SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
Esquema del Motor de CC




 Curvas Características
Son el conjunto de curvas que representa las relaciones existentes entre las distintas variables de explotación de los
motores. Las más usuales son:


                           Característica                        Función      Variable      Parámetro        Constante
      de Velocidad: N(I)                                            N             I             C
      de Par: C(I)                                                  C             I             N               U, i
      Mecánica C(N)                                                 C            N               I




                                   Motor Excitación Independiente
Motor Excitación Paralelo




 Motor Excitación Serie
ESQUEMA DE MANDO MANDO
Motor eléctrico C.C.
Los motores de corriente continua tienen varias particularidades que los hacen muy
diferentes a los de corriente alterna. Una de las particularidades principales es que
pueden funcionar a la inversa, es decir, no solamente pueden ser usados para
transformar la energía eléctrica en energía mecánica, sino que también pueden funcionar
como generadores de energía eléctrica. Esto sucede porque tienen la misma constitución
física, de este modo, tenemos que un motor eléctrico de corriente continua puede
funcionar como un generador y como un motor.
Los motores de corriente continua tienen un par de arranque alto, en comparación con
los de corriente alterna, también se puede controlar con mucha facilidad la velocidad.
Por estos motivos, son ideales para funciones que requieran un control de velocidad.
Son usados para tranvías, trenes, coches eléctricos, ascensores, cadenas productivas, y
todas aquellas actividades donde el control de las funcionalidades del motor se hace
esencial.

Constitución del motor.

Los motores de corriente continua están formados principalmente por:

1. Estartor. El estartor lleva el bobinado inductor. Soporta la culata, que no es otra cosa
que un aro acero laminado, donde están situados los núcleos de los polos principales,
aquí es donde se sitúa el bobinado encargado de producir el campo magnético de
excitación.

2. Rotor. Esta construido con chapas superpuestas y magnéticas. Dichas chapas, tienen
unas ranuras en donde se alojan los bobinados.

3. Colector. Es donde se conectan los diferentes bobinados del inducido.

4. Escobillas. Las escobillas son las que recogen la electricidad. Es la principal causa de
avería en esta clase de motores, solo hay que cambiarlas con el mantenimiento habitual.

5. Truco. Este es un truco de electricista viejo, cuando el motor deja de funcionar, las
entradas de tensión son las correctas, entonces nos queda este truco: quitamos la
tensión, desmontamos la tapa del ventilador del motor, la tapa esta unida con tornillos a
la carcasa del motor y movemos el ventilador dándole unos giros, el sentido del giro es
indiferente, volvemos a tapar el ventilador y conectamos el motor, ¡Ah! Sorpresa,
funciona. Sucede que las escobillas llevan unos muelles para la fricción con los aros
rozantes y puede ser que penetre suciedad en los muelles o que se queden atascados. Por
supuesto, en cuanto dispongamos de tiempo se cambiarán las escobillas y los muelles.

Motor de excitación en serie.
La conexión del devanado de excitación se realiza en serie con el devanado del
inducido, como se puede observar en el dibujo. El devanado de excitación llevará pocas
espiras y serán de una gran sección. La corriente de excitación es igual a la corriente del
inducido. Los motores de excitación en serie se usan para situaciones en los que se
necesita un gran par de arranque como es el caso de tranvías, trenes, etc.
La velocidad es regulada con un reostato regulable en paralelo con el devanado de
excitación. La velocidad disminuye cuando aumenta la intensidad.

Motor de excitación en derivación o shunt.




Como podemos observar, el devanado de excitación está conectado en paralelo al
devanado del inducido. Se utiliza en máquinas de gran carga, ya sea en la industria del
plástico, metal, etc. Las intensidades son constantes y la regulación de velocidad se
consigue con un reostato regulable en serie con el devanado de excitación.

Motor de excitación compuesta o compound.
El devanado es dividido en dos partes, una está conectada en serie con el inducido y la
otra en paralelo, como se puede ver con el dibujo. Se utilizan en los casos de elevación
como pueden ser montacargas y ascensores. Teniendo el devanado de excitación en
serie conseguimos evitar el embalamiento del motor al ser disminuido el flujo, el
comportamiento sería similar a una conexión en shunt cuando está en vacio. Con carga,
el devanado en serie hace que el flujo aumente, de este modo la velocidad disminuye,
no de la misma manera que si hubiesemos conectado solamente en serie.

Motor de excitación independiente.




Como podemos observar en el dibujo, los dos devanados son alimentados con fuentes
diferentes. Tiene las mismas ventajas que un motor conectado en shunt, pero con más
posibilidades de regular su velocidad.

Conexión de bornes.

En la caja de bornes del motor disponemos de unas bornas numeradas alfabéticamente,
que corresponden con los diferentes conexionados que podemos hacer en el motor.
Para el inducido serán la A-B.
Para el devanado de excitación en shunt o derivación serán C-D.
Para el devanado de excitación en serie serán E-F.
Para el devanado de excitación independiente serán J-K.
Para el devanado de compensación y de conmutación serán G-H.
Esquema del motor de cc

Mais conteúdo relacionado

Mais procurados

TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORESTEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORESKike Prieto
 
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoProblemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoLuis Felipe Quevedo Avila
 
Informe de conexión estrella triángulo
Informe de conexión estrella triánguloInforme de conexión estrella triángulo
Informe de conexión estrella triánguloFred Quispe
 
00 Intro a Sistemas Electricos de Potencia
00  Intro a Sistemas Electricos de Potencia00  Intro a Sistemas Electricos de Potencia
00 Intro a Sistemas Electricos de PotenciaLuis Pedro Alcantar
 
Interruptores y seccionadores de alta y media tension
Interruptores y seccionadores de alta y media tensionInterruptores y seccionadores de alta y media tension
Interruptores y seccionadores de alta y media tensionDANNY RAMIREZ FLOREZ
 
Control de velocidad de motores
Control de velocidad de motoresControl de velocidad de motores
Control de velocidad de motoresTHiiNK
 
transformadores, refrijeracion conexiones y analisis
transformadores, refrijeracion conexiones y analisistransformadores, refrijeracion conexiones y analisis
transformadores, refrijeracion conexiones y analisisMaximiliano Garcia
 
Partes de la máquina síncrona
Partes de la máquina síncronaPartes de la máquina síncrona
Partes de la máquina síncronaLuis Zhunio
 
Tipos de devanados
Tipos de devanadosTipos de devanados
Tipos de devanadosGerardo Cruz
 
Solucionario de màquinas de richarson
Solucionario de màquinas de richarsonSolucionario de màquinas de richarson
Solucionario de màquinas de richarsonJosé Alfredo Delmar
 
Arranque de Motores con PLC
Arranque de Motores con PLCArranque de Motores con PLC
Arranque de Motores con PLCUtp arequipa
 
Transformador monofásico
Transformador monofásicoTransformador monofásico
Transformador monofásicoBuho21
 
Perdidas en el cobre y en el hierro en los transformadores
Perdidas en el cobre y en el hierro en los transformadores Perdidas en el cobre y en el hierro en los transformadores
Perdidas en el cobre y en el hierro en los transformadores licf15
 
control de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacioncontrol de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacionsorzua
 
Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)
Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)
Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)Edgar Francisco Lozado Campoverde
 
Método de cantidades por unidad p.u.
Método de cantidades por unidad p.u. Método de cantidades por unidad p.u.
Método de cantidades por unidad p.u. Jorge Torres
 

Mais procurados (20)

TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORESTEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
 
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoProblemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
 
Informe de conexión estrella triángulo
Informe de conexión estrella triánguloInforme de conexión estrella triángulo
Informe de conexión estrella triángulo
 
00 Intro a Sistemas Electricos de Potencia
00  Intro a Sistemas Electricos de Potencia00  Intro a Sistemas Electricos de Potencia
00 Intro a Sistemas Electricos de Potencia
 
Interruptores y seccionadores de alta y media tension
Interruptores y seccionadores de alta y media tensionInterruptores y seccionadores de alta y media tension
Interruptores y seccionadores de alta y media tension
 
Control de velocidad de motores
Control de velocidad de motoresControl de velocidad de motores
Control de velocidad de motores
 
transformadores, refrijeracion conexiones y analisis
transformadores, refrijeracion conexiones y analisistransformadores, refrijeracion conexiones y analisis
transformadores, refrijeracion conexiones y analisis
 
Partes de la máquina síncrona
Partes de la máquina síncronaPartes de la máquina síncrona
Partes de la máquina síncrona
 
Tipos de devanados
Tipos de devanadosTipos de devanados
Tipos de devanados
 
Solucionario de màquinas de richarson
Solucionario de màquinas de richarsonSolucionario de màquinas de richarson
Solucionario de màquinas de richarson
 
Arranque de Motores con PLC
Arranque de Motores con PLCArranque de Motores con PLC
Arranque de Motores con PLC
 
Voltaje de rizado
Voltaje de rizadoVoltaje de rizado
Voltaje de rizado
 
Estabilidad sep
Estabilidad sepEstabilidad sep
Estabilidad sep
 
Transformador monofásico
Transformador monofásicoTransformador monofásico
Transformador monofásico
 
Maquinas sincronas
Maquinas sincronasMaquinas sincronas
Maquinas sincronas
 
Perdidas en el cobre y en el hierro en los transformadores
Perdidas en el cobre y en el hierro en los transformadores Perdidas en el cobre y en el hierro en los transformadores
Perdidas en el cobre y en el hierro en los transformadores
 
control de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacioncontrol de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacion
 
Scr, triac y diac
Scr, triac y diacScr, triac y diac
Scr, triac y diac
 
Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)
Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)
Capitulo I completo (Chapman Electric Machinery Fundamentals 5th)
 
Método de cantidades por unidad p.u.
Método de cantidades por unidad p.u. Método de cantidades por unidad p.u.
Método de cantidades por unidad p.u.
 

Semelhante a Esquema del motor de cc

CLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptx
CLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptxCLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptx
CLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptxEric Vicente Rodríguez Mojica
 
MOTORES DE CC
MOTORES DE CCMOTORES DE CC
MOTORES DE CCpedro595
 
¿Qué es un motor eléctrico?
¿Qué es un motor eléctrico?¿Qué es un motor eléctrico?
¿Qué es un motor eléctrico?Jorge Vongola
 
Metodos de arranque. carlos perez.
Metodos de arranque. carlos perez.Metodos de arranque. carlos perez.
Metodos de arranque. carlos perez.carlos perez
 
Motores_electricos_1.pptx
Motores_electricos_1.pptxMotores_electricos_1.pptx
Motores_electricos_1.pptxrolandjay1
 
Motor de corriente continúa
Motor de corriente continúaMotor de corriente continúa
Motor de corriente continúaGabriel Ramos
 
T4 regulación motores CC
T4 regulación motores CCT4 regulación motores CC
T4 regulación motores CCNuria_Cavaller
 
Motor de corriente continúa
Motor de corriente continúaMotor de corriente continúa
Motor de corriente continúaGabriel Ramos
 
Motor eléctrico
Motor eléctricoMotor eléctrico
Motor eléctricosiulfer87
 
Motores de corriente alterna
Motores de corriente alternaMotores de corriente alterna
Motores de corriente alternajuan Hernandez
 
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docxCUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docxEspecialidad Indus
 
Motores y maquinas electricas
Motores y maquinas electricasMotores y maquinas electricas
Motores y maquinas electricasluischunata
 
Presentacion Motores Cc
Presentacion Motores CcPresentacion Motores Cc
Presentacion Motores Ccevelynnavgo
 
Guía 1. partes del motor electrico
Guía 1. partes del motor electricoGuía 1. partes del motor electrico
Guía 1. partes del motor electricoLeidy Castañeda
 
Guía 1. partes del motor electrico
Guía 1. partes del motor electricoGuía 1. partes del motor electrico
Guía 1. partes del motor electricoleidysjcp
 

Semelhante a Esquema del motor de cc (20)

CLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptx
CLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptxCLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptx
CLASE #2 GENERALIDADES DE LAS MÁQUINAS DE CORRIENTE CONTINUA.pptx
 
MOTORES DE CC
MOTORES DE CCMOTORES DE CC
MOTORES DE CC
 
¿Qué es un motor eléctrico?
¿Qué es un motor eléctrico?¿Qué es un motor eléctrico?
¿Qué es un motor eléctrico?
 
Metodos de arranque. carlos perez.
Metodos de arranque. carlos perez.Metodos de arranque. carlos perez.
Metodos de arranque. carlos perez.
 
Curso ene 2012
Curso ene 2012Curso ene 2012
Curso ene 2012
 
Motores_electricos_1.pptx
Motores_electricos_1.pptxMotores_electricos_1.pptx
Motores_electricos_1.pptx
 
Motores_electricos_1.pptx
Motores_electricos_1.pptxMotores_electricos_1.pptx
Motores_electricos_1.pptx
 
Motor de corriente continúa
Motor de corriente continúaMotor de corriente continúa
Motor de corriente continúa
 
T4 regulación motores CC
T4 regulación motores CCT4 regulación motores CC
T4 regulación motores CC
 
Motor de corriente continúa
Motor de corriente continúaMotor de corriente continúa
Motor de corriente continúa
 
Motores de corriente continua
Motores de corriente continuaMotores de corriente continua
Motores de corriente continua
 
Motor eléctrico
Motor eléctricoMotor eléctrico
Motor eléctrico
 
Motores de corriente alterna
Motores de corriente alternaMotores de corriente alterna
Motores de corriente alterna
 
Monofadico
MonofadicoMonofadico
Monofadico
 
Motor electrico
Motor  electricoMotor  electrico
Motor electrico
 
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docxCUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docx
 
Motores y maquinas electricas
Motores y maquinas electricasMotores y maquinas electricas
Motores y maquinas electricas
 
Presentacion Motores Cc
Presentacion Motores CcPresentacion Motores Cc
Presentacion Motores Cc
 
Guía 1. partes del motor electrico
Guía 1. partes del motor electricoGuía 1. partes del motor electrico
Guía 1. partes del motor electrico
 
Guía 1. partes del motor electrico
Guía 1. partes del motor electricoGuía 1. partes del motor electrico
Guía 1. partes del motor electrico
 

Esquema del motor de cc

  • 1. Esquema del Motor de CC Curvas Características
  • 2. Son el conjunto de curvas que representa las relaciones existentes entre las distintas variables de explotación de los motores. Las más usuales son: Característica Función Variable Parámetro Constante de Velocidad: N(I) N I C de Par: C(I) C I N U, i Mecánica C(N) C N I Motor Excitación Independiente
  • 3. Motor Excitación Paralelo Motor Excitación Serie
  • 5. Motor eléctrico C.C. Los motores de corriente continua tienen varias particularidades que los hacen muy diferentes a los de corriente alterna. Una de las particularidades principales es que pueden funcionar a la inversa, es decir, no solamente pueden ser usados para transformar la energía eléctrica en energía mecánica, sino que también pueden funcionar como generadores de energía eléctrica. Esto sucede porque tienen la misma constitución física, de este modo, tenemos que un motor eléctrico de corriente continua puede funcionar como un generador y como un motor. Los motores de corriente continua tienen un par de arranque alto, en comparación con los de corriente alterna, también se puede controlar con mucha facilidad la velocidad. Por estos motivos, son ideales para funciones que requieran un control de velocidad. Son usados para tranvías, trenes, coches eléctricos, ascensores, cadenas productivas, y todas aquellas actividades donde el control de las funcionalidades del motor se hace esencial. Constitución del motor. Los motores de corriente continua están formados principalmente por: 1. Estartor. El estartor lleva el bobinado inductor. Soporta la culata, que no es otra cosa que un aro acero laminado, donde están situados los núcleos de los polos principales, aquí es donde se sitúa el bobinado encargado de producir el campo magnético de excitación. 2. Rotor. Esta construido con chapas superpuestas y magnéticas. Dichas chapas, tienen unas ranuras en donde se alojan los bobinados. 3. Colector. Es donde se conectan los diferentes bobinados del inducido. 4. Escobillas. Las escobillas son las que recogen la electricidad. Es la principal causa de avería en esta clase de motores, solo hay que cambiarlas con el mantenimiento habitual. 5. Truco. Este es un truco de electricista viejo, cuando el motor deja de funcionar, las entradas de tensión son las correctas, entonces nos queda este truco: quitamos la tensión, desmontamos la tapa del ventilador del motor, la tapa esta unida con tornillos a la carcasa del motor y movemos el ventilador dándole unos giros, el sentido del giro es indiferente, volvemos a tapar el ventilador y conectamos el motor, ¡Ah! Sorpresa, funciona. Sucede que las escobillas llevan unos muelles para la fricción con los aros rozantes y puede ser que penetre suciedad en los muelles o que se queden atascados. Por supuesto, en cuanto dispongamos de tiempo se cambiarán las escobillas y los muelles. Motor de excitación en serie.
  • 6. La conexión del devanado de excitación se realiza en serie con el devanado del inducido, como se puede observar en el dibujo. El devanado de excitación llevará pocas espiras y serán de una gran sección. La corriente de excitación es igual a la corriente del inducido. Los motores de excitación en serie se usan para situaciones en los que se necesita un gran par de arranque como es el caso de tranvías, trenes, etc. La velocidad es regulada con un reostato regulable en paralelo con el devanado de excitación. La velocidad disminuye cuando aumenta la intensidad. Motor de excitación en derivación o shunt. Como podemos observar, el devanado de excitación está conectado en paralelo al devanado del inducido. Se utiliza en máquinas de gran carga, ya sea en la industria del plástico, metal, etc. Las intensidades son constantes y la regulación de velocidad se consigue con un reostato regulable en serie con el devanado de excitación. Motor de excitación compuesta o compound.
  • 7. El devanado es dividido en dos partes, una está conectada en serie con el inducido y la otra en paralelo, como se puede ver con el dibujo. Se utilizan en los casos de elevación como pueden ser montacargas y ascensores. Teniendo el devanado de excitación en serie conseguimos evitar el embalamiento del motor al ser disminuido el flujo, el comportamiento sería similar a una conexión en shunt cuando está en vacio. Con carga, el devanado en serie hace que el flujo aumente, de este modo la velocidad disminuye, no de la misma manera que si hubiesemos conectado solamente en serie. Motor de excitación independiente. Como podemos observar en el dibujo, los dos devanados son alimentados con fuentes diferentes. Tiene las mismas ventajas que un motor conectado en shunt, pero con más posibilidades de regular su velocidad. Conexión de bornes. En la caja de bornes del motor disponemos de unas bornas numeradas alfabéticamente, que corresponden con los diferentes conexionados que podemos hacer en el motor. Para el inducido serán la A-B. Para el devanado de excitación en shunt o derivación serán C-D. Para el devanado de excitación en serie serán E-F. Para el devanado de excitación independiente serán J-K. Para el devanado de compensación y de conmutación serán G-H.