structures plate market
Offshore structures plate marketOffshore structures plate market
Offshore structures plate market
 
ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...
ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...
ANALYSIS OF VERTICAL AXIS WIND TURBINE WITH INCREASING THE NUMBER OF BLADES A...
 
Presentation FFFT
Presentation FFFTPresentation FFFT
Presentation FFFT
 
ROTOPILE - Helical Piles
ROTOPILE - Helical PilesROTOPILE - Helical Piles
ROTOPILE - Helical Piles
 
Concrete wind towers: a low-tech innovation for a high-tech sector
Concrete wind towers: a low-tech innovation for a high-tech sectorConcrete wind towers: a low-tech innovation for a high-tech sector
Concrete wind towers: a low-tech innovation for a high-tech sector
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
STUDY OF HYDRO FORMING PROCESS
STUDY OF HYDRO FORMING PROCESSSTUDY OF HYDRO FORMING PROCESS
STUDY OF HYDRO FORMING PROCESS
 
2. sunum alliances and trends&developments in MARITIME
2. sunum alliances and trends&developments in MARITIME2. sunum alliances and trends&developments in MARITIME
2. sunum alliances and trends&developments in MARITIME
 

Mais de MEC Intelligence

MEC+ World Food Programme Contribution
MEC+ World Food Programme ContributionMEC+ World Food Programme Contribution
MEC+ World Food Programme ContributionMEC Intelligence
 
Floating Offshore Wind-Ready for commercialization?
Floating Offshore Wind-Ready for commercialization?Floating Offshore Wind-Ready for commercialization?
Floating Offshore Wind-Ready for commercialization?MEC Intelligence
 
Next generation opportunities in utility scale solar
Next generation opportunities in utility scale solarNext generation opportunities in utility scale solar
Next generation opportunities in utility scale solarMEC Intelligence
 
Emergence of-hybrid-renewable-energy-systems
Emergence of-hybrid-renewable-energy-systemsEmergence of-hybrid-renewable-energy-systems
Emergence of-hybrid-renewable-energy-systemsMEC Intelligence
 
2014 Perspective on US Offshore Wind
2014 Perspective on US Offshore Wind2014 Perspective on US Offshore Wind
2014 Perspective on US Offshore WindMEC Intelligence
 
2011 electric vehicles market study
2011 electric vehicles market study2011 electric vehicles market study
2011 electric vehicles market studyMEC Intelligence
 
2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUELMEC Intelligence
 

Mais de MEC Intelligence (9)

MEC+ World Food Programme Contribution
MEC+ World Food Programme ContributionMEC+ World Food Programme Contribution
MEC+ World Food Programme Contribution
 
Floating Offshore Wind-Ready for commercialization?
Floating Offshore Wind-Ready for commercialization?Floating Offshore Wind-Ready for commercialization?
Floating Offshore Wind-Ready for commercialization?
 
Next generation opportunities in utility scale solar
Next generation opportunities in utility scale solarNext generation opportunities in utility scale solar
Next generation opportunities in utility scale solar
 
Emergence of-hybrid-renewable-energy-systems
Emergence of-hybrid-renewable-energy-systemsEmergence of-hybrid-renewable-energy-systems
Emergence of-hybrid-renewable-energy-systems
 
2014 Perspective on US Offshore Wind
2014 Perspective on US Offshore Wind2014 Perspective on US Offshore Wind
2014 Perspective on US Offshore Wind
 
2013 Offshore Wind China
2013 Offshore Wind China2013 Offshore Wind China
2013 Offshore Wind China
 
2012 offshore wind cables
2012 offshore wind cables2012 offshore wind cables
2012 offshore wind cables
 
2011 electric vehicles market study
2011 electric vehicles market study2011 electric vehicles market study
2011 electric vehicles market study
 
2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL
 

Último

Book Sex Workers Available Pune Call Girls Khadki 6297143586 Call Hot Indian...
Book Sex Workers Available Pune Call Girls Khadki  6297143586 Call Hot Indian...Book Sex Workers Available Pune Call Girls Khadki  6297143586 Call Hot Indian...
Book Sex Workers Available Pune Call Girls Khadki 6297143586 Call Hot Indian...Call Girls in Nagpur High Profile
 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayGeorgeDiamandis11
 
Koregaon Park ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Read...
Koregaon Park ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Read...Koregaon Park ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Read...
Koregaon Park ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Read...tanu pandey
 
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...ranjana rawat
 
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...kauryashika82
 
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...SUHANI PANDEY
 
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...SUHANI PANDEY
 
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts ServicesBOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Servicesdollysharma2066
 
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...tanu pandey
 
Enhancing forest data transparency for climate action
Enhancing forest data transparency for climate actionEnhancing forest data transparency for climate action
Enhancing forest data transparency for climate actionRocioDanicaCondorGol1
 
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Standkumarajju5765
 
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...Anamikakaur10
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...AICCRA
 
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756dollysharma2066
 
RA 7942:vThe Philippine Mining Act of 1995
RA 7942:vThe Philippine Mining Act of 1995RA 7942:vThe Philippine Mining Act of 1995
RA 7942:vThe Philippine Mining Act of 1995garthraymundo123
 
Book Sex Workers Available Pune Call Girls Kondhwa 6297143586 Call Hot India...
Book Sex Workers Available Pune Call Girls Kondhwa  6297143586 Call Hot India...Book Sex Workers Available Pune Call Girls Kondhwa  6297143586 Call Hot India...
Book Sex Workers Available Pune Call Girls Kondhwa 6297143586 Call Hot India...Call Girls in Nagpur High Profile
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 

Último (20)

Book Sex Workers Available Pune Call Girls Khadki 6297143586 Call Hot Indian...
Book Sex Workers Available Pune Call Girls Khadki  6297143586 Call Hot Indian...Book Sex Workers Available Pune Call Girls Khadki  6297143586 Call Hot Indian...
Book Sex Workers Available Pune Call Girls Khadki 6297143586 Call Hot Indian...
 
(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7
(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7
(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7
 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting Day
 
Koregaon Park ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Read...
Koregaon Park ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Read...Koregaon Park ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Read...
Koregaon Park ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Read...
 
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Shirwal 8250192130 Will You Miss This Cha...
 
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
 
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
 
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
 
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts ServicesBOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
BOOK Call Girls in (Dwarka) CALL | 8377087607 Delhi Escorts Services
 
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
 
Enhancing forest data transparency for climate action
Enhancing forest data transparency for climate actionEnhancing forest data transparency for climate action
Enhancing forest data transparency for climate action
 
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
 
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
 
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
 
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
 
RA 7942:vThe Philippine Mining Act of 1995
RA 7942:vThe Philippine Mining Act of 1995RA 7942:vThe Philippine Mining Act of 1995
RA 7942:vThe Philippine Mining Act of 1995
 
Book Sex Workers Available Pune Call Girls Kondhwa 6297143586 Call Hot India...
Book Sex Workers Available Pune Call Girls Kondhwa  6297143586 Call Hot India...Book Sex Workers Available Pune Call Girls Kondhwa  6297143586 Call Hot India...
Book Sex Workers Available Pune Call Girls Kondhwa 6297143586 Call Hot India...
 
(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7
(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7
(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
 

2015 Foundations for larger and deeper Offshore Wind

  • 1. www.quartzco.com COPENHAGEN Ryesgade 3A 2200 Copenhagen N Denmark T: +45 33 17 00 00 OSLO Wergelandsveien 21 0167 Oslo Norway T: +47 22 59 36 00 STOCKHOLM Birger Jarlsgatan 7 111 45 Stockholm Sweden T: +46 (0)8 614 19 00 www.mecintelligence.com INDIA 112, Udyog Vihar Phase 4 122015 Gurgaon Haryana, India T: +91124 480 2700 DENMARK Nordre Fasanvej 113, 2 2000 Frederiksberg Copenhagen, Denmark T: +45 3543 3277 Month day, year Foundations for larger & deeper offshore wind Which foundation type is cost effective for larger turbines and increasingly complex projects? A commercial study comparing price for various offshore wind foundation technologies February 2015
  • 2. 2 – Currently there are 43 installation vessels suitable for offshore wind construction in EU; daily rate ranges between EUR 70k to 290k – The current vessel days are just enough to meet the demand from conventional foundations – In <800 tonne lifting category, new foundations eliminate the need for higher capacity vessel to meet the increase – In, 800-1200 tonne lifting category, new foundation adoption increases the vessel oversupply by 141% percent by 2020 – In >1200 tonne lifting category, new foundations increase the vessel oversupply by 32% percent by 2020 New foundation designs could lead to major oversupply in the vessels market II New foundation designs could be cost effective as compared to conventional designs and also reduce vessel demand for construction Source: MEC+ analysis SUMMARY – Foundation cost are primary driven by Material and installation costs with 65-85 % share of the total cost and have been considered in this study – New foundation designs have lower costs as turbines become larger and installed in deeper sea – For 6 MW, new foundations are ~4-20% lower in material cost when compared to monopiles & jackets while for turbine sizes 8 MW and larger, new designs reduce the cost by ~21-24% – Installation cost does not vary much in comparison to material costs, but can be a bottleneck in timely execution of the OW farm. New foundation designs can reduce the installation cost by ~50% as compared to the conventional designs – Mono-suction bucket is cost effective for 4-6 MW turbine size at lower to medium depths, while CraneFree Gravity is most suitable for even larger turbines at medium to larger depths – Cost reduction potential of 5-15% is observed for foundations at select 5 farms in Europe. However, developers need to manage risk and other associated premium costs with appropriate contracting New foundation designs could be 10 percent to 30 percent cheaper as compared to conventional designs I
  • 3. 3 Around 5600 turbines are expected to be installed by 2020 ..resulting in cumulative capacity of 27 GW expected to start construction by 2020 Innovation is being driven to reduce the high cost of energy from offshore wind planned in EU INTRODUCTION 2,9 2019 5,9 2018 7,9 2017 5,5 2016 4,8 2015 1,3 2020 OW annual capacity in GW* 654 954 286 20202019 1.050 2018 1.493 2017 1.245 20162015 No. Of Foundations * Based on the construction start year of the farms Source: Windpower database, News articles, MEC+ analysis 4-6 MW 6-8 MW Dominating Turbine Sizes ..the offshore wind energy industry needs to attract between €90 bn. and €123 bn. by 2020 to meet its deployment targets, increasing its installed capacity from 6 GW in mid- 2013 to 40 GW…. EWEA, 2013 ..supply chain is innovating to reduce costs and deliver a competitive product for UK and international markets….costs can be reduced to around £100/ MWh for a project financed in 2020…. main areas of cost reduction are larger turbines, supply chain competition, better design and economies of scale,…risk reduction and lower costs of capital.. UK Trade & Investment, 2014 Large investment is planned in OW… 1.8 10 6.3 5.6 2.5 2.8 XX Contracted capacity in the year Expected annual capacity to start construction by 2020
  • 4. 4 New foundation designs claim to reduce the cost of foundation and also of the entire offshore windfarm * Others include risks, insurances, noise mitigation, sea fastening, onshore logistics etc. Source: IRENA 2012, MEC+ Analysis LOW MATERIAL COSTS • Lesser quantity of materials • Use of Cheaper Material 1 OTHER ADVANTAGES • Noise mitigation regulations compliance • Easier decommissioning • Reusable designs 3 INSTALLATION COSTS • Less installation time • No use of expensive installation vessels 2 INTRODUCTION 21% 18% 22% 100% Wind Turbine Foundation Grid Connection Planning & Miscellaneous Cost breakup of OW Installation 39% Others 100% Cost Breakup of OW Foundation Installation Cost Material Cost 100 15-20% 15-25% 50-60% Foundations are a large investment on a farm level Costs are divided into three major components New designs are being offered in the market which lower the cost
  • 5. 5 Three new designs have been considered to compare their cost effectiveness against the conventional monopiles and jackets Jacket CraneFree Gravity (CFG) Suction Bucket Jacket (SBJ) Mono Suction Bucket (MSB) Source: Windpower.net, Company websites, News articles, MEC+ analysis Monopile Structural Design Column of steel Steel lattice frame with piles Concrete base with steel column Steel lattice with bucket in bottom Steel bucket with column on top • London Array, UK • Horn Rev I, DK • Nordsee One, DE • Egmond aan Zee, NL Prototype at: • Borkum Riffgrund 1 • Ormonde, UK • Alpha Ventus, DE • Thronton Bank, BE • Beatrice, UK Prototype at: • Fecamp, FR Prototype at: • Dogger Bank, UK • Frederikshavn, DKProminent Projects The three new innovative designs considered for the analysis, benchmark their two main advantages: • Material cost effectiveness • Alternative installation techniques and cost savings INTRODUCTION • Easier to fabricate • Cutting and Rolling of steel • Complex design, difficult to fabricate • Requires intensive welding at joints • Difficult to fabricate • Requires extensive welding at joints • Requires fabrication yard to be setup at port for mass production • Intricate design but relatively easier to fabricate due to symmetrical design Fabrication • Installation through OW construction vessels with significant lifting capabilities • Requires drilling/pilling, grouting, scour protection • Installation through OW construction vessels with significant lifting capabilities • Requires drilling/piling, grouting, scour protection • Requires OW construction vessels with significant lifting capabilities • Installation through suction action of three suction pumps working in tandem • Installation through Tugboats and position assisting OW vessels • Requires sand ballasting, scour protection • Installation through Tugboats, OW construction vessels; through specialized suction pumpInstallation Commercial Designs New Designs
  • 6. 6 Material and installation costs are the largest cost constituents with 65-85 % share of the total cost and have been considered in this study Indicative cost breakup of a typical OW foundation Note: Cost shares vary in a broad range due to varying foundation design, risks and insurances based on local industries experience, and contracting models * Game changers refers to large cost shares which have potential to change the COST based analysis Source: MEC+ analysis Material used to manufacture the foundation, e.g. • Different types of steel • Concrete • Others Installation at offshore site using • Installation vessels • Drilling/pilling/ suction pumps, • Sand ballasting, Grouting, Scour protection • Others • Noise mitigation • Onshore logistics • Sea-fastening • Risk premiums • Insurances • Profit margins Out of Scope Depend on market factors, driven by local needs Material Cost 50-60% Total 100% 15-25% Installation Cost Other costs Market Costs 5% 15-20% INTRODUCTION In Scope Depend on design Includes costs that are due to design advantages but are not ‘game changer’* in light of comparisons • Noise mitigation • Decommissioning
  • 7. 7 Material cost depends upon the quantities and unit prices of variable types of materials used in the foundations Source: Scholar articles and thesis from various research institutions, Industry expert inputs, foundation manufacturers, MEC+ analysis Monopile, Transition piece -4 pre-piles Top cylindrical structure, bottom skirt Top shaft Primary Steel - Jacket body, 3 suction buckets Jacket body, Transition piece - Bottom bucket, middle inter- connecting lid Higher Grade Primary Steel Boat- landing, J- tubes, platforms etc. Boat landing, J- tubes, platforms etc. Boat landing, J- tubes, platforms etc. Boat landing, J- tubes, platforms etc. Boat landing, J- tubes, platforms etc. Secondary Steel - -- Bottom cement gravity structure - Concrete - -- Sand ballasting material: 62.500 EUR/foundation - Miscellaneous 1.600 3.200-4.500 7.800 170 MATERIAL COST ANALYSIS Low High Jacket CraneFree Gravity (CFG) Suction Bucket Jacket (SBJ) Mono Suction Bucket (MSB)Monopile Unit Rate (EUR per tonne) Relative quantity used Materials Utilisation in designMaterial Cost
  • 8. 8 The quantity of material used in foundation is driven mainly by the depth of the seabed and turbine size • Material cost has been analyzed as a variation of the depth of the seabed and turbine size • Factors like physical conditions of the site have been considered too, though affecting the cost marginally 10 20 30 40 50 60 2.500 0 5.000 10 20 30 40 50 60 3.000 0 Depth of the seabed Turbine Size Others • Physical condition e.g. Seabed, Weather • No. Of Foundations • Physical soil conditions have very little effect on the weight of the foundation • No. Of foundations contribute only as the economy of scale factor and are highly variable according to the contracting model Weight comparison of the foundation types Tonne MATERIAL COST ANALYSIS SBJ Monopile (8 MW) Jacket (6 MW) MSB Jacket (8 MW) Monopile (6 MW) CFG Various factors affect the weight of the foundation and in turn the material cost
  • 9. 9 For 6 MW, new foundations have ~4-20% lower material cost when compared to monopiles & jackets Steel quantity* for different foundation designs for 6 MW Tonnes Note: CFG uses steel in upper cone, cylindrical tower and reinforced bars for concrete cone. The steel quantity graph excludes the reinforced bars. Steel tonnage for CFG not available for >4MW turbine sizes; * Monopile’s steel tonnage includes monopile, TP and secondary structures; Jacket includes lattice structure, TP, pre-piles, secondary structure; MSB includes bucket/skirt, lid, shaft, secondary structure; SBJ includes 3 buckets, lattice structure, secondary structure Source: MEC+ analysis Depth (in m) 10 20 30 40 50 60 0 3.000 2.000 1.000 Tonnes JacketMonopile SBJMSB 10 20 30 40 50 60 0 7 6 5 4 3 2 1 -20% -4% EUR mil. Total material cost for different foundation designs for 6 MW Euro millions per foundation SBJMSBCFGJacketMonopile MATERIAL COST ANALYSIS Introduction of XL/XXL monopiles By weight, the new designs are similar to monopiles and jackets (up to 30 m)… ..While the cost reflects a different trend due to variable mix of material component
  • 10. 10 For turbine sizes 8 MW and larger, new designs reduce the cost by ~21-24% Note: CFG uses steel in upper cone, cylindrical tower and reinforced bars for concrete cone. The steel quantity graph excludes the reinforced bars. Steel tonnage for CFG not available for >4MW turbine sizes; * Monopile’s steel tonnage includes monopile, TP and secondary structures; Jacket includes lattice structure, TP, pre-piles, secondary structure; MSB includes bucket/skirt, lid, shaft, secondary structure; SBJ includes 3 buckets, lattice structure, secondary structure Source: MEC+ analysis Steel quantity* for different foundation designs for 8 MW Tonnes Total material cost for different foundation design for 8 MW Euro millions per foundation Depth (in m) 10 20 30 40 50 60 3.000 2.000 1.000 0 Tonnes SBJMSBJacketMonopile 10 20 30 40 50 60 5 4 3 2 1 7 6 0 -21% -24% EUR mil. SBJMSBCFGJacketMonopile MATERIAL COST ANALYSIS Introduction of XL/XXL monopiles Even with larger turbine to support, new designs have steadier weight trends, while monopile weight increases exponentially.. …which is reflected in material cost as new designs could be cost effective
  • 11. 11 Installation cost depends on the various processes, unique to each foundation design, affecting its installation duration and cost * Days are estimated based on assumption that there are no delays like supply chain delays, unavailability of vessels/boats Source: Seatower, Universal foundations, Dong Energy, DTU, MEC+ analysis Brief description on installation concept and number of days required • New foundation designs can be installed in 1-3 days- decreasing the total time for installation of foundations • The OW farm can therefore be installed in shorter construction schedules saving cost and faster generation of revenues Total Days Installation Process Duration Cost INSTALLATION COST ANALYSIS Pilling Upending/ Lowering Drilling GroutingSuction Sand Ballasting Scour Protection                  2-3 2-3* 4-6 1-2* 1-2* Stability Ensuring Process High Low  Required
  • 12. 12 Installation cost do not vary much as compared to the material cost, but can be a bottleneck in timely execution of the OW farm • Installation cost is a minor factor approx. 5- 25 % of the material cost for a typical** farm configurations • Therefore, its minor variation does not affect the cost trend obtained from material cost • However, farm construction duration and installation cost are significantly affected by the vessel availability in market necessitating easier installation concept Installation cost range compared to material costs for a single foundation for variable configurations* * Configuration used for determining cost: Turbine size= 6 & 8 MW, Depth= 0 to 60 m, Distance= 0 to 90 km, Seabed= soft for pilling & rocky for drilling, Wind farm size = 50-100 ** Configuration for calculating typical cost: Turbine size= 6 MW, Depth= 30 m, Distance= 0 -30 km Seabed= soft, Wind farm size = 50-100 Source: MEC+ analysis 4,0 3,0 2,0 1,0 0,0 0,5 2,5 1,5 3,5 4,5 Euro millions per foundation SBJMSBCFGJacketMonopile Installation cost has been estimated based on the variation across following factors • Installation Concepts- – Feeder concept- transit through barges or floating pulled by tugboats and/or installation via installation vessel – Installation vessels for end to end installation • Turbine size & depth of the seabed determining the foundation weight, crane capacity, and therefore vessel day-rate • No. of days of foundation installation • Seabed type determining the need for pilling or drilling • Distance from the shore determining transit time INSTALLATION COST ANALYSIS Typical** Material Cost for 6 MW Installation* cost range
  • 13. 13 New foundation designs can reduce the installation cost by ~50% as compared to the conventional designs Indicative installation cost in for different foundation types* Euro millions per Foundation * All calculations done for base case configuration (Turbine size = 6MW, Depth = 30 m, Distance = 0-30 km, Sea Type = North Sea, Wind farm size = 50-100, Seabed = Soft) Source: MEC+ analysis 0,31 MSB CFG 0,56 MonopileJacket 0,42 0,33 0,27 SBJ EUR mil 0,19 (50%) INSTALLATION COST ANALYSIS Average for conventional designs Average for new designs New foundations have drastically lower installation cost mainly due to the cumulative effect of − Less number of installation days − Less expensive vessels corresponding to lower lifting capacity required or not needed at all
  • 14. 14 Cumulative cost of material and installation indicates that new foundations could be a more cost effective solution than traditional designs for higher turbine sizes and greater depths 10 20 30 40 50 60 7 6 5 4 3 2 1 0 EUR mil. 6 MW 8 MW Depth (in m) • For a 6 MW turbine, CFG and MSB would offer cost advantage than the conventional Monopile and Jacket foundations at depths > 30m • CFG, a gravity based design could potentially be the most economical foundation design at all depths for turbine sizes > 6MW Total cost for different foundation types* Euro Millions / foundation Note: *All calculations done for base case configuration (Distance = 0-30 km, Sea Type = North Sea, Wind farm size = 50-100, Seabed = Soft) Source: MEC+ analysis 10 20 30 40 50 60 4 3 2 1 0 7 6 5 EUR mil. SBJMSBCFGJacketMonopile COST ANALYSIS
  • 15. 15 Most cost effective offshore wind foundations across different project configurations Mono-suction bucket is cost effective for 4-6 MW turbine size at lower to medium depths, while CraneFree Gravity is most suitable for even larger turbines at medium to larger depths Note: 1. Cost includes mainly material cost, seabed preparation costs, installation costs. However, cost doesn’t include EPC margins, profits, insurance costs, manpower expenses, transportation costs incurred from manufacturing location to the port 2. CFG is not applicable for depth <15 m, as the structure would be too light to be stable at lower depths 3. All calculations done for base case configuration (Distance = 0-30 KM, Sea Type = North Sea, Wind farm size = 50 - 100, Seabed = Soft) * The cost reduction potential has been estimated based on the comparison of the lowest cost design to the monopile cost for depths <30 m and with jacket cost for depths >30 m Cost Reduction* Potential 10MW8MW6MW4MW 10 m 20 m 60 m50 m40 m30 m Depth Turbinesize COST EFFECTIVE FOUNDATION 05-10% 10-15% 15-20% 20-25% >25 Figure in the grid depicts the lowest cost foundation (within 10% error margin)
  • 16. 16 Inch Cape, United Kingdom Seabed: Soft No. of turbines: 213 Distance: 22 KM Turbine size: 5 MW Average depth: 47,5 m (40 – 55 m) SBJ 5,7 MSB 4,2 CFG 3,6 J 4,3 M 4,7 Transport and Installation Seabed Prep Material Baltic Blue C, Estonia* Seabed: Rocky No. of turbines: 60 Distance: 6,7 KM Turbine size: 7 MW Average depth: 30 m (24 - 36 m) SBJ 0,0 MSB 0,0 CFG 3,4 J 4,0 M 4,6 Wikinger, Germany Seabed: Soft No. of turbines: 70 Distance: 35 KM Turbine size: 6 MW Average depth: 35m (25 - 45 m) SBJ 4,7 MSB 2,8 CFG 3,3 J 3,6 M 3,4 Oost Friesland, Netherlands Seabed: Soft No. of turbines: 90-150 Distance: 23 KM Turbine size: 4 MW Average depth: 20 m SBJ 3,8 MSB 2,3 CFG 2,9 J 2,8 M 2,7 Saint-Nazaire, France Seabed: Medium No. of turbines: 80 Distance: 12 KM Turbine size: 6 MW Average depth: 17,5 m 4,3 MSB SBJ 2,6 CFG 3,1 J 3,2 M 3,0 Different foundations will be attractive for different farm configurations. Cost simulation results for some upcoming OW farms in Europe are presented below Total cost per foundation (EUR Millions) EUROPE - KEY PROJECTS AND FOUNDATION COSTS Note: This mapping is based on the results of the cost simulation model built by MEC+, Transportation cost is computed from the nearest manufacturer *Since practical application of the suction bucket concepts in rocky seabed are highly unlikely, the cost comparisons are therefore not shown Source: MEC+ analysis, The Wind Power database Cost reduction potential of 5-15% is observed for foundations at select 5 farms in Europe
  • 17. 17 Developers need to manage risk and other associated premium costs with appropriate contracting High Low * The definition of risks is limited to systematic project risks inherent in the business and excludes unexpected weather, geotechnical & political risks ** Suitability is based on the key need to manage risk at project level for the developer or contractor Source: MEC+ analysis RISK ANALYSIS Value proposition to developer Suitable foundation** Construction contracts are given out in packages of turbines, foundations, etc Brief Description Project owner signs many contracts within each segment, while managing the project Construction management is out sourced One contract for the entire project Package EPC Contracting Structure Multi contract EPCM Project EPC Benefits to the developer Risk* Cost No risk premium attached and has full project control Limited EPC capabilities needed, which takes time and are costly to develop Sub package risks are with the supplier and limited risk premium and project control Limited EPC capabilities needed, which takes time and are costly to develop
  • 18. 18 – Currently there are 43 installation vessels suitable for offshore wind construction in EU; daily rate ranges between EUR 70k to 290k – The current vessel days are just enough to meet the demand from conventional foundations – In <800 tonne lifting category, new foundations eliminate the need for higher capacity vessel to meet the increase – In, 800-1200 tonne lifting category, new foundation adoption increases the vessel oversupply by 141% percent by 2020 – In >1200 tonne lifting category, new foundations increase the vessel oversupply by 32% percent by 2020 New foundation designs could lead to major oversupply in the vessels market II New foundation designs could be cost effective as compared to conventional designs and also reduce vessel demand for construction Source: MEC+ analysis SUMMARY – Foundation cost are primary driven by Material and installation costs with 65-85 % share of the total cost and have been considered in this study – New foundation designs have lower costs as turbines become larger and installed in deeper sea – For 6 MW, new foundations are ~4-20% lower in material cost when compared to monopiles & jackets while for turbine sizes 8 MW and larger, new designs reduce the cost by ~21-24% – Installation cost does not vary much in comparison to material costs, but can be a bottleneck in timely execution of the OW farm. New foundation designs can reduce the installation cost by ~50% as compared to the conventional designs – Mono-suction bucket is cost effective for 4-6 MW turbine size at lower to medium depths, while CraneFree Gravity is most suitable for even larger turbines at medium to larger depths – Cost reduction potential of 5-15% is observed for foundations at select 5 farms in Europe. However, developers need to manage risk and other associated premium costs with appropriate contracting New foundation designs could be 10 percent to 30 percent cheaper as compared to conventional designs I
  • 19. 19 Currently there are 43 installation vessels suitable for offshore wind construction in EU; daily rate ranges between EUR 70k to 290k Source: Ballast Nedam, IT Power UK, Windpower Offshore, News articles and research papers, MEC+ analysis Supply of OW vessels in Europe # of vessels by lifting categories VESSEL DEMAND-SUPPLY 0 2 4 6 8 10 12 14 >20001600-20001200-1600800-1200400-8000-400 Cranes(Sheerleg+Monohull) HLV(HLVs+WIVs) Jack Ups(Vessels+Barges) Lifting capacity in tonnes 0,30 0,00 0,25 0,15 0,20 0,05 0,10 >20001600-20001200-1600800-1200400-8000-400 Day rate range Day rates of OW vessels in EU Indicative day rates in EUR mil. Lifting capacity in tonnes EUR millions
  • 20. 20 The planned OW pipeline is prone unavailability risk of appropriate installation vessel, if conventional foundations are considered to scale with expected demand thereby impacting costs 10.000 5.000 0 2020 2.006 2019 7.670 2018 4.569 2017 3.703 2016 3.029 2015 2.089 6.494 00 2020 2.779 20192018 5.609 2017 1.595 2016 4.060 2015 3.212 001360 721 2015 2.920 20202019201820172016 3.534 800 - 1200 tonne0 - 800 tonne >1200 tonne Scenario I: Vessel supply demand based on installation of only conventional designs In Vessel Days Minor Shortfall • Can be met with higher capacity cranes at higher cost Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year Source: Windpower, Wind energy update, NREL, Offshore Wind Energy Cost Modelling By Mark J Kaiser, Brian F Snyde, MEC+ analysis Crane lifting capacity VESSEL DEMAND-SUPPLY Shortfall • Can be met with higher capacity cranes at high cost • Prone to project delays Minor Shortfall • Cannot be met with the existing fleet • Most likely to cause project delays • Alternate: use multple support vessels to ensure timely execution SupplyDemand
  • 21. 21 In <800 tonne lifting category, though the demand is less than supply except slight increase in 2019, new foundations eliminate the need for higher capacity vessel to meet the increase 3.000 2.000 1.000 0 -1.000 -2.000 -3.000 -4.000 -5.000 -4.405 2020 -4.223 2019 -2.462 2018 -2.037 2017 -3.471 2016 -3.465 2015 Demand-supply analysis for 0-800 T lifting capacity vessels In Vessel Days Supply Shortage Excessive Supply VESSEL DEMAND-SUPPLY 2.000 1.000 3.000 0 -1.000 -2.000 -3.000 -4.000 -5.000 -3.465 -2.791 2016 2017 2018 -1.925 2015 -4.405 2019 1.176 2020 -4.488 Scenario 2: Most cost effective foundation is considered; including the innovative foundations; post 2017* Scenario 1: Conventional designs are installed in the planned OW farms till 2020 Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Average days for installation of new foundation designs is 2. CFG does not require a lifting vessel Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year Source: MEC+ analysis New foundation designs considered
  • 22. 22 In, 800-1200 tonne lifting category, vessel demand declines significantly post 2016 due to the introduction of new foundations, reducing risk of cost overruns by using higher capacity vessels Demand-supply analysis for 800-1200 T lifting capacity vessels In Vessel Days VESSEL DEMAND-SUPPLY 848 -433 -5.000 3.000 2.000 1.000 0 -1.000 -2.000 -3.000 -4.000 -3.212 20202019 -3.212 2018 2.397 2017 -1.617 20162015 Scenario 2: Most cost effective foundation is considered; including the innovative foundations; post 2017* Scenario 1: Conventional designs are installed in the planned OW farms till 2020 Supply Shortage Excessive Supply 848 3.000 -5.000 1.000 2.000 0 -1.000 -2.000 -3.000 -4.000 2020 -2.940 2019 -3.212 2018 -2.151 2017 -1.945 20162015 -3.212 Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Average days for installation of new foundation designs is 2. CFG does not require a lifting vessel Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year Source: MEC+ analysis New foundation designs considered
  • 23. 23 In >1200 tonne lifting category, marginal high demand in 2017 could be reduced by new foundation designs and no supply risk would be envisaged, preventing the minor delay risk expected Demand-supply analysis for > 1200 T lifting capacity vessels In Vessel Days VESSEL DEMAND-SUPPLY 3.000 2.000 1.000 0 -1.000 -2.000 -3.000 -4.000 -5.000 2020 -2.920 2019 -2.920 2018 -2.199 2017 614 2016 -2.784 2015 -2.920 Supply Shortage Excessive Supply Scenario 2: Most cost effective foundation is considered; including the innovative foundations; post 2017* Scenario 1: Conventional designs are installed in the planned OW farms till 2020 3.000 2.000 1.000 0 -1.000 -2.000 -3.000 -4.000 -5.000 2020 -2.920 2019 -2.920 2018 -2.920 2017 -2.838 2016 -2.784 2015 -2.920 Note: The complete process will take about 5 days on average for installation of conventional foundations with 2.5 days in turbine installation. The standard turbine weights has been considered in estimating the demand for turbine installation. Demand from OW O&M has not been considered. Average days for installation of new foundation designs is 2. CFG does not require a lifting vessel Note 2: Demand for vessels is estimated on the construction/installation start year of the OW farms. Lifting cranes vessels are expected to operate for 10-11 months a year Source: MEC+ analysis New foundation designs considered
  • 24. 24 Abbreviations used • OW Offshore Wind • EPC Engineering, Procurement and Construction • T ton (= 1000 kg) • TP Transition piece • EUR Euro • MP Monopiles • J Jackets • CFG CraneFree Gravity • MSB Mono Suction Bucket • SBJ Suction Bucket Jacket • m metre • KM Kilometre • NM Nautical mile • GW/MW Giga / Mega Watt All numbers are in European number format APPENDIX
  • 25. 25 References and Disclaimer This report has been prepared by MEC Intelligence using a wide range of resources and databases. MEC Intelligence’s internal databases on OW farms and OW installation vessels have been the base for the analysis. Extensive secondary research through continues wind industry monitoring through news and press releases, primary research with OW EPC contractors, foundation designers, vessel operators and independent OW experts in the industry have all contributed to the depth of the analysis conducted. For any further queries, please contact: Jacob Jensen Sidharth Jain (jj@mecintelligence.com) (sidharth@mecintelligence.com) MEC Intelligence Denmark MEC Intelligence India Nordre Fasanvej 113, 2 112, Udyog Vihar Phase 4 2000 Frederiksberg 122015 Gurgaon Copenhagen, Denmark Haryana, India www.mecintelligence.com www.mecintelligence.com Disclaimer The information contained herein has been obtained from sources believed to be reliable. MEC Intelligence disclaims all warranties as to the accuracy, completeness or adequacy of such information. MEC Intelligence shall have no liability for errors, omissions or inadequacies in the information contained herein or for the interpretation thereof. Therefore MEC is not liable for any indirect, incidental, consequential damage or loss of revenues or profits in any case. APPENDIX
  • 26. 26 MEC+ experience and resources are a valuable asset for insights in offshore wind strategy decisions MEC EXPERIENCE – QUALITY ASSURANCE ON CRITICAL DECISIONS MEC+ provides insights by combining its granular data, cost and forecasting models, and primary information along with deep experience and understanding of players and concepts. Client assurance is guaranteed in the results with high-touch transparent processes. MEC+ has done more than 60 analyses in the offshore wind industry covering demand, supply, business models for contracting strategies, WTG, foundations, cables, vessels, installation concepts, and O&M Expert contacts Our work has led to a strong network of relations with industry experts who have deep offshore experience. Relevant experience & Concepts We have worked extensively on and developing concepts within Cost of Energy, Pipeline, Procurement, , construction management and O&M. Our reputation and trust has been built on our knowledge and very structured and transparent process. - Farm Level Data (Operation) and Proven cost and forecasting models We have an extensive library of in-house and high-quality third-party offshore wind data which we update regularly – 1) wind farms, 2) turbine technology 3)foundation & electrical systems technology 4) historic costs and benchmarks 5) cost and forecasting models -MEC+ approach leverages the rich resources that the firm has access to
  • 27. 27 The team at MEC Intelligence has published industry leading reports on the maritime, energy and clean-tech industries. In addition, multiple insights have been published to provide perspectives on the market. MEC Intelligence || Offshore Wind Reports MEC WIND REPORTS