SlideShare uma empresa Scribd logo
1 de 29
Understanding F# Workflows New England F# User’s Group Presentation (fsug.org) August 2, 2010 Scott Theleman
Overview F# Workflows – closely related to Monads in Haskell and other languages – are a powerful and elegant tool for solving many real-world problems, though they can be rather daunting at first. We'll survey some ways in which Workflows in the standard F# libraries are used for common development tasks, then dig into detail on how they work. Finally we’ll build a workflow that provides a validation framework that can be used for parsing or other tasks.
Intro to Monads A “Monad” is generally a set of interrelated constructs. At the least, it usually consists of: A “Monadic Type” A bind function (sometimes the (>>=) operator is used) A return function “When the designers of F# talked with the designers of Haskell about this, they agreed that the word monad is obscure and sounds a little daunting and that using other names might be wise” — Expert F# 2.0 (Don Syme, Adam Granicz, Antonio Cisternino)
Characteristics of Monads The Monadic Type “wraps” an underlying type. The monadic type may be more like an object (which may contain other data or state), or more like a computation or potential computation. The Return function wraps an underlying type in a monadic type. The Bind function takes an underlying type as well as a function which maps from the underlying type to a new monadic type, and returns a new monadic type. By performing this wrapping of underlying types inside a monadic type and providing bind and return, you can now combine computations of that inner type in ways that are difficult or impossible when just dealing with the underlying types.
Monad Structure
Uses of Monads aka Workflows
One use of Monads: Sequential Workflows As noted, there are many uses and varieties of Monads We will concentrate on solving a typical sequential workflow style problem First showing other ways this has been done without workflows, then building up to using an F# workflow
Sequential Workflows: If/else The following code takes an initial input (of type T) and performs 3 sets of transformations on it, each time returning a tuple of bool and Result object (of type T). If there is a failure at any step, the entire operation is short circuited. let process1 = true, input // do something with input let process2 = false, input let process3 = true, input   let Execute (input : 'T) =     let ok, result1 = process1 input     if ok then         let ok, result2 = process2 result1         if ok then             let ok, result3 = process3 result2             ok, result3         else false, result2     else false, result1
If/else: Problems The processX() methods and their callers all must know about the input and result types. Generics help the situation, but still these methods are hard-wired for those specific types, plus the success/failure Boolean. Also, the 'T in Execute() and processX() is always the same! It’s getting pretty messy, and we’ve only done 3 transformations. Pretty soon the code is going to be off the right side of the screen! We have to explicitly handle failure at every step of the process Lots of redundancy. We said “ok” 6 times! We don’t have any information about what went wrong.  Though we could define some sort of error type (see next example…).
Sequential Workflows: Option and match The following code tries to improve on the last sample. It now includes a Result<'T> type which we could expand upon to return detailed error information. It also uses pattern matching, which makes the code a bit clearer. type Result<'T> = | Success of 'T | Failure of string   let process1 input = Success(input)  // do something interesting here let process2 input = Failure("Some error") let process3 input = Success(input)    let Process (input : 'T) =     let res1 = process1 input     match res1 with     | Failure _ ->         res1     | Success v ->         let res2 = process2 v         match res2 with         | Failure _ ->             res2         | Success v ->             let res3 = process3 v             res3
Option/match: Problems Better than if/else, but… Still messy and redundant and again the code is drifting off the right side of the screen The processX() methods and their callers still must all know about the input and result types. The 'T in Execute() and processX() is still always the same We still have to explicitly handle failure at every step of the process The Result<'T>type does seem like a nice idea
Sequential Workflows: try/catch Try/catch could simplify/aggregate and improve things a bit – though just for this particular case. It does look nice and streamlined, which is one thing we are looking for. exception MyProcessException of string   let process1 input = input let process2 input = raise <| MyProcessException("An error occurred“) let process3 input = input   // processX now accept and return T // No Result any more; exceptions are used instead let Execute (input : 'T) =     try         let v1 = process1 input         let v2 = process2 v1         let v3 = process3 v2         v3     with     | :? MyProcessException as ex ->         // Catch application-specific error...do we throw or return a Result?? reraise ()     | exn ->         // A "real" exception...what to do here? reraise ()   let Caller<'T> v =     // This will throw underlying exception on failure     // Caller's caller will also have to handle it     Execute v
try/catch: Problems Getting better, but… Now we’re using the try/catch exception mechanism for handling short-circuiting errors rather than real exception cases. Is the exception just due to a typical error in processing or is it a “real” exception? What does the caller do in this case? Note also that it becomes difficult for the caller to now be part of a larger workflow, or else a lot of hard-coded wireup The “inner workflows” called by the top-level workflow all need to have try/catch and also throw the same Exception type (e.g. MyProcessException).
Sequential Workflows: Extension Methods Using Extension Methods to “chain” or “pipeline” (in a C#/Java kind of way). The output of one function feeds the input of the next. Then, we wrap the whole thing in a try/catch. exception MyException of stringtype WrapperObject(v : 'T) =    let value = v    member x.Value with get() = vmodule WrapperObjectExtensions =    type WrapperObject with        member x.Process1() = let v = x.Value + " Process1" in WrapperObject(v)        member x.Process2() = let v = x.Value + " Process2" in WrapperObject(v)         member x.Process3() = let v = x.Value + " Process3" in WrapperObject(v) open WrapperObjectExtensionslet Execute (input : string) =    let wrapper = WrapperObject(input)    try        let res =  wrapper.Process1().Process2().Process3()        res.Value    with    | :? MyException as ex ->        // throw or return a Result?        reraise ()    | exn ->        // A "real" exception        // What to do here?        reraise ()
Sequential Workflows: Chained Objects Using Interfaces, we return instances of object, on which further Process() can be called. module ChainableObjectsWorkflowexception MyException of stringtype IChainableObject<'T> =    abstract Value : unit -> 'T with get    abstract Process : ('T -> 'T) -> IChainableObject<'T>type ChainableObject<'T>(v : 'T) as this =    let value = v    interface IChainableObject<'T> with        member x.Value with get() = value        override x.Process (f : ('T -> 'T)) =            let v = (this :> IChainableObject<_>).Value            let res = f v            ChainableObject(res) :> IChainableObject<'T>let process1 (s : string) = s + " Process1 applied"let process2 (s : string) = raise <| MyException("Error")let process3 (s : string) = s + " Process3 applied"
Sequential Workflows: Chained Objects (continued) Execute() function let Execute (input : string) =    let co = ChainableObject(input) :> IChainableObject<_>    try        let res = co.Process(process1).Process(process2).Process(process3)        res.Value    with    | :? MyException as ex ->        // throw or return a Result?        reraise ()    | exn ->        // A "real" exception        // What to do here?        reraise ()
Sequential Workflows: Pipelining Similar to Extension Methods but with more idiomatic F# syntax with (|>) instead of dot syntax exception MyException of string   let process1 input = input let process2 input = raise <| MyException("An error occurred") let process3 input = input   let Execute (input : 'T) =     try         input         |> process1         |> process2         |> process3     with     | :? MyException as ex ->         // throw or return a Result? reraise ()     | exn ->         // A "real" exception         // What to do here? reraise ()
Chaining, Pipelining, etc.: Problems Getting better, but… Still using the try/catch exception mechanism for handling short-circuiting errors rather than real exception cases. We just get the result of the overall computation, but not each individual piece. What if the workflow wants to perform additional processing on pieces? Once again, the 'T in Execute() and processX() is always the same
Help from Continuations module Continuationstype Result<'T> = | Success of 'T | Failure of stringlet process1 = (fun v -> Success("Process 1: " + v))let process2 = (fun v -> Failure("Process 2: An error occurred"))let process3 = (fun v -> Success("Process 3: " + v)) // Run f on v. If is succeeds, then call cont on that result, else return Failure // Note that cont can transform the result into another typelet executeCont v (f : 'a -> Result<'a>) (cont : 'a -> Result<'b>) : Result<'b> =    let maybe = f v     match maybe with     | Failure(err)    -> Failure(err)     | Success(result) -> cont result let Execute v : Result<_> =    executeCont v process1 (fun result1 ->        executeCont result1 process2 (fun result2 ->            executeCont result2 process3 (fun result3 -> Success(result3))))
Continuations Now we’re getting somewhere! Conditional computation – executeCont() can short-circuit We have access to intermediate results and could use these at any future point in the workflow The continuation function can transform the type from 'a to 'b. Now the types can be transformed in each stage of the workflow. More generic workflow helper functions (processX()) can be built which can manipulate different types. Still, ugly syntax. Could we improve on this?
A Better Way: F# Workflows First define a “Result” type which can be Success or Failure, plus some additional info Then define the “Monadic” type which wraps a type 'T into a function, which could be conditionally executed to return a Result Note that Attempt<'T> is basically a continuation. The Workflow Builder we create next contains the logic to run the continuation (the entire rest of the workflow) after running the current step, or else not run additional Attempts if there is a failure, and simply return out of the entire workflow type Error = { Message : string }/// A result/// If success, it contains some object, plus a message (perhaps a logging message)/// If failure, it returns an Error object (which could be expanded to be much richer)type Result<'T> =| Success of 'T * string| Failure of Errortype Attempt<'T> = (unit -> Result<'T>)
F# Workflow Builder: Helper functions let succeed (x,msg) = (fun () -> Success(x, msg)) : Attempt<'T>let fail err        = (fun () -> Failure(err)) : Attempt<'T>let failmsg msg     = (fun () -> Failure({ Message = msg })) : Attempt<'T>let runAttempt (a : Attempt<'T>) = a()let bind (f : Attempt<'T>) (rest : 'T -> Attempt<'U>) : Attempt<'U> =    match runAttempt f with    | Failure(msg)           -> fail msg    | Success(res, msg) as v -> rest reslet delay f = (fun () -> runAttempt (f()))let getValue (res:Result<'T>) = match res with    | Success(v,s) -> v    | Failure _ -> failwith "Invalid operation"
F# Workflow Builder: The Workflow Builder Object Uses the helper functions we just defined to create a “builder” class required by F# Creates “processor” which is an instance of the builder. This is used to wrap all of these workflows using processor { } notation Another “static class”, Processor, contains additional helper methods (kind of like the Async class) type ProcessBuilder() =    member this.Return(x) = succeed x    member this.ReturnFrom(x) = x    member this.Bind(p, rest) = bind p rest    member this.Delay(f) = delay f    member this.Let(p, rest) : Attempt<'T> = rest ptype Processor() =    static member Run workflow =        runAttempt workflow        let processor = new ProcessBuilder()
Mapping of Workflow Constructs
F# Workflow: Final Result See code for full example type Customer =     { Name : string; Birthdate : DateTime;  CreditScore : int; HasCriminalRecord : bool }let customerWorkflow c = processor {    let! ageTicket = processCustomer1 c    let! creditTicket = processCustomer2 c    let! criminalTicket = processCustomer3 c    // Process lots more stuff here...note how we can access result of each step    // If we didn't get to this point, then the entire workflow would have    // returned Result.Failure with the error message where the workflow failed    // If we got here, then all OK, assemble results and return    return ((c, [| ageTicket; creditTicket; criminalTicket |]), "Customer passed all checks!")    }/// If this succeeds, it returns a Result<Customer,int[]>/// else it returns a Failure with an error messagelet results = Processor.Run (customerWorkflow customer)
F# Workflows: Bind De-Sugared See code for full example let customer =     {    Name = "Jane Doe"; DateTime.Parse("1/1/1960"); CreditScore = 640; HasCriminalRecord = false }let customerWorkflow c logger = processor {    let! ageResult      = processCustomer1 (c, logger)    let! creditResult   = processCustomer2 (c, logger)     let! criminalResult = processCustomer3 (c, logger)     let ageTicket       = getValue(ageResult)    let creditTicket    = getValue(creditResult)    let criminalTicket  = getValue(criminalResult)    return ((c, [| ageTicket; creditTicket; criminalTicket |]),         "Customer passed all checks!", logger) } // De-sugars to: let finalResult =  processor.Bind(processCustomer1 c, (fun ageResult -> processor.Bind(processCustomer2 c, (fun creditResult -> processor.Bind(processCustomer3 c, (fun criminalResult -> processor.Let(getValue(ageResult), (fun ageTicket -> processor.Let(getValue(creditTicket), (fun creditTicket -> processor.Let(getValue(criminalResult), (fun criminalTicket -> processor.Return (c, [|ageTicket;creditTicket;criminalTicket|], logger                         ))))))))))
ParseWorkflow Example See example in code Complete example which parses and validates a fixed-width format specification and returns Line, Position and Message on any errors
Questions Questions? Thank you!
References Expert F# 2.0 (Don Syme, et al) Real World Functional Programming (Tomas Petricek with Jon Skeet) at http://www.manning.com/petricek/ Lots of F# and Haskell references Chance Coble “Why use Computation Workflows (aka Monads) in F#?” at http://leibnizdream.wordpress.com/2008/10/21/why-use-computation-workflows-aka-monads-in-f/ F# Survival Guide: Workflows at: http://www.ctocorner.com/fsharp/book/ch16.aspx DevHawk series: http://devhawk.net/CategoryView,category,Monads.aspx Understanding Haskell Monads (ErtugrulSöylemez) at http://ertes.de/articles/monads.html Monads are like Burritos: http://blog.plover.com/prog/burritos.html (and others) Many more

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

online auction system.pdf
online auction system.pdfonline auction system.pdf
online auction system.pdf
 
Mediator pattern
Mediator patternMediator pattern
Mediator pattern
 
Test Automation Framework with BDD and Cucumber
Test Automation Framework with BDD and CucumberTest Automation Framework with BDD and Cucumber
Test Automation Framework with BDD and Cucumber
 
The Microservices world in. NET Core and. NET framework
The Microservices world in. NET Core and. NET frameworkThe Microservices world in. NET Core and. NET framework
The Microservices world in. NET Core and. NET framework
 
Introduction to microservices
Introduction to microservicesIntroduction to microservices
Introduction to microservices
 
API as-a-Product with Azure API Management (APIM)
API as-a-Product with Azure API Management (APIM)API as-a-Product with Azure API Management (APIM)
API as-a-Product with Azure API Management (APIM)
 
Uml Diagrams for Web Developers
Uml Diagrams for Web DevelopersUml Diagrams for Web Developers
Uml Diagrams for Web Developers
 
Postman
PostmanPostman
Postman
 
Internship portal UML
Internship portal UMLInternship portal UML
Internship portal UML
 
apidays Paris 2022 - The 12 Facets of the OpenAPI Specification, Steve Sfartz...
apidays Paris 2022 - The 12 Facets of the OpenAPI Specification, Steve Sfartz...apidays Paris 2022 - The 12 Facets of the OpenAPI Specification, Steve Sfartz...
apidays Paris 2022 - The 12 Facets of the OpenAPI Specification, Steve Sfartz...
 
Successfully Implementing BDD in an Agile World
Successfully Implementing BDD in an Agile WorldSuccessfully Implementing BDD in an Agile World
Successfully Implementing BDD in an Agile World
 
Istio a service mesh
Istio   a service meshIstio   a service mesh
Istio a service mesh
 
EVOLVE'13 | Keynote | Roy Fielding
EVOLVE'13 | Keynote | Roy FieldingEVOLVE'13 | Keynote | Roy Fielding
EVOLVE'13 | Keynote | Roy Fielding
 
BDD & Cucumber
BDD & CucumberBDD & Cucumber
BDD & Cucumber
 
Using the Terraform Enterprise GUI is perfect to start working with Terraform...
Using the Terraform Enterprise GUI is perfect to start working with Terraform...Using the Terraform Enterprise GUI is perfect to start working with Terraform...
Using the Terraform Enterprise GUI is perfect to start working with Terraform...
 
AppDynamics Custom Transaction Correlation
 AppDynamics Custom Transaction Correlation AppDynamics Custom Transaction Correlation
AppDynamics Custom Transaction Correlation
 
Building .NET Microservices
Building .NET MicroservicesBuilding .NET Microservices
Building .NET Microservices
 
apidays Paris 2022 - Adding a mock as a service capability to your API strate...
apidays Paris 2022 - Adding a mock as a service capability to your API strate...apidays Paris 2022 - Adding a mock as a service capability to your API strate...
apidays Paris 2022 - Adding a mock as a service capability to your API strate...
 
Cucumber BDD
Cucumber BDDCucumber BDD
Cucumber BDD
 
Microservices Architecture Part 2 Event Sourcing and Saga
Microservices Architecture Part 2 Event Sourcing and SagaMicroservices Architecture Part 2 Event Sourcing and Saga
Microservices Architecture Part 2 Event Sourcing and Saga
 

Semelhante a Understanding F# Workflows

Macasu, gerrell c.
Macasu, gerrell c.Macasu, gerrell c.
Macasu, gerrell c.
gerrell
 
My programming final proj. (1)
My programming final proj. (1)My programming final proj. (1)
My programming final proj. (1)
aeden_brines
 
Switch case and looping kim
Switch case and looping kimSwitch case and looping kim
Switch case and looping kim
kimberly_Bm10203
 
Switch case and looping
Switch case and loopingSwitch case and looping
Switch case and looping
ChaAstillas
 
Pseudocode-Flowchart
Pseudocode-FlowchartPseudocode-Flowchart
Pseudocode-Flowchart
lotlot
 

Semelhante a Understanding F# Workflows (20)

Ecs 10 programming assignment 4 loopapalooza
Ecs 10 programming assignment 4   loopapaloozaEcs 10 programming assignment 4   loopapalooza
Ecs 10 programming assignment 4 loopapalooza
 
Macasu, gerrell c.
Macasu, gerrell c.Macasu, gerrell c.
Macasu, gerrell c.
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Switch case and looping new
Switch case and looping newSwitch case and looping new
Switch case and looping new
 
Switch case and looping jam
Switch case and looping jamSwitch case and looping jam
Switch case and looping jam
 
My final requirement
My final requirementMy final requirement
My final requirement
 
The secret of Functional Programming revealed!
The secret of Functional Programming revealed!The secret of Functional Programming revealed!
The secret of Functional Programming revealed!
 
maXbox Starter 36 Software Testing
maXbox Starter 36 Software TestingmaXbox Starter 36 Software Testing
maXbox Starter 36 Software Testing
 
My programming final proj. (1)
My programming final proj. (1)My programming final proj. (1)
My programming final proj. (1)
 
c++ Data Types and Selection
c++ Data Types and Selectionc++ Data Types and Selection
c++ Data Types and Selection
 
Switch case and looping kim
Switch case and looping kimSwitch case and looping kim
Switch case and looping kim
 
Switch case and looping
Switch case and loopingSwitch case and looping
Switch case and looping
 
[4DEV] Bartosz Sokół - Functional developer in object oriented world - how F#...
[4DEV] Bartosz Sokół - Functional developer in object oriented world - how F#...[4DEV] Bartosz Sokół - Functional developer in object oriented world - how F#...
[4DEV] Bartosz Sokół - Functional developer in object oriented world - how F#...
 
maXbox Starter 31 Closures
maXbox Starter 31 ClosuresmaXbox Starter 31 Closures
maXbox Starter 31 Closures
 
C++ Course - Lesson 1
C++ Course - Lesson 1C++ Course - Lesson 1
C++ Course - Lesson 1
 
Python programing
Python programingPython programing
Python programing
 
parellel computing
parellel computingparellel computing
parellel computing
 
Functional Programming in C# and F#
Functional Programming in C# and F#Functional Programming in C# and F#
Functional Programming in C# and F#
 
Pseudocode-Flowchart
Pseudocode-FlowchartPseudocode-Flowchart
Pseudocode-Flowchart
 

Último

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Último (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 

Understanding F# Workflows

  • 1. Understanding F# Workflows New England F# User’s Group Presentation (fsug.org) August 2, 2010 Scott Theleman
  • 2. Overview F# Workflows – closely related to Monads in Haskell and other languages – are a powerful and elegant tool for solving many real-world problems, though they can be rather daunting at first. We'll survey some ways in which Workflows in the standard F# libraries are used for common development tasks, then dig into detail on how they work. Finally we’ll build a workflow that provides a validation framework that can be used for parsing or other tasks.
  • 3. Intro to Monads A “Monad” is generally a set of interrelated constructs. At the least, it usually consists of: A “Monadic Type” A bind function (sometimes the (>>=) operator is used) A return function “When the designers of F# talked with the designers of Haskell about this, they agreed that the word monad is obscure and sounds a little daunting and that using other names might be wise” — Expert F# 2.0 (Don Syme, Adam Granicz, Antonio Cisternino)
  • 4. Characteristics of Monads The Monadic Type “wraps” an underlying type. The monadic type may be more like an object (which may contain other data or state), or more like a computation or potential computation. The Return function wraps an underlying type in a monadic type. The Bind function takes an underlying type as well as a function which maps from the underlying type to a new monadic type, and returns a new monadic type. By performing this wrapping of underlying types inside a monadic type and providing bind and return, you can now combine computations of that inner type in ways that are difficult or impossible when just dealing with the underlying types.
  • 6. Uses of Monads aka Workflows
  • 7. One use of Monads: Sequential Workflows As noted, there are many uses and varieties of Monads We will concentrate on solving a typical sequential workflow style problem First showing other ways this has been done without workflows, then building up to using an F# workflow
  • 8. Sequential Workflows: If/else The following code takes an initial input (of type T) and performs 3 sets of transformations on it, each time returning a tuple of bool and Result object (of type T). If there is a failure at any step, the entire operation is short circuited. let process1 = true, input // do something with input let process2 = false, input let process3 = true, input   let Execute (input : 'T) = let ok, result1 = process1 input if ok then let ok, result2 = process2 result1 if ok then let ok, result3 = process3 result2 ok, result3 else false, result2 else false, result1
  • 9. If/else: Problems The processX() methods and their callers all must know about the input and result types. Generics help the situation, but still these methods are hard-wired for those specific types, plus the success/failure Boolean. Also, the 'T in Execute() and processX() is always the same! It’s getting pretty messy, and we’ve only done 3 transformations. Pretty soon the code is going to be off the right side of the screen! We have to explicitly handle failure at every step of the process Lots of redundancy. We said “ok” 6 times! We don’t have any information about what went wrong. Though we could define some sort of error type (see next example…).
  • 10. Sequential Workflows: Option and match The following code tries to improve on the last sample. It now includes a Result<'T> type which we could expand upon to return detailed error information. It also uses pattern matching, which makes the code a bit clearer. type Result<'T> = | Success of 'T | Failure of string   let process1 input = Success(input) // do something interesting here let process2 input = Failure("Some error") let process3 input = Success(input)    let Process (input : 'T) = let res1 = process1 input match res1 with | Failure _ -> res1 | Success v -> let res2 = process2 v match res2 with | Failure _ -> res2 | Success v -> let res3 = process3 v res3
  • 11. Option/match: Problems Better than if/else, but… Still messy and redundant and again the code is drifting off the right side of the screen The processX() methods and their callers still must all know about the input and result types. The 'T in Execute() and processX() is still always the same We still have to explicitly handle failure at every step of the process The Result<'T>type does seem like a nice idea
  • 12. Sequential Workflows: try/catch Try/catch could simplify/aggregate and improve things a bit – though just for this particular case. It does look nice and streamlined, which is one thing we are looking for. exception MyProcessException of string   let process1 input = input let process2 input = raise <| MyProcessException("An error occurred“) let process3 input = input   // processX now accept and return T // No Result any more; exceptions are used instead let Execute (input : 'T) = try let v1 = process1 input let v2 = process2 v1 let v3 = process3 v2 v3 with | :? MyProcessException as ex -> // Catch application-specific error...do we throw or return a Result?? reraise () | exn -> // A "real" exception...what to do here? reraise ()   let Caller<'T> v = // This will throw underlying exception on failure // Caller's caller will also have to handle it Execute v
  • 13. try/catch: Problems Getting better, but… Now we’re using the try/catch exception mechanism for handling short-circuiting errors rather than real exception cases. Is the exception just due to a typical error in processing or is it a “real” exception? What does the caller do in this case? Note also that it becomes difficult for the caller to now be part of a larger workflow, or else a lot of hard-coded wireup The “inner workflows” called by the top-level workflow all need to have try/catch and also throw the same Exception type (e.g. MyProcessException).
  • 14. Sequential Workflows: Extension Methods Using Extension Methods to “chain” or “pipeline” (in a C#/Java kind of way). The output of one function feeds the input of the next. Then, we wrap the whole thing in a try/catch. exception MyException of stringtype WrapperObject(v : 'T) =    let value = v    member x.Value with get() = vmodule WrapperObjectExtensions =    type WrapperObject with        member x.Process1() = let v = x.Value + " Process1" in WrapperObject(v)        member x.Process2() = let v = x.Value + " Process2" in WrapperObject(v)         member x.Process3() = let v = x.Value + " Process3" in WrapperObject(v) open WrapperObjectExtensionslet Execute (input : string) =    let wrapper = WrapperObject(input)    try        let res =  wrapper.Process1().Process2().Process3()        res.Value    with    | :? MyException as ex ->        // throw or return a Result?        reraise ()    | exn ->        // A "real" exception        // What to do here?        reraise ()
  • 15. Sequential Workflows: Chained Objects Using Interfaces, we return instances of object, on which further Process() can be called. module ChainableObjectsWorkflowexception MyException of stringtype IChainableObject<'T> =    abstract Value : unit -> 'T with get    abstract Process : ('T -> 'T) -> IChainableObject<'T>type ChainableObject<'T>(v : 'T) as this =    let value = v    interface IChainableObject<'T> with        member x.Value with get() = value        override x.Process (f : ('T -> 'T)) =            let v = (this :> IChainableObject<_>).Value            let res = f v            ChainableObject(res) :> IChainableObject<'T>let process1 (s : string) = s + " Process1 applied"let process2 (s : string) = raise <| MyException("Error")let process3 (s : string) = s + " Process3 applied"
  • 16. Sequential Workflows: Chained Objects (continued) Execute() function let Execute (input : string) =    let co = ChainableObject(input) :> IChainableObject<_>    try        let res = co.Process(process1).Process(process2).Process(process3)        res.Value    with    | :? MyException as ex ->        // throw or return a Result?        reraise ()    | exn ->        // A "real" exception        // What to do here?        reraise ()
  • 17. Sequential Workflows: Pipelining Similar to Extension Methods but with more idiomatic F# syntax with (|>) instead of dot syntax exception MyException of string   let process1 input = input let process2 input = raise <| MyException("An error occurred") let process3 input = input   let Execute (input : 'T) = try input |> process1 |> process2 |> process3 with | :? MyException as ex -> // throw or return a Result? reraise () | exn -> // A "real" exception // What to do here? reraise ()
  • 18. Chaining, Pipelining, etc.: Problems Getting better, but… Still using the try/catch exception mechanism for handling short-circuiting errors rather than real exception cases. We just get the result of the overall computation, but not each individual piece. What if the workflow wants to perform additional processing on pieces? Once again, the 'T in Execute() and processX() is always the same
  • 19. Help from Continuations module Continuationstype Result<'T> = | Success of 'T | Failure of stringlet process1 = (fun v -> Success("Process 1: " + v))let process2 = (fun v -> Failure("Process 2: An error occurred"))let process3 = (fun v -> Success("Process 3: " + v)) // Run f on v. If is succeeds, then call cont on that result, else return Failure // Note that cont can transform the result into another typelet executeCont v (f : 'a -> Result<'a>) (cont : 'a -> Result<'b>) : Result<'b> = let maybe = f v match maybe with | Failure(err) -> Failure(err) | Success(result) -> cont result let Execute v : Result<_> =    executeCont v process1 (fun result1 ->        executeCont result1 process2 (fun result2 ->            executeCont result2 process3 (fun result3 -> Success(result3))))
  • 20. Continuations Now we’re getting somewhere! Conditional computation – executeCont() can short-circuit We have access to intermediate results and could use these at any future point in the workflow The continuation function can transform the type from 'a to 'b. Now the types can be transformed in each stage of the workflow. More generic workflow helper functions (processX()) can be built which can manipulate different types. Still, ugly syntax. Could we improve on this?
  • 21. A Better Way: F# Workflows First define a “Result” type which can be Success or Failure, plus some additional info Then define the “Monadic” type which wraps a type 'T into a function, which could be conditionally executed to return a Result Note that Attempt<'T> is basically a continuation. The Workflow Builder we create next contains the logic to run the continuation (the entire rest of the workflow) after running the current step, or else not run additional Attempts if there is a failure, and simply return out of the entire workflow type Error = { Message : string }/// A result/// If success, it contains some object, plus a message (perhaps a logging message)/// If failure, it returns an Error object (which could be expanded to be much richer)type Result<'T> =| Success of 'T * string| Failure of Errortype Attempt<'T> = (unit -> Result<'T>)
  • 22. F# Workflow Builder: Helper functions let succeed (x,msg) = (fun () -> Success(x, msg)) : Attempt<'T>let fail err        = (fun () -> Failure(err)) : Attempt<'T>let failmsg msg     = (fun () -> Failure({ Message = msg })) : Attempt<'T>let runAttempt (a : Attempt<'T>) = a()let bind (f : Attempt<'T>) (rest : 'T -> Attempt<'U>) : Attempt<'U> =    match runAttempt f with    | Failure(msg)           -> fail msg    | Success(res, msg) as v -> rest reslet delay f = (fun () -> runAttempt (f()))let getValue (res:Result<'T>) = match res with    | Success(v,s) -> v    | Failure _ -> failwith "Invalid operation"
  • 23. F# Workflow Builder: The Workflow Builder Object Uses the helper functions we just defined to create a “builder” class required by F# Creates “processor” which is an instance of the builder. This is used to wrap all of these workflows using processor { } notation Another “static class”, Processor, contains additional helper methods (kind of like the Async class) type ProcessBuilder() =    member this.Return(x) = succeed x    member this.ReturnFrom(x) = x    member this.Bind(p, rest) = bind p rest    member this.Delay(f) = delay f    member this.Let(p, rest) : Attempt<'T> = rest ptype Processor() =    static member Run workflow =        runAttempt workflow        let processor = new ProcessBuilder()
  • 24. Mapping of Workflow Constructs
  • 25. F# Workflow: Final Result See code for full example type Customer = { Name : string; Birthdate : DateTime;  CreditScore : int; HasCriminalRecord : bool }let customerWorkflow c = processor {    let! ageTicket = processCustomer1 c    let! creditTicket = processCustomer2 c    let! criminalTicket = processCustomer3 c    // Process lots more stuff here...note how we can access result of each step    // If we didn't get to this point, then the entire workflow would have    // returned Result.Failure with the error message where the workflow failed    // If we got here, then all OK, assemble results and return    return ((c, [| ageTicket; creditTicket; criminalTicket |]), "Customer passed all checks!")    }/// If this succeeds, it returns a Result<Customer,int[]>/// else it returns a Failure with an error messagelet results = Processor.Run (customerWorkflow customer)
  • 26. F# Workflows: Bind De-Sugared See code for full example let customer = { Name = "Jane Doe"; DateTime.Parse("1/1/1960"); CreditScore = 640; HasCriminalRecord = false }let customerWorkflow c logger = processor {    let! ageResult  = processCustomer1 (c, logger)    let! creditResult  = processCustomer2 (c, logger)     let! criminalResult = processCustomer3 (c, logger) let ageTicket = getValue(ageResult)    let creditTicket  = getValue(creditResult)    let criminalTicket  = getValue(criminalResult)    return ((c, [| ageTicket; creditTicket; criminalTicket |]), "Customer passed all checks!", logger) } // De-sugars to: let finalResult = processor.Bind(processCustomer1 c, (fun ageResult -> processor.Bind(processCustomer2 c, (fun creditResult -> processor.Bind(processCustomer3 c, (fun criminalResult -> processor.Let(getValue(ageResult), (fun ageTicket -> processor.Let(getValue(creditTicket), (fun creditTicket -> processor.Let(getValue(criminalResult), (fun criminalTicket -> processor.Return (c, [|ageTicket;creditTicket;criminalTicket|], logger ))))))))))
  • 27. ParseWorkflow Example See example in code Complete example which parses and validates a fixed-width format specification and returns Line, Position and Message on any errors
  • 29. References Expert F# 2.0 (Don Syme, et al) Real World Functional Programming (Tomas Petricek with Jon Skeet) at http://www.manning.com/petricek/ Lots of F# and Haskell references Chance Coble “Why use Computation Workflows (aka Monads) in F#?” at http://leibnizdream.wordpress.com/2008/10/21/why-use-computation-workflows-aka-monads-in-f/ F# Survival Guide: Workflows at: http://www.ctocorner.com/fsharp/book/ch16.aspx DevHawk series: http://devhawk.net/CategoryView,category,Monads.aspx Understanding Haskell Monads (ErtugrulSöylemez) at http://ertes.de/articles/monads.html Monads are like Burritos: http://blog.plover.com/prog/burritos.html (and others) Many more