SlideShare uma empresa Scribd logo
1 de 67
Baixar para ler offline
62&,(7< 2) $&78$5,(6$68$/7 $78$5,$/ 62,(7



                             (;$0 3 352%$%,/,7


                         3 6$03/( (;$0 62/87,216




   RSULJKW  E WKH 6RFLHW RI $FWXDULHV DQG WKH DVXDOW $FWXDULDO 6RFLHW


6RPH RI WKH TXHVWLRQV LQ WKLV VWXG QRWH DUH WDNHQ IURP SDVW 62$$6 H[DPLQDWLRQV




                                     Page 1 of 67
1. Solution: D
            Let
                      G     event that a viewer watched gymnastics
                     B event that a viewer watched baseball
                     S event that a viewer watched soccer
             Then we want to find
             Pr ª G ‰ B ‰ S
º 1  Pr  G ‰ B ‰ S
c
                ¬               ¼
                1  ª Pr  G
Pr  B
Pr  S
Pr  G ˆ B
Pr  G ˆ S
Pr  B ˆ S
Pr  G ˆ B ˆ S
º
                    ¬                                                                                                ¼
                1   0.28  0.29  0.19  0.14  0.10  0.12  0.08
1  0.48 0.52

--------------------------------------------------------------------------------------------------------

    2.       Solution: A
             Let R = event of referral to a specialist
                 L = event of lab work
             We want to find
             P[RˆL] = P[R] + P[L] – P[R‰L] = P[R] + P[L] – 1 + P[~(R‰L)]
             = P[R] + P[L] – 1 + P[~Rˆ~L] = 0.30 + 0.40 – 1 + 0.35 = 0.05 .

    --------------------------------------------------------------------------------------------------------

    3.       Solution: D
             First note
                     P  A ‰ B@      P  A@  P  B @  P  A ˆ B @
                    P  A ‰ B '@ P  A@  P  B '@  P  A ˆ B '@
             Then add these two equations to get
                    P  A ‰ B @  P  A ‰ B '@ 2 P  A@   P  B @  P  B '@
P  A ˆ B @  P  A ˆ B '@
0.7  0.9 2 P  A@  1  P ª A ˆ B
‰  A ˆ B '
º
                                                 ¬                       ¼
                      1.6 2 P  A@  1  P  A@
                       P  A@ 0.6




                                                         Page 2 of 67
4.       Solution: A
         For i 1, 2, let
                  Ri event that a red ball is drawn form urn i
                    Bi    event that a blue ball is drawn from urn i .
         Then if x is the number of blue balls in urn 2,
                 0.44 Pr[ R1  R2
*  B1  B2
] Pr[ R1  R2 ]  Pr  B1  B2 @
                          Pr  R1 @ Pr  R2 @  Pr  B1 @ Pr  B2 @
                           4 § 16 · 6 § x ·
                             ¨        ¸ ¨          ¸
                          10 © x  16 ¹ 10 © x  16 ¹
         Therefore,
                             32     3x    3x  32
                    2.2          
                           x  16 x  16 x  16
                    2.2 x  35.2 3 x  32
                    0.8 x 3.2
                        x 4

--------------------------------------------------------------------------------------------------------

5.       Solution: D
         Let N(C) denote the number of policyholders in classification C . Then
         N(Young ˆ Female ˆ Single) = N(Young ˆ Female) – N(Young ˆ Female ˆ Married)
         = N(Young) – N(Young ˆ Male) – [N(Young ˆ Married) – N(Young ˆ Married ˆ
         Male)] = 3000 – 1320 – (1400 – 600) = 880 .

--------------------------------------------------------------------------------------------------------

6.       Solution: B
         Let
                 H = event that a death is due to heart disease
                 F = event that at least one parent suffered from heart disease
         Then based on the medical records,
                                  210  102 108
                  P ªH ˆ F c º
                    ¬        ¼      937        937
                           937  312 625
                  P ªF c º
                    ¬ ¼         937        937
                            P ª H ˆ F º 108 625 108
                               ¬
                                       c
                                         ¼
         and P ª H | F c º
                ¬        ¼                                      0.173
                                P ªF º
                                    c
                                  ¬ ¼        937 937 625




                                                         Page 3 of 67
7.       Solution: D
         Let
                 A event that a policyholder has an auto policy
                 H event that a policyholder has a homeowners policy
         Then based on the information given,
                 Pr  A ˆ H
0.15
                  Pr  A ˆ H c
Pr  A
Pr  A ˆ H
0.65  0.15 0.50
                  Pr  Ac ˆ H
Pr  H
Pr  A ˆ H
0.50  0.15 0.35
         and the portion of policyholders that will renew at least one policy is given by
                 0.4 Pr  A ˆ H c
0.6 Pr  Ac ˆ H
0.8 Pr  A ˆ H
0.4
0.5
0.6
0.35
0.8
0.15
0.53        53%
--------------------------------------------------------------------------------------------------------

100292       01B-9
8.    Solution: D
      Let
             C = event that patient visits a chiropractor
             T = event that patient visits a physical therapist
      We are given that
              Pr C @ Pr T @  0.14
                  Pr  C  T
0.22
                  Pr  C c  T c
0.12
         Therefore,
                0.88 1  Pr ªC c  T c º
                            ¬          ¼         Pr C * T @ Pr C @  Pr T @  Pr C  T @
                            Pr T @  0.14  Pr T @  0.22
                            2 Pr T @  0.08
         or
                  Pr T @      0.88  0.08
2 0.48




                                                     Page 4 of 67
9.       Solution: B
         Let
                  M event that customer insures more than one car
                  S event that customer insures a sports car
         Then applying DeMorgan’s Law, we may compute the desired
         probability as follows:
         Pr  M c ˆ S c
Pr ª M ‰ S
º 1  Pr  M ‰ S
1  ¬ Pr  M
Pr  S
Pr  M ˆ S
¼
                                            c
                                                                     ª                              º
                               ¬              ¼
           1  Pr  M
Pr  S
Pr  S M
Pr  M
1  0.70  0.20   0.15
0.70
0.205

--------------------------------------------------------------------------------------------------------

10.      Solution: C
         Consider the following events about a randomly selected auto insurance customer:
                 A = customer insures more than one car
                 B = customer insures a sports car
         We want to find the probability of the complement of A intersecting the complement of B
         (exactly one car, non-sports). But P ( Ac ˆ Bc) = 1 – P (A ‰ B)
         And, by the Additive Law, P ( A ‰ B ) = P ( A) + P ( B ) – P ( A ˆ B ).
         By the Multiplicative Law, P ( A ˆ B ) = P ( B _ A ) P (A) = 0.15 * 0.64 = 0.096
         It follows that P ( A ‰ B ) = 0.64 + 0.20 – 0.096 = 0.744 and P (Ac ˆ Bc ) = 0.744 =
         0.256

--------------------------------------------------------------------------------------------------------

11.      Solution: B
         Let
         C = Event that a policyholder buys collision coverage
         D = Event that a policyholder buys disability coverage
         Then we are given that P[C] = 2P[D] and P[C ˆ D] = 0.15 .
         By the independence of C and D, it therefore follows that
         0.15 = P[C ˆ D] = P[C] P[D] = 2P[D] P[D] = 2(P[D])2
         (P[D])2 = 0.15/2 = 0.075
         P[D] = 0.075 and P[C] = 2P[D] = 2 0.075
         Now the independence of C and D also implies the independence of CC and DC . As a
         result, we see that P[CC ˆ DC] = P[CC] P[DC] = (1 – P[C]) (1 – P[D])
         = (1 – 2 0.075 ) (1 – 0.075 ) = 0.33 .




                                                    Page 5 of 67
12.      Solution: E
         “Boxed” numbers in the table below were computed.
                                       High BP Low BP Norm BP                            Total
                 Regular heartbeat       0.09       0.20       0.56         0.85
                 Irregular heartbeat     0.05       0.02       0.08         0.15
                 Total                   0.14       0.22       0.64         1.00
         From the table, we can see that 20% of patients have a regular heartbeat and low blood
         pressure.

--------------------------------------------------------------------------------------------------------

13.      Solution: C
         The Venn diagram below summarizes the unconditional probabilities described in the
         problem.




         In addition, we are told that
                  1                             P A ˆ B ˆ C@                x
                       P  A ˆ B ˆ C | A ˆ B@
                  3                                P  A ˆ B@            x  0.12
         It follows that
                      1               1
                  x      x  0.12
x  0.04
                      3               3
                  2
                    x 0.04
                  3
                  x 0.06
         Now we want to find
                                            P ª A ‰ B ‰ C
º
                                                             c

                  P ª A ‰ B ‰ C
| Ac º
                                    c         ¬                ¼
                    ¬                    ¼        P ªA ºc
                                                    ¬ ¼
                                            1 P A ‰ B ‰ C@
                                                    1  P  A@
                                               1  3  0.10
3  0.12
0.06
                                                 1  0.10  2  0.12
0.06
                                               0.28
                                                         0.467
                                               0.60



                                                      Page 6 of 67
14.      Solution: A
                                                                    k
             1           11           1 1 1                 §1·
         pk = pk 1         pk  2     ˜ ˜ pk 3        ... ¨ ¸ p0      kt0
             5           55           5 5 5                 ©5¹
               f        f       k
                          §1·            p0      5
         1=   ¦ pk     ¦ ¨ 5 ¸ p0
                       k 0© ¹
                                           1     4
                                                   p0
              k 0
                                        1
                                           5
         p0 = 4/5 .
         Therefore, P[N  1] = 1 – P[N d1] = 1 – (4/5 + 4/5 ˜ 1/5) = 1 – 24/25 = 1/25 = 0.04 .

--------------------------------------------------------------------------------------------------------

15.      Solution: C
         A Venn diagram for this situation looks like:




         We want to find w 1   x  y  z
1           1                       5
         We have x  y      , xz       , yz
                          4           3                      12
         Adding these three equations gives
                                                             1 1 5
                             x  y
x  z
y  z
4 3 12
                            2 x  y  z
1
                                         1
                            x y z
                                         2
                                                1 1
                            w 1  x  y  z
1
                                                2 2
         Alternatively the three equations can be solved to give x = 1/12, y = 1/6, z =1/4
                                  § 1 1 1· 1
         again leading to w 1  ¨   ¸
                                  © 12 6 4 ¹ 2




                                                     Page 7 of 67

Mais conteúdo relacionado

Destaque

Systematic literature reviews - Moving offline communities online
Systematic literature reviews - Moving offline communities onlineSystematic literature reviews - Moving offline communities online
Systematic literature reviews - Moving offline communities onlineJenine Beekhuyzen
 
مدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازی
مدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازیمدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازی
مدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازیTechnical University of Denamrk
 
Landing Pages Basics: What, Why and How
Landing Pages Basics: What, Why and HowLanding Pages Basics: What, Why and How
Landing Pages Basics: What, Why and HowKate Kotenko Lengold
 
логопед
логопедлогопед
логопедmax_iwan
 
Best Wallet - интеграция
Best Wallet - интеграцияBest Wallet - интеграция
Best Wallet - интеграцияAndrew Dryga
 
Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...
Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...
Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...Jenine Beekhuyzen
 
едельвейс
едельвейседельвейс
едельвейсmax_iwan
 
музей школи
музей школимузей школи
музей школиmax_iwan
 
Bungalow @ meyer
Bungalow @ meyerBungalow @ meyer
Bungalow @ meyerHenry Loh
 
Pdhpe rationale
Pdhpe rationalePdhpe rationale
Pdhpe rationaleamira24
 
امکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آن
امکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آنامکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آن
امکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آنTechnical University of Denamrk
 
طراحی یک چاه مجازی در میدان اهواز
طراحی یک چاه مجازی در میدان اهوازطراحی یک چاه مجازی در میدان اهواز
طراحی یک چاه مجازی در میدان اهوازTechnical University of Denamrk
 
Dvizhenie vdogonku
Dvizhenie vdogonkuDvizhenie vdogonku
Dvizhenie vdogonkuKonshina
 
карта мышления для вики
карта мышления для викикарта мышления для вики
карта мышления для викиKonshina
 

Destaque (20)

Systematic literature reviews - Moving offline communities online
Systematic literature reviews - Moving offline communities onlineSystematic literature reviews - Moving offline communities online
Systematic literature reviews - Moving offline communities online
 
تقسیم بندی مخازن و سیالات نفتی
تقسیم بندی مخازن و سیالات نفتیتقسیم بندی مخازن و سیالات نفتی
تقسیم بندی مخازن و سیالات نفتی
 
مدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازی
مدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازیمدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازی
مدلسازی ریاضی ناپایداری دیواره چاه هنگام حفاری سازند حاوی هیدرات گازی
 
Landing Pages Basics: What, Why and How
Landing Pages Basics: What, Why and HowLanding Pages Basics: What, Why and How
Landing Pages Basics: What, Why and How
 
логопед
логопедлогопед
логопед
 
Best Wallet - интеграция
Best Wallet - интеграцияBest Wallet - интеграция
Best Wallet - интеграция
 
Seminar ppt
Seminar pptSeminar ppt
Seminar ppt
 
Advertising
AdvertisingAdvertising
Advertising
 
Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...
Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...
Tech Girls Movement Tech Girls Are Superheroes Book 2 Launch Google Sydney IW...
 
едельвейс
едельвейседельвейс
едельвейс
 
музей школи
музей школимузей школи
музей школи
 
Bungalow @ meyer
Bungalow @ meyerBungalow @ meyer
Bungalow @ meyer
 
Floor Plan
Floor PlanFloor Plan
Floor Plan
 
Pdhpe rationale
Pdhpe rationalePdhpe rationale
Pdhpe rationale
 
امکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آن
امکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آنامکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آن
امکان‌سنجی طراحی و ساخت سخت‌افزار شبیه‌ساز کنترل فوران چاه و نوشتن نرم افزار آن
 
طراحی یک چاه مجازی در میدان اهواز
طراحی یک چاه مجازی در میدان اهوازطراحی یک چاه مجازی در میدان اهواز
طراحی یک چاه مجازی در میدان اهواز
 
Dvizhenie vdogonku
Dvizhenie vdogonkuDvizhenie vdogonku
Dvizhenie vdogonku
 
Cuando Los Residuos Son Recursos
Cuando Los Residuos Son Recursos Cuando Los Residuos Son Recursos
Cuando Los Residuos Son Recursos
 
Munari
MunariMunari
Munari
 
карта мышления для вики
карта мышления для викикарта мышления для вики
карта мышления для вики
 

Semelhante a Exam p samplesolutions

Society of-actuariescasualty-actuarial-society-exam-p4001
Society of-actuariescasualty-actuarial-society-exam-p4001Society of-actuariescasualty-actuarial-society-exam-p4001
Society of-actuariescasualty-actuarial-society-exam-p4001Zixi Wang
 
Frontiers of data-driven property prediction: molecular machine learning
Frontiers of data-driven property prediction: molecular machine learningFrontiers of data-driven property prediction: molecular machine learning
Frontiers of data-driven property prediction: molecular machine learningIchigaku Takigawa
 
パラメータ設定にてユーザー定義出来るスパイスモデル BD65493FV
パラメータ設定にてユーザー定義出来るスパイスモデル BD65493FVパラメータ設定にてユーザー定義出来るスパイスモデル BD65493FV
パラメータ設定にてユーザー定義出来るスパイスモデル BD65493FVTsuyoshi Horigome
 
Pay back period ..chapter solution to problems...
Pay back period ..chapter solution to problems...Pay back period ..chapter solution to problems...
Pay back period ..chapter solution to problems...mianmohsinmumtazshb
 
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...Julio Banks
 
Quantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualQuantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualSelina333
 
compressor alignment procedure -1.pdf
compressor alignment procedure -1.pdfcompressor alignment procedure -1.pdf
compressor alignment procedure -1.pdfAmjadAli147731
 
Numerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface ReservoirNumerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface ReservoirJeffrey Daniels
 
Douglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdfDouglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdfAshutoshKgupta
 
Micro3 Dn HoạT độNg TrêN Thị TrườNg CạNh Tranh
Micro3 Dn HoạT độNg TrêN Thị TrườNg CạNh TranhMicro3 Dn HoạT độNg TrêN Thị TrườNg CạNh Tranh
Micro3 Dn HoạT độNg TrêN Thị TrườNg CạNh Tranhguestabb7e1
 
Chapter-4-Combinational Logic.pdf
Chapter-4-Combinational Logic.pdfChapter-4-Combinational Logic.pdf
Chapter-4-Combinational Logic.pdfGetinetGaroma1
 
0.5 Rational Expressions
0.5 Rational Expressions0.5 Rational Expressions
0.5 Rational Expressionssmiller5
 

Semelhante a Exam p samplesolutions (20)

Society of-actuariescasualty-actuarial-society-exam-p4001
Society of-actuariescasualty-actuarial-society-exam-p4001Society of-actuariescasualty-actuarial-society-exam-p4001
Society of-actuariescasualty-actuarial-society-exam-p4001
 
Chap5 sec5.2
Chap5 sec5.2Chap5 sec5.2
Chap5 sec5.2
 
Frontiers of data-driven property prediction: molecular machine learning
Frontiers of data-driven property prediction: molecular machine learningFrontiers of data-driven property prediction: molecular machine learning
Frontiers of data-driven property prediction: molecular machine learning
 
Week3.pdf
Week3.pdfWeek3.pdf
Week3.pdf
 
パラメータ設定にてユーザー定義出来るスパイスモデル BD65493FV
パラメータ設定にてユーザー定義出来るスパイスモデル BD65493FVパラメータ設定にてユーザー定義出来るスパイスモデル BD65493FV
パラメータ設定にてユーザー定義出来るスパイスモデル BD65493FV
 
16 cases.pdf
16 cases.pdf16 cases.pdf
16 cases.pdf
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Pay back period ..chapter solution to problems...
Pay back period ..chapter solution to problems...Pay back period ..chapter solution to problems...
Pay back period ..chapter solution to problems...
 
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
T liner simulation parametric study of a thermal-liner by Julio c. banks, MSM...
 
Unit 2.pptx
Unit 2.pptxUnit 2.pptx
Unit 2.pptx
 
Quantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualQuantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manual
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
compressor alignment procedure -1.pdf
compressor alignment procedure -1.pdfcompressor alignment procedure -1.pdf
compressor alignment procedure -1.pdf
 
Numerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface ReservoirNumerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface Reservoir
 
Douglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdfDouglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdf
 
Notes 6-7
Notes 6-7Notes 6-7
Notes 6-7
 
elec2200-6.pdf
elec2200-6.pdfelec2200-6.pdf
elec2200-6.pdf
 
Micro3 Dn HoạT độNg TrêN Thị TrườNg CạNh Tranh
Micro3 Dn HoạT độNg TrêN Thị TrườNg CạNh TranhMicro3 Dn HoạT độNg TrêN Thị TrườNg CạNh Tranh
Micro3 Dn HoạT độNg TrêN Thị TrườNg CạNh Tranh
 
Chapter-4-Combinational Logic.pdf
Chapter-4-Combinational Logic.pdfChapter-4-Combinational Logic.pdf
Chapter-4-Combinational Logic.pdf
 
0.5 Rational Expressions
0.5 Rational Expressions0.5 Rational Expressions
0.5 Rational Expressions
 

Último

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 

Último (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

Exam p samplesolutions

  • 1. 62&,(7< 2) $&78$5,(6$68$/7 $78$5,$/ 62,(7 (;$0 3 352%$%,/,7 3 6$03/( (;$0 62/87,216 RSULJKW E WKH 6RFLHW RI $FWXDULHV DQG WKH DVXDOW $FWXDULDO 6RFLHW 6RPH RI WKH TXHVWLRQV LQ WKLV VWXG QRWH DUH WDNHQ IURP SDVW 62$$6 H[DPLQDWLRQV Page 1 of 67
  • 2. 1. Solution: D Let G event that a viewer watched gymnastics B event that a viewer watched baseball S event that a viewer watched soccer Then we want to find Pr ª G ‰ B ‰ S
  • 3. º 1 Pr G ‰ B ‰ S
  • 4. c ¬ ¼ 1 ª Pr G
  • 7. Pr G ˆ B
  • 8. Pr G ˆ S
  • 9. Pr B ˆ S
  • 10. Pr G ˆ B ˆ S
  • 11. º ¬ ¼ 1 0.28 0.29 0.19 0.14 0.10 0.12 0.08
  • 12. 1 0.48 0.52 -------------------------------------------------------------------------------------------------------- 2. Solution: A Let R = event of referral to a specialist L = event of lab work We want to find P[RˆL] = P[R] + P[L] – P[R‰L] = P[R] + P[L] – 1 + P[~(R‰L)] = P[R] + P[L] – 1 + P[~Rˆ~L] = 0.30 + 0.40 – 1 + 0.35 = 0.05 . -------------------------------------------------------------------------------------------------------- 3. Solution: D First note P A ‰ B@ P A@ P B @ P A ˆ B @ P A ‰ B '@ P A@ P B '@ P A ˆ B '@ Then add these two equations to get P A ‰ B @ P A ‰ B '@ 2 P A@ P B @ P B '@
  • 13. P A ˆ B @ P A ˆ B '@
  • 14. 0.7 0.9 2 P A@ 1 P ª A ˆ B
  • 15. ‰ A ˆ B '
  • 16. º ¬ ¼ 1.6 2 P A@ 1 P A@ P A@ 0.6 Page 2 of 67
  • 17. 4. Solution: A For i 1, 2, let Ri event that a red ball is drawn form urn i Bi event that a blue ball is drawn from urn i . Then if x is the number of blue balls in urn 2, 0.44 Pr[ R1 R2
  • 18. * B1 B2
  • 19. ] Pr[ R1 R2 ] Pr B1 B2 @ Pr R1 @ Pr R2 @ Pr B1 @ Pr B2 @ 4 § 16 · 6 § x · ¨ ¸ ¨ ¸ 10 © x 16 ¹ 10 © x 16 ¹ Therefore, 32 3x 3x 32 2.2 x 16 x 16 x 16 2.2 x 35.2 3 x 32 0.8 x 3.2 x 4 -------------------------------------------------------------------------------------------------------- 5. Solution: D Let N(C) denote the number of policyholders in classification C . Then N(Young ˆ Female ˆ Single) = N(Young ˆ Female) – N(Young ˆ Female ˆ Married) = N(Young) – N(Young ˆ Male) – [N(Young ˆ Married) – N(Young ˆ Married ˆ Male)] = 3000 – 1320 – (1400 – 600) = 880 . -------------------------------------------------------------------------------------------------------- 6. Solution: B Let H = event that a death is due to heart disease F = event that at least one parent suffered from heart disease Then based on the medical records, 210 102 108 P ªH ˆ F c º ¬ ¼ 937 937 937 312 625 P ªF c º ¬ ¼ 937 937 P ª H ˆ F º 108 625 108 ¬ c ¼ and P ª H | F c º ¬ ¼ 0.173 P ªF º c ¬ ¼ 937 937 625 Page 3 of 67
  • 20. 7. Solution: D Let A event that a policyholder has an auto policy H event that a policyholder has a homeowners policy Then based on the information given, Pr A ˆ H
  • 21. 0.15 Pr A ˆ H c
  • 22. Pr A
  • 23. Pr A ˆ H
  • 24. 0.65 0.15 0.50 Pr Ac ˆ H
  • 25. Pr H
  • 26. Pr A ˆ H
  • 27. 0.50 0.15 0.35 and the portion of policyholders that will renew at least one policy is given by 0.4 Pr A ˆ H c
  • 28. 0.6 Pr Ac ˆ H
  • 29. 0.8 Pr A ˆ H
  • 30. 0.4
  • 31. 0.5
  • 32. 0.6
  • 33. 0.35
  • 34. 0.8
  • 35. 0.15
  • 36. 0.53 53%
  • 37. -------------------------------------------------------------------------------------------------------- 100292 01B-9 8. Solution: D Let C = event that patient visits a chiropractor T = event that patient visits a physical therapist We are given that Pr C @ Pr T @ 0.14 Pr C T
  • 38. 0.22 Pr C c T c
  • 39. 0.12 Therefore, 0.88 1 Pr ªC c T c º ¬ ¼ Pr C * T @ Pr C @ Pr T @ Pr C T @ Pr T @ 0.14 Pr T @ 0.22 2 Pr T @ 0.08 or Pr T @ 0.88 0.08
  • 40. 2 0.48 Page 4 of 67
  • 41. 9. Solution: B Let M event that customer insures more than one car S event that customer insures a sports car Then applying DeMorgan’s Law, we may compute the desired probability as follows: Pr M c ˆ S c
  • 42. Pr ª M ‰ S
  • 43. º 1 Pr M ‰ S
  • 44. 1 ¬ Pr M
  • 45. Pr S
  • 46. Pr M ˆ S
  • 47. ¼ c ª º ¬ ¼ 1 Pr M
  • 48. Pr S
  • 49. Pr S M
  • 50. Pr M
  • 51. 1 0.70 0.20 0.15
  • 52. 0.70
  • 53. 0.205 -------------------------------------------------------------------------------------------------------- 10. Solution: C Consider the following events about a randomly selected auto insurance customer: A = customer insures more than one car B = customer insures a sports car We want to find the probability of the complement of A intersecting the complement of B (exactly one car, non-sports). But P ( Ac ˆ Bc) = 1 – P (A ‰ B) And, by the Additive Law, P ( A ‰ B ) = P ( A) + P ( B ) – P ( A ˆ B ). By the Multiplicative Law, P ( A ˆ B ) = P ( B _ A ) P (A) = 0.15 * 0.64 = 0.096 It follows that P ( A ‰ B ) = 0.64 + 0.20 – 0.096 = 0.744 and P (Ac ˆ Bc ) = 0.744 = 0.256 -------------------------------------------------------------------------------------------------------- 11. Solution: B Let C = Event that a policyholder buys collision coverage D = Event that a policyholder buys disability coverage Then we are given that P[C] = 2P[D] and P[C ˆ D] = 0.15 . By the independence of C and D, it therefore follows that 0.15 = P[C ˆ D] = P[C] P[D] = 2P[D] P[D] = 2(P[D])2 (P[D])2 = 0.15/2 = 0.075 P[D] = 0.075 and P[C] = 2P[D] = 2 0.075 Now the independence of C and D also implies the independence of CC and DC . As a result, we see that P[CC ˆ DC] = P[CC] P[DC] = (1 – P[C]) (1 – P[D]) = (1 – 2 0.075 ) (1 – 0.075 ) = 0.33 . Page 5 of 67
  • 54. 12. Solution: E “Boxed” numbers in the table below were computed. High BP Low BP Norm BP Total Regular heartbeat 0.09 0.20 0.56 0.85 Irregular heartbeat 0.05 0.02 0.08 0.15 Total 0.14 0.22 0.64 1.00 From the table, we can see that 20% of patients have a regular heartbeat and low blood pressure. -------------------------------------------------------------------------------------------------------- 13. Solution: C The Venn diagram below summarizes the unconditional probabilities described in the problem. In addition, we are told that 1 P A ˆ B ˆ C@ x P A ˆ B ˆ C | A ˆ B@ 3 P A ˆ B@ x 0.12 It follows that 1 1 x x 0.12
  • 55. x 0.04 3 3 2 x 0.04 3 x 0.06 Now we want to find P ª A ‰ B ‰ C
  • 56. º c P ª A ‰ B ‰ C
  • 57. | Ac º c ¬ ¼ ¬ ¼ P ªA ºc ¬ ¼ 1 P A ‰ B ‰ C@ 1 P A@ 1 3 0.10
  • 59. 0.06 1 0.10 2 0.12
  • 60. 0.06 0.28 0.467 0.60 Page 6 of 67
  • 61. 14. Solution: A k 1 11 1 1 1 §1· pk = pk 1 pk 2 ˜ ˜ pk 3 ... ¨ ¸ p0 kt0 5 55 5 5 5 ©5¹ f f k §1· p0 5 1= ¦ pk ¦ ¨ 5 ¸ p0 k 0© ¹ 1 4 p0 k 0 1 5 p0 = 4/5 . Therefore, P[N 1] = 1 – P[N d1] = 1 – (4/5 + 4/5 ˜ 1/5) = 1 – 24/25 = 1/25 = 0.04 . -------------------------------------------------------------------------------------------------------- 15. Solution: C A Venn diagram for this situation looks like: We want to find w 1 x y z
  • 62. 1 1 5 We have x y , xz , yz 4 3 12 Adding these three equations gives 1 1 5 x y
  • 63. x z
  • 64. y z
  • 65. 4 3 12 2 x y z
  • 66. 1 1 x y z 2 1 1 w 1 x y z
  • 67. 1 2 2 Alternatively the three equations can be solved to give x = 1/12, y = 1/6, z =1/4 § 1 1 1· 1 again leading to w 1 ¨ ¸ © 12 6 4 ¹ 2 Page 7 of 67
  • 68. 16. Solution: D Let N1 and N 2 denote the number of claims during weeks one and two, respectively. Then since N1 and N 2 are independent, Pr N1 N 2 7@ ¦ Pr N1 n @ Pr N 2 7 n@ 7 n 0 § 1 ·§ 1 · ¦ 7 ¨ n 1 ¸¨ 8 n ¸ n 0 © 2 ¹© 2 ¹ 1 ¦ 7 n 0 9 2 8 1 1 29 2 6 64 -------------------------------------------------------------------------------------------------------- 17. Solution: D Let O Event of operating room charges E Event of emergency room charges Then 0.85 Pr O ‰ E
  • 69. Pr O
  • 70. Pr E
  • 71. Pr O ˆ E
  • 72. Pr O
  • 73. Pr E
  • 74. Pr O
  • 75. Pr E
  • 77. Since Pr E c
  • 78. 0.25 1 Pr E
  • 79. , it follows Pr E
  • 80. 0.75 . So 0.85 Pr O
  • 81. 0.75 Pr O
  • 82. 0.75
  • 83. Pr O
  • 85. 0.10 Pr O
  • 86. 0.40 -------------------------------------------------------------------------------------------------------- 18. Solution: D Let X1 and X2 denote the measurement errors of the less and more accurate instruments, respectively. If N(P,V) denotes a normal random variable with mean P and standard deviation V, then we are given X1 is N(0, 0.0056h), X2 is N(0, 0.0044h) and X1, X2 are X1 X 2 0.00562 h 2 0.00442 h 2 independent. It follows that Y = is N (0, ) = N(0, 2 4 0.00356h) . Therefore, P[0.005h d Y d 0.005h] = P[Y d 0.005h] – P[Y d 0.005h] = P[Y d 0.005h] – P[Y t 0.005h] ª 0.005h º = 2P[Y d 0.005h] – 1 = 2P « Z d 1 = 2P[Z d 1.4] – 1 = 2(0.9192) – 1 = 0.84. ¬ 0.00356h »¼ Page 8 of 67
  • 87. 19. Solution: B Apply Bayes’ Formula. Let A Event of an accident B1 Event the driver’s age is in the range 16-20 B2 Event the driver’s age is in the range 21-30 B3 Event the driver’s age is in the range 30-65 B4 Event the driver’s age is in the range 66-99 Then Pr A B1
  • 88. Pr B1
  • 89. Pr B1 A
  • 90. Pr A B1
  • 91. Pr B1
  • 92. Pr A B2
  • 93. Pr B2
  • 94. Pr A B3
  • 95. Pr B3
  • 96. Pr A B4
  • 97. Pr B4
  • 98. 0.06
  • 99. 0.08
  • 100. 0.1584 0.06
  • 101. 0.08
  • 102. 0.03
  • 103. 0.15
  • 104. 0.02
  • 105. 0.49
  • 106. 0.04
  • 107. 0.28
  • 108. -------------------------------------------------------------------------------------------------------- 20. Solution: D Let S = Event of a standard policy F = Event of a preferred policy U = Event of an ultra-preferred policy D = Event that a policyholder dies Then P D | U @ P U @ P U | D @ P D | S @ P S @ P D | F @ P F @ P D | U @ P U @ 0.001
  • 109. 0.10
  • 110. 0.01
  • 111. 0.50
  • 112. 0.005
  • 113. 0.40
  • 114. 0.001
  • 115. 0.10
  • 116. 0.0141 -------------------------------------------------------------------------------------------------------- 21. Solution: B Apply Baye’s Formula: Pr ªSeri. Surv.º ¬ ¼ Pr ªSurv. Seri.º Pr Seri.@ ¬ ¼ Pr ªSurv. Crit.º Pr Crit.@ Pr ªSurv. Seri.º Pr Seri.@ Pr ªSurv. Stab.º Pr Stab.@ ¬ ¼ ¬ ¼ ¬ ¼ 0.9
  • 117. 0.3
  • 118. 0.29 0.6
  • 119. 0.1
  • 120. 0.9
  • 121. 0.3
  • 122. 0.99
  • 123. 0.6
  • 124. Page 9 of 67
  • 125. 22. Solution: D Let H Event of a heavy smoker L Event of a light smoker N Event of a non-smoker D Event of a death within five-year period 1 ª º Now we are given that Pr ¬ D L ¼ 2 Pr ª D N º and Pr ª D L º ¬ ¼ ¬ ¼ Pr ª D H º 2 ¬ ¼ Therefore, upon applying Bayes’ Formula, we find that Pr ª D H º Pr H @ ¬ ¼ Pr ª H D º ¬ ¼ Pr ª D N º Pr N Pr ª D L º Pr L Pr ª D H º Pr H ¬ ¼ @ ¬ ¼ @ ¬ ¼ @ 2 Pr ª D L º 0.2
  • 126. ¬ ¼ 0.4 0.42 Pr ª D L º 0.5
  • 127. Pr ª D L º 0.3
  • 128. 2 Pr ª D L º 0.2
  • 129. 0.25 0.3 0.4 1 2 ¬ ¼ ¬ ¼ ¬ ¼ -------------------------------------------------------------------------------------------------------- 23. Solution: D Let C = Event of a collision T = Event of a teen driver Y = Event of a young adult driver M = Event of a midlife driver S = Event of a senior driver Then using Bayes’ Theorem, we see that P[C Y ]P[Y ] P[Y~C] = P[C T ]P[T ] P[C Y ]P[Y ] P[C M ]P[ M ] P[C S ]P[ S ] (0.08)(0.16) = = 0.22 . (0.15)(0.08) (0.08)(0.16) (0.04)(0.45) (0.05)(0.31) -------------------------------------------------------------------------------------------------------- 24. Solution: B Observe Pr 1 d N d 4@ ª1 1 1 1 º ª1 1 1 1 1º Pr ¬ N t 1 N d 4 º ª ¼ « 6 12 20 30 » « 2 6 12 20 30 » Pr N d 4@ ¬ ¼ ¬ ¼ 10 5 3 2 20 2 30 10 5 3 2 50 5 Page 10 of 67
  • 130. 25. Solution: B Let Y = positive test result D = disease is present (and ~D = not D) Using Baye’s theorem: P[Y | D]P[ D] (0.95)(0.01) P[D|Y] = = 0.657 . P[Y | D]P[ D] P[Y |~ D]P[~ D] (0.95)(0.01) (0.005)(0.99) -------------------------------------------------------------------------------------------------------- 26. Solution: C Let: S = Event of a smoker C = Event of a circulation problem Then we are given that P[C] = 0.25 and P[S~C] = 2 P[S~CC] P[ S C ]P[C ] Now applying Bayes’ Theorem, we find that P[C~S] = P[ S C ]P[C ] P[ S C C ]( P[C C ]) 2 P[ S C C ]P[C ] 2(0.25) 2 2 = . 2 P[ S C ]P[C ] P[ S C ](1 P[C ]) C C 2(0.25) 0.75 23 5 -------------------------------------------------------------------------------------------------------- 27. Solution: D Use Baye’s Theorem with A = the event of an accident in one of the years 1997, 1998 or 1999. P[ A 1997]P[1997] P[1997|A] = P[ A 1997][ P[1997] P[ A 1998]P[1998] P[ A 1999]P[1999] (0.05)(0.16) = = 0.45 . (0.05)(0.16) (0.02)(0.18) (0.03)(0.20) -------------------------------------------------------------------------------------------------------- Page 11 of 67
  • 131. 28. Solution: A Let C = Event that shipment came from Company X I1 = Event that one of the vaccine vials tested is ineffective P I1 | C @ P C @ Then by Bayes’ Formula, P C | I1 @ P I1 | C @ P C @ P ª I1 | C c º P ªC c º ¬ ¼ ¬ ¼ Now 1 P C @ 5 1 4 P ªC c º 1 P C @ 1 ¬ ¼ 5 5 P I1 | C @
  • 132. 0.10
  • 133. 0.90
  • 134. 30 1 29 0.141 º
  • 135. 0.02
  • 136. 0.98
  • 137. 29 P ª I1 | C c ¬ ¼ 30 1 0.334 Therefore, P C | I1 @ 0.141
  • 138. 1/ 5
  • 139. 0.096 0.141
  • 140. 1/ 5
  • 141. 0.334
  • 142. 4 / 5
  • 143. -------------------------------------------------------------------------------------------------------- 29. Solution: C Let T denote the number of days that elapse before a high-risk driver is involved in an accident. Then T is exponentially distributed with unknown parameter O . Now we are given that 50 ³ Oe Ot 0.3 = P[T d 50] = dt e O t 50 = 1 – e–50O 0 0 Therefore, e–50O = 0.7 or O = (1/50) ln(0.7) 80 ³ Oe Ot It follows that P[T d 80] = dt e O t 80 0 = 1 – e–80O 0 (80/50) ln(0.7) =1–e = 1 – (0.7)80/50 = 0.435 . -------------------------------------------------------------------------------------------------------- 30. Solution: D e O O 2 e O O 4 Let N be the number of claims filed. We are given P[N = 2] = 3 = 3 ˜ P[N 2! 4! = 4]24 O = 6 O 2 4 O2 = 4 Ÿ O = 2 Therefore, Var[N] = O = 2 . Page 12 of 67
  • 144. 31. Solution: D Let X denote the number of employees that achieve the high performance level. Then X follows a binomial distribution with parameters n 20 and p 0.02 . Now we want to determine x such that Pr X ! x @ d 0.01 or, equivalently, 0.99 d Pr X d x @ ¦
  • 145. 0.02
  • 146. 0.98
  • 147. x 20 k 20 k k 0 k The following table summarizes the selection process for x: x Pr X x @ Pr X d x @ 0.98
  • 148. 0.668 20 0 0.668 20 0.02
  • 149. 0.98
  • 150. 19 1 0.272 0.940 190 0.02
  • 151. 0.98
  • 152. 2 18 2 0.053 0.993 Consequently, there is less than a 1% chance that more than two employees will achieve the high performance level. We conclude that we should choose the payment amount C such that 2C 120, 000 or C 60, 000 -------------------------------------------------------------------------------------------------------- 32. Solution: D Let X = number of low-risk drivers insured Y = number of moderate-risk drivers insured Z = number of high-risk drivers insured f(x, y, z) = probability function of X, Y, and Z Then f is a trinomial probability function, so Pr z t x 2@ f 0, 0, 4
  • 155. f 0, 2, 2
  • 156. 4! 0.20
  • 157. 4 0.50
  • 158. 0.20
  • 159. 4 0.30
  • 160. 0.20
  • 161. 0.30
  • 162. 0.20
  • 163. 4 3 3 2 2 2!2! 0.0488 Page 13 of 67
  • 164. 33. Solution: B Note that § 1 · Pr X ! x @ 0.005 20 t
  • 165. dt 20 ³ 0.005 ¨ 20t t 2 ¸ 20 x x © 2 ¹ § 1 · § 1 · 0.005 ¨ 400 200 20 x x 2 ¸ 0.005 ¨ 200 20 x x 2 ¸ © 2 ¹ © 2 ¹ where 0 x 20 . Therefore, Pr X ! 16@ 200 20 16
  • 166. 1 16
  • 167. 2 2 8 1 Pr ª X ! 16 X ! 8º ¬ ¼ Pr X ! 8@ 200 20 8
  • 168. 1 8
  • 169. 2 72 9 2 -------------------------------------------------------------------------------------------------------- 34. Solution: C We know the density has the form C 10 x
  • 170. for 0 x 40 (equals zero otherwise). 2 40 First, determine the proportionality constant C from the condition ³ 0 f ( x)dx 1 : 40 C C 2 C 10 x
  • 171. dx C (10 x) 1 40 2 1 ³ 0 0 10 50 25 C so C 25 2 , or 12.5 . Then, calculate the probability over the interval (0, 6): 1 6 §1 1· 12.5³ 10 x
  • 172. dx 10 x
  • 173. ¨ ¸ 12.5
  • 174. 0.47 . 6 2 0 0 © 10 16 ¹ -------------------------------------------------------------------------------------------------------- 35. Solution: C Let the random variable T be the future lifetime of a 30-year-old. We know that the density of T has the form f (x) = C(10 + x)2 for 0 x 40 (and it is equal to zero otherwise). First, determine the proportionality constant C from the condition ³ 0 f ( x)dx 1: 40 40 2 1 = ³ f ( x)dx C (10 x) 1 |0 40 C 0 25 25 so that C = = 12.5. Then, calculate P(T 5) by integrating f (x) = 12.5 (10 + x)2 2 over the interval (0.5). Page 14 of 67
  • 175. 36. Solution: B To determine k, note that 1 k k 1 = ³ k 1 y
  • 176. dy 1 y
  • 177. 4 5 1 0 5 0 5 k=5 We next need to find P[V 10,000] = P[100,000 Y 10,000] = P[Y 0.1] 1 ³ 5 1 y
  • 178. dy 1 y
  • 179. 4 5 1 = 0.1 = (0.9)5 = 0.59 and P[V 40,000] 0.1 1 ³ 5 1 y
  • 180. dy 1 y
  • 181. 4 5 1 = P[100,000 Y 40,000] = P[Y 0.4] = 0.4 = (0.6)5 = 0.078 . 0.4 It now follows that P[V 40,000~V 10,000] P[V ! 40, 000 ˆ V ! 10, 000] P[V ! 40, 000] 0.078 = = 0.132 . P[V ! 10, 000] P[V ! 10, 000] 0.590 ͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲͲ 37. Solution: D Let T denote printer lifetime. Then f(t) = ½ e–t/2, 0 d t d ¥ Note that 1 1 P[T d 1] = ³ e t / 2 dt e t / 2 1 = 1 – e–1/2 = 0.393 0 2 0 2 1 ³ 2e t / 2 e t / 2 2 P[1 d T d 2] = dt 1 = e –1/2 e –1 = 0.239 1 Next, denote refunds for the 100 printers sold by independent and identically distributed random variables Y1, . . . , Y100 where ­200 with probability 0.393 ° Yi ®100 with probability 0.239 i = 1, . . . , 100 °0 with probability 0.368 ¯ Now E[Yi] = 200(0.393) + 100(0.239) = 102.56 100 Therefore, Expected Refunds = ¦ E Y @ = 100(102.56) = 10,256 . i 1 i Page 15 of 67
  • 182. 38. Solution: A Let F denote the distribution function of f. Then F x
  • 183. Pr X d x @ x x ³1 3t 4 dt t 3 1 1 x 3 Using this result, we see Pr ª X 2
  • 184. ˆ X t 1.5
  • 185. º ¬ ¼ Pr X 2@ Pr X d 1.5@ Pr X 2_ X t 1.5@ Pr X t 1.5@ Pr X t 1.5@ F 2
  • 186. F 1.5
  • 187. 1.5
  • 188. 2
  • 189. 3 3 3 §3· 1 ¨ ¸ 0.578 1 F 1.5
  • 190. 1.5
  • 191. 3 ©4¹ -------------------------------------------------------------------------------------------------------- 39. Solution: E Let X be the number of hurricanes over the 20-year period. The conditions of the problem give x is a binomial distribution with n = 20 and p = 0.05 . It follows that P[X 2] = (0.95)20(0.05)0 + 20(0.95)19(0.05) + 190(0.95)18(0.05)2 = 0.358 + 0.377 + 0.189 = 0.925 . -------------------------------------------------------------------------------------------------------- 40. Solution: B Denote the insurance payment by the random variable Y. Then ­0 if 0 X d C Y ® ¯ X C if C X 1 Now we are given that 0.5 C 0.5 C 0.64 Pr Y 0.5
  • 192. Pr 0 X 0.5 C
  • 193. ³ 0.5 C
  • 194. 2 2 2 x dx x 0 0 Therefore, solving for C, we find C r0.8 0.5 Finally, since 0 C 1 , we conclude that C 0.3 Page 16 of 67
  • 195. 41. Solution: E Let X = number of group 1 participants that complete the study. Y = number of group 2 participants that complete the study. Now we are given that X and Y are independent. Therefore, ^ P ª X t 9
  • 196. ˆ Y 9
  • 197. º ‰ ª X 9
  • 198. ˆ Y t 9
  • 199. º ¬ ¼ ¬ ¼ ` P ª X t 9
  • 200. ˆ Y 9
  • 201. º P ª X 9
  • 202. ˆ Y t 9
  • 203. º ¬ ¼ ¬ ¼ 2 P ª X t 9
  • 204. ˆ Y 9
  • 205. º ¬ ¼ (due to symmetry) 2 P X t 9 @ P Y 9 @ 2 P X t 9@ P X 9@ (again due to symmetry) 2 P X t 9@ 1 P X t 9@
  • 207. 0.2
  • 208. 0.8
  • 209. 10
  • 210. 0.8
  • 211. º ª1 10
  • 212. 0.2
  • 213. 0.8
  • 214. 10
  • 215. 0.8
  • 216. º 9 10 9 10 ¬ 9 10 ¼¬ 9 10 ¼ 2 0.376@1 0.376@ 0.469 -------------------------------------------------------------------------------------------------------- 42. Solution: D Let IA = Event that Company A makes a claim IB = Event that Company B makes a claim XA = Expense paid to Company A if claims are made XB = Expense paid to Company B if claims are made Then we want to find ¬^ Pr ª I A ˆ I B º ‰ ª I A ˆ I B
  • 217. ˆ X A X B
  • 218. º C ¼ ¬ ¼ ` Pr ª I A ˆ I B º Pr ª I A ˆ I B
  • 219. ˆ X A X B
  • 220. º ¬ C ¼ ¬ ¼ Pr ª I A º Pr I B @ Pr I A @ Pr I B @ Pr X A X B @ ¬ ¼ C (independence) 0.60
  • 221. 0.30
  • 222. 0.40
  • 223. 0.30
  • 224. Pr X B X A t 0@ 0.18 0.12 Pr X B X A t 0@ Now X B X A is a linear combination of independent normal random variables. Therefore, X B X A is also a normal random variable with mean M E X B X A @ E X B @ E X A @ 9, 000 10, 000 1, 000 and standard deviation V Var X B
  • 225. Var X A
  • 226. 2000
  • 227. 2000
  • 228. 2 2 2000 2 It follows that Page 17 of 67
  • 229. ª 1000 º Pr X B X A t 0@ Pr « Z t (Z is standard normal) ¬ 2000 2 » ¼ ª 1 º Pr « Z t ¬ 2 2»¼ ª 1 º 1 Pr « Z ¬ 2 2»¼ 1 Pr Z 0.354@ 1 0.638 0.362 Finally, ^ Pr ª I A ˆ I B º ‰ ª I A ˆ I B
  • 230. ˆ X A X B
  • 231. º ¬ C ¼ ¬ ¼ ` 0.18 0.12
  • 232. 0.362
  • 233. 0.223 -------------------------------------------------------------------------------------------------------- 43. Solution: D If a month with one or more accidents is regarded as success and k = the number of failures before the fourth success, then k follows a negative binomial distribution and the requested probability is 4 k 3 k § 3 · § 2 · 3 Pr k t 4@ 1 Pr k d 3@ 1 ¦ k
  • 234. ¨ ¸ ¨ ¸ k 0 ©5¹ © 5¹ § 3· 4 ª 3 § 2 ·0 4 § 2 ·1 5 § 2 · 2 6 § 2 ·3 º 1 ¨ ¸ « 0
  • 235. ¨ ¸ 1
  • 236. ¨ ¸ 2
  • 237. ¨ ¸ 3
  • 238. ¨ ¸ » © 5¹ « ©5¹ ¬ ©5¹ ©5¹ © 5¹ » ¼ 4 § 3 · ª 8 8 32 º 1 ¨ ¸ «1 » © 5 ¹ ¬ 5 5 25 ¼ 0.2898 Alternatively the solution is 4 4 4 2 4 3 § 2· 4 § 2· 3 5 § 2· § 3· 6 § 2· § 3· ¨ ¸ 1
  • 239. ¨ ¸ 2
  • 240. ¨ ¸ ¨ ¸ 3
  • 241. ¨ ¸ ¨ ¸ 0.2898 ©5¹ © 5¹ 5 © 5¹ © 5¹ © 5¹ © 5¹ which can be derived directly or by regarding the problem as a negative binomial distribution with i) success taken as a month with no accidents ii) k = the number of failures before the fourth success, and iii) calculating Pr k d 3@ Page 18 of 67
  • 242. 44. Solution: C If k is the number of days of hospitalization, then the insurance payment g(k) is g(k) = 100k ^ for k 1, 2, 3 300 50 (k 3) for k 4, 5. 5 Thus, the expected payment is ¦ g (k ) p k 1 k 100 p1 200 p2 300 p3 350 p4 400 p5 = 1 100 u 5 200 u 4 300 u 3 350 u 2 400 u 1
  • 243. =220 15 -------------------------------------------------------------------------------------------------------- 45. Solution: D 0 4 x2 4 x 2 x3 x3 8 64 56 28 Note that E X
  • 244. 0 ³ 2 10 dx ³ 0 10 dx 30 2 30 0 30 30 30 15 -------------------------------------------------------------------------------------------------------- 46. Solution: D The density function of T is 1 t / 3 f t
  • 245. e , 0 t f 3 Therefore, E X @ E ª max T , 2
  • 246. º ¬ ¼ 2 2 t / 3 f t ³0 3 e dt ³ e t / 3 dt 2 3 f 2e t / 3 _ 0 te t / 3 _ f ³ e t / 3 dt 2 2 2 2 / 3 2 / 3 2e 2 2e 3e t / 3 _ f 2 2 3e 2 / 3 Page 19 of 67
  • 247. 47. Solution: D Let T be the time from purchase until failure of the equipment. We are given that T is exponentially distributed with parameter O = 10 since 10 = E[T] = O . Next define the payment ­x for 0 d T d 1 °x ° P under the insurance contract by P ® for 1 T d 3 ° 2 °0 ¯ for T ! 3 We want to find x such that 1 3 1 x –t/10 x 1 –t/10 x 1000 = E[P] = ³ ³ 2 10 e dt = xe t /10 e dt + e t /10 3 1 0 10 1 0 2 = x e –1/10 + x – (x/2) e –3/10 + (x/2) e –1/10 = x(1 – ½ e –1/10 – ½ e–3/10) = 0.1772x . We conclude that x = 5644 . -------------------------------------------------------------------------------------------------------- 48. Solution: E Let X and Y denote the year the device fails and the benefit amount, respectively. Then the density function of X is given by f x
  • 248. 0.6
  • 249. 0.4
  • 250. , x 1, 2,3... x 1 and ­1000 5 x
  • 251. if x 1, 2,3, 4 ° y ® °0 ¯ if x ! 4 It follows that E Y @ 4000 0.4
  • 253. 0.4
  • 255. 0.4
  • 257. 0.4
  • 258. 2 3 2694 -------------------------------------------------------------------------------------------------------- 49. Solution: D Define f ( X ) to be hospitalization payments made by the insurance policy. Then ­100 X ° if X 1, 2,3 f (X ) ® ¯300 25 X 3
  • 259. ° if X 4,5 and Page 20 of 67
  • 260. 5 E ª f X
  • 261. º ¬ ¼ ¦ f k
  • 262. Pr X k 1 k@ §5· § 4· § 3· § 2· §1· 100 ¨ ¸ 200 ¨ ¸ 300 ¨ ¸ 325 ¨ ¸ 350 ¨ ¸ © 15 ¹ © 15 ¹ © 15 ¹ © 15 ¹ © 15 ¹ 1 640 100 160 180 130 70@ 213.33 3 3 -------------------------------------------------------------------------------------------------------- 50. Solution: C Let N be the number of major snowstorms per year, and let P be the amount paid to (3 / 2) n e 3/ 2 the company under the policy. Then Pr[N = n] = , n = 0, 1, 2, . . . and n! ­0 for N 0 P ® . ¯10, 000( N 1) for N t 1 f (3 / 2) n e 3/ 2 Now observe that E[P] = ¦10, 000(n 1) n 1 n! f (3 / 2) n e 3/ 2 = 10,000 e–3/2 + n 0 ¦10, 000(n 1) n! = 10,000 e–3/2 + E[10,000 (N – 1)] = 10,000 e + E[10,000N] – E[10,000] = 10,000 e–3/2 + 10,000 (3/2) – 10,000 = 7,231 . –3/2 -------------------------------------------------------------------------------------------------------- 51. Solution: C Let Y denote the manufacturer’s retained annual losses. ­x for 0.6 x d 2 Then Y ® ¯2 for x ! 2 f 2 ª 2.5(0.6) 2.5 º ª 2.5(0.6) 2.5 º 2 2.5(0.6) 2.5 2(0.6) 2.5 ³ dx ³ 2 « ³ x 2.5 f and E[Y] = x« » » dx dx 0.6 ¬ x3.5 ¼ 2 ¬ x 3.5 ¼ 0.6 x 2.5 2 2.5(0.6) 2.5 2(0.6) 2.5 2.5(0.6) 2.5 2.5(0.6) 2.5 (0.6) 2.5 = 2 1.5 = 0.9343 . 1.5 x1.5 0.6 (2) 2.5 1.5(2)1.5 1.5(0.6)1.5 2 Page 21 of 67
  • 263. 52. Solution: A Let us first determine K. Observe that § 1 1 1 1· § 60 30 20 15 12 · § 137 · 1 K ¨1 ¸ K ¨ ¸ K¨ ¸ © 2 3 4 5¹ © 60 ¹ © 60 ¹ 60 K 137 It then follows that Pr N n @ Pr ª N n Insured Suffers a Loss º Pr Insured Suffers a Loss @ ¬ ¼ 60 3 0.05
  • 264. , N 1,...,5 137 N 137 N Now because of the deductible of 2, the net annual premium P E X @ where ­0 , if N d 2 X ® ¯N 2 , if N ! 2 Then, 3 § 1 · 3 ª 3 º ª º EX @ ¦ N 2
  • 266. ¨ 137 ¸ 2 «137 4
  • 267. » 3 «137 5
  • 268. » 5 P 0.0314 N 3 © ¹ ¬ ¼ ¬ ¼ -------------------------------------------------------------------------------------------------------- 53. Solution: D ­y for 1 y d 10 Let W denote claim payments. Then W ® ¯10 for y t 10 10 f 2 2 2 10 10 f It follows that E[W] = ³ y 3 dy ³ 10 3 dy 2 = 2 – 2/10 + 1/10 = 1.9 . 1 y 10 y y1 y 10 Page 22 of 67
  • 269. 54. Solution: B Let Y denote the claim payment made by the insurance company. Then ­0 with probability 0.94 ° Y ®Max 0, x 1
  • 270. with probability 0.04 °14 ¯ with probability 0.02 and E Y @ 0.94
  • 271. 0
  • 272. 0.04
  • 273. 0.5003
  • 274. ³1 x 1
  • 275. e x / 2 dx 0.02
  • 276. 14
  • 277. 15 0.020012
  • 278. ª ³1 xe x / 2 dx ³ e x / 2 dx º 0.28 15 15 « ¬ 1 » ¼ 0.28 0.020012
  • 279. ª 2 xe x / 2 _ 15 2³ e x / 2 dx ³ e x / 2 dx º 15 15 « ¬ 1 1 1 » ¼ 0.28 0.020012
  • 280. ª 30e 7.5 2e 0.5 ³ e x / 2 dx º 15 « ¬ 1 » ¼ 0.28 0.020012
  • 281. ª 30e 2e 2e _ 1 º ¬ 7.5 0.5 x / 2 15 ¼ 0.28 0.020012
  • 282. 30e 7.5 2e 0.5 2e7.5 2e0.5
  • 283. 0.28 0.020012
  • 284. 32e 7.5 4e 0.5
  • 285. 0.28 0.020012
  • 286. 2.408
  • 287. 0.328 (in thousands) It follows that the expected claim payment is 328 . -------------------------------------------------------------------------------------------------------- 55. Solution: C k The pdf of x is given by f(x) = , 0 x f . To find k, note (1 x) 4 f k k 1 f k 1=³ (1 x)4 dx 0 3 (1 x)3 0 3 k=3 f 3x It then follows that E[x] = ³ (1 x) 0 4 dx and substituting u = 1 + x, du = dx, we see f f f 3(u 1) ª u 2 u 3 º ª1 1º E[x] = ³ du = 3 ³ (u 3 u 4 )du 3« » 3 « » = 3/2 – 1 = ½ . 1 u4 1 ¬ 2 3 ¼1 ¬ 2 3¼ Page 23 of 67
  • 288. 56. Solution: C Let Y represent the payment made to the policyholder for a loss subject to a deductible D. ­0 for 0 d X d D That is Y ® ¯ x D for D X d 1 Then since E[X] = 500, we want to choose D so that 1 ( x D) 2 1000 (1000 D) 2 1000 1 1 500 ³ ( x D)dx 4 D 1000 1000 2 D 2000 (1000 – D)2 = 2000/4 ˜ 500 = 5002 1000 – D = r 500 D = 500 (or D = 1500 which is extraneous). -------------------------------------------------------------------------------------------------------- 57. Solution: B 1 We are given that Mx(t) = for the claim size X in a certain class of accidents. (1 2500t ) 4 (4)(2500) 10, 000 First, compute Mxc(t) = (1 2500t ) 5 (1 2500t )5 (10, 000)(5)(2500) 125, 000, 000 Mxs(t) = (1 2500t )6 (1 2500t )6 Then E[X] = Mxc (0) = 10,000 E[X2] = Mxs (0) = 125,000,000 Var[X] = E[X2] – {E[X]}2 = 125,000,000 – (10,000)2 = 25,000,000 Var[ X ] = 5,000 . -------------------------------------------------------------------------------------------------------- 58. Solution: E Let XJ, XK, and XL represent annual losses for cities J, K, and L, respectively. Then X = XJ + XK + XL and due to independence M(t) = E ªe xt º E ªe J K L
  • 289. º E ªe xJ t º E ª e xK t º E ªe xLt º x x x t ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ = MJ(t) MK(t) ML(t) = (1 – 2t)–3 (1 – 2t)–2.5 (1 – 2t)–4.5 = (1 – 2t)–10 Therefore, Mc(t) = 20(1 – 2t)–11 Ms(t) = 440(1 – 2t)–12 Msc(t) = 10,560(1 – 2t)–13 E[X3] = Msc(0) = 10,560 Page 24 of 67
  • 290. 59. Solution: B The distribution function of X is given by 2.5 x 2.5 200
  • 291. 200
  • 292. 200
  • 293. 2.5 2.5 F x
  • 294. x ³ 200 t 3.5 dt t 2.5 1 x 2.5 , x ! 200 200 th Therefore, the p percentile x p of X is given by 200
  • 295. 2.5 F xp
  • 296. p 1 2.5 100 xp 200
  • 297. 2.5 1 0.01 p 2.5 xp 200 1 0.01 p
  • 298. 25 xp 200 xp 1 0.01 p
  • 299. 25 200 200 It follows that x 70 x 30 93.06 0.30
  • 300. 0.70
  • 301. 25 25 -------------------------------------------------------------------------------------------------------- 60. Solution: E Let X and Y denote the annual cost of maintaining and repairing a car before and after the 20% tax, respectively. Then Y = 1.2X and Var[Y] = Var[1.2X] = (1.2)2 Var[X] = (1.2)2(260) = 374 . -------------------------------------------------------------------------------------------------------- z 61. Solution: A f The first quartile, Q1, is found by ¾ = f(x) dx . That is, ¾ = (200/Q1)2.5 or Q1 Q1 = 200 (4/3)0.4 = 224.4 . Similarly, the third quartile, Q3, is given by Q3 = 200 (4)0.4 = 348.2 . The interquartile range is the difference Q3 – Q1 . Page 25 of 67
  • 302. 62. Solution: C First note that the density function of X is given by ­1 °2 if x 1 ° ° f x
  • 303. ® x 1 if 1 x 2 ° ° °0 ¯ otherwise Then 2 1 §1 3 1 2· EX
  • 304. 1 ³ x x 1
  • 305. dx 1
  • 306. 2 2 ³ x 2 x dx ¨ x x ¸ 2 1 2 1 2 ©3 2 ¹1 1 8 4 1 1 7 4 1 2 3 2 3 2 3 3 2 1 §1 4 1 3·
  • 307. 1 ³ x 2 x 1
  • 308. dx 1
  • 309. 2 2 E X 2 ³ x3 x 2 dx ¨ x x ¸ 2 1 2 1 2 ©4 3 ¹1 1 16 8 1 1 17 7 23 2 4 3 4 3 4 3 12 2 23 § 4 · Var X
  • 310.
  • 311. ª E X
  • 312. º 23 16 5 2 E X 2 ¬ ¼ ¨ ¸ 12 © 3 ¹ 12 9 36 -------------------------------------------------------------------------------------------------------- 63. Solution: C ­ X if 0 d X d 4 Note Y ® ¯4 if 4 X d 5 Therefore, 41 54 1 2 4 4 5 E Y @ ³ xdx ³ dx x _ 0 x_ 4 0 5 4 5 10 5 16 20 16 8 4 12 10 5 5 5 5 5 41 5 16 1 3 4 16 5 E ªY 2 º ³ x 2 dx ³ ¬ ¼ 05 dx x _ 0 x_ 4 4 5 15 5 64 80 64 64 16 64 48 112 15 5 5 15 5 15 15 15 2 112 § 12 · Var Y @ E ªY 2 º E Y @
  • 313. 2 ¬ ¼ ¨ ¸ 1.71 15 © 5 ¹ Page 26 of 67
  • 314. 64. Solution: A Let X denote claim size. Then E[X] = [20(0.15) + 30(0.10) + 40(0.05) + 50(0.20) + 60(0.10) + 70(0.10) + 80(0.30)] = (3 + 3 + 2 + 10 + 6 + 7 + 24) = 55 E[X2] = 400(0.15) + 900(0.10) + 1600(0.05) + 2500(0.20) + 3600(0.10) + 4900(0.10) + 6400(0.30) = 60 + 90 + 80 + 500 + 360 + 490 + 1920 = 3500 Var[X] = E[X2] – (E[X])2 = 3500 – 3025 = 475 and Var[ X ] = 21.79 . Now the range of claims within one standard deviation of the mean is given by [55.00 – 21.79, 55.00 + 21.79] = [33.21, 76.79] Therefore, the proportion of claims within one standard deviation is 0.05 + 0.20 + 0.10 + 0.10 = 0.45 . -------------------------------------------------------------------------------------------------------- 65. Solution: B Let X and Y denote repair cost and insurance payment, respectively, in the event the auto is damaged. Then ­0 if x d 250 Y ® ¯ x 250 if x ! 250 and 1 1 12502 E Y @ ³ x 250
  • 315. dx x 250
  • 316. 1500 1500 2 250 521 250 1500 3000 3000 1 1 12503 x 250
  • 317. dx x 250
  • 318. 1500 1500 E ¬Y 2 º ³ 2 3 ª ¼ 250 434, 028 250 1500 4500 4500 Var Y @ E ªY 2 º ^ E Y @` 434, 028 521
  • 319. 2 2 ¬ ¼ Var Y @ 403 -------------------------------------------------------------------------------------------------------- 66. Solution: E Let X1, X2, X3, and X4 denote the four independent bids with common distribution function F. Then if we define Y = max (X1, X2, X3, X4), the distribution function G of Y is given by G y
  • 320. Pr Y d y @ Pr ª X 1 d y
  • 321. ˆ X 2 d y
  • 322. ˆ X 3 d y
  • 323. ˆ X 4 d y
  • 324. º ¬ ¼ Pr X 1 d y @ Pr X 2 d y @ Pr X 3 d y @ Pr X 4 d y @ ª F y
  • 325. º 4 ¬ ¼ 1 3 5 1 sinS y
  • 326. , 4 d yd 16 2 2 It then follows that the density function g of Y is given by Page 27 of 67
  • 327. g y
  • 328. G ' y
  • 329. 1 1 sinS y
  • 331. 3 4 S 3 5 cosS y 1 sinS y
  • 332. 3 , d yd 4 2 2 Finally, E Y @ yg y
  • 333. dy 5/ 2 ³ 3/ 2 S ycosS y 1 sinS y
  • 334. dy 5/ 2 ³ 3 3/ 2 4 -------------------------------------------------------------------------------------------------------- 67. Solution: B The amount of money the insurance company will have to pay is defined by the random variable ­1000 x if x 2 Y ® ¯2000 if x t 2 where x is a Poisson random variable with mean 0.6 . The probability function for X is e 0.6 0.6
  • 335. k p x
  • 336. k 0,1, 2,3 and k! k f 0.6 E Y @ 0 1000 0.6
  • 337. e 2000e ¦ k 2 0.6 0.6 k! § f 0.6 k · 1000 0.6
  • 338. e 0.6 2000 ¨ e 0.6 ¦ k 0 e0.6 0.6
  • 339. e0.6 ¸ © k! ¹ 0.6
  • 340. k f 2000e 0.6 ¦ k 0 k! 2000e 0.6 1000 0.6
  • 341. e 0.6 2000 2000e 0.6 600e0.6 573 0.6k e0.6 ¦ k f 1000
  • 342. 0.6
  • 343. e0.6 2000
  • 344. 2 2 E ªY 2 º ¬ ¼ 2 k! 0.6k 2000
  • 345. e0.6 ¦ k f 2000
  • 346. e 0.6 ª 2000
  • 347. 1000
  • 348. º 0.6
  • 349. e 0.6 2 2 2 2 0 k! ¬ ¼ 2000
  • 350. 2000
  • 351. e 0.6 ª 2000
  • 352. 1000
  • 353. º 0.6
  • 354. e 0.6 2 2 2 2 ¬ ¼ 816,893 Var Y @ E ªY 2 º ^ E Y @` 816,893 573
  • 355. 2 2 ¬ ¼ 488,564 Var Y @ 699 Page 28 of 67
  • 356. 68. Solution: C Note that X has an exponential distribution. Therefore, c = 0.004 . Now let Y denote the ­x for x 250 claim benefits paid. Then Y ® and we want to find m such that 0.50 ¯250 for x t 250 m m = ³ 0.004e 0.004 x dx e 0.004 x 0 = 1 – e–0.004m 0 This condition implies e–0.004m = 0.5 Ÿ m = 250 ln 2 = 173.29 . -------------------------------------------------------------------------------------------------------- 69. Solution: D The distribution function of an exponential random variable T with parameter T is given by F t
  • 357. 1 e t T , t ! 0 Since we are told that T has a median of four hours, we may determine T as follows: 1 F 4
  • 358. 1 e4 T 2 1 e 4 T 2 4 ln 2
  • 359. T 4 T ln 2
  • 360. 5ln 2
  • 362. 1 F 5
  • 363. e 5 T e 4 25 4 0.42 -------------------------------------------------------------------------------------------------------- 70. Solution: E Let X denote actual losses incurred. We are given that X follows an exponential distribution with mean 300, and we are asked to find the 95th percentile of all claims that exceed 100 . Consequently, we want to find p95 such that Pr[100 x p95 ] F ( p95 ) F (100) 0.95 = where F(x) is the distribution function of X . P[ X ! 100] 1 F (100) Now F(x) = 1 – e–x/300 . 1 e p95 / 300 (1 e 100 / 300 ) e 1/ 3 e p95 / 300 Therefore, 0.95 = 1 e1/ 3e p95 / 300 1 (1 e 100 / 300 ) e 1/ 3 e p95 / 300 = 0.05 e –1/3 p95 = 300 ln(0.05 e–1/3) = 999 Page 29 of 67
  • 364. 71. Solution: A The distribution function of Y is given by G y
  • 365. Pr T 2 d y
  • 366. Pr T d y F y
  • 367.
  • 368. 1 4 y for y ! 4 . Differentiate to obtain the density function g y
  • 369. 4 y 2 Alternate solution: Differentiate F t
  • 371. 8t 3 and set y t 2 . Then t y and g y
  • 372. f t y
  • 373.
  • 374. dt dy f y
  • 375. dt y
  • 376. d §1 · 8 y 3 2 ¨ y 1 2 ¸ ©2 ¹ 4 y 2 -------------------------------------------------------------------------------------------------------- 72. Solution: E We are given that R is uniform on the interval 0.04, 0.08
  • 377. and V 10, 000e R Therefore, the distribution function of V is given by F v
  • 378. Pr V d v @ Pr ª10, 000e R d v º Pr ª R d ln v
  • 380. º ¬ ¼ ¬ ¼ ln v
  • 382. 1 ln v
  • 384. 1 25ln v
  • 386. 1 0.04 ³ 0.04 dr r 0.04 0.04 ª § v · º 25 « ln ¨ ¸ 0.04 » ¬ © 10, 000 ¹ ¼ -------------------------------------------------------------------------------------------------------- 73. Solution: E ª
  • 387. º Y
  • 388. 10 10 8 F y
  • 389. Pr Y d y @ Pr ª10 X 0.8 d y º 8 ¬ ¼ Pr « X d Y » 1 e 10 ¬ 10 ¼ 1 1 § Y · 4 Y 10
  • 390. 5 4 Therefore, f y
  • 391. Fc y
  • 392. ¨ ¸ e 8 © 10 ¹ Page 30 of 67
  • 393. 74. Solution: E First note R = 10/T . Then ª10 º ª 10 º § 10 · FR(r) = P[R d r] = P « d r » P «T t » 1 FT ¨ ¸ . Differentiating with respect to ¬T ¼ ¬ r¼ © r ¹ § § 10 · · §d · § 10 · r fR(r) = FcR(r) = d/dr ¨1 FT ¨ ¸ ¸ ¨ FT t