SlideShare uma empresa Scribd logo
1 de 53
Baixar para ler offline
Blockwoche Visualisierung
    Raum-Zeit-Würfel
      Raum-Zeit-Würfel
   Peter Löwe, GFZ Potsdam
       ploewe@gfz-potsdam.de
Übersicht
• Einführung Raum-Zeit-Würfel
• Anwendungsbeispiele 2D->3D
  – Wetterradar
  – Küstenschutz
  – Tsunami-Frühwarnsystem
• Anwendungsbeispiel 5D->3D
  – Qualitätssicherung Wetterradar
Motivation


„Time is often considered as the fourth
cartographic or geographic dimension“
                                      [Wikipedia:“Time“]
Zeitgeographie
• 1960er: Torsten Hägerstrand                                                                 • Raum-Zeit-Würfel:
  begründet die Zeitgeographie:                                                                  – X/Y: Geographischer Raum
                                                                                                 – Z: Zeit
        – Raum-Zeit-Modell                                                                    • Zeigt die Beziehungen
        – Raum-Zeit-Pfad                                                                        zwischen Zeit, Raum und
                                                                                                weiteren Variablen
        – Raum-Zeit-Würfel
                                                                                              • Aufzeigen von Raum-Zeit-
                                                                                                Pfaden für Objekte/Individuen
                                                                                              • Explorative Datenanalyse
                                                                                              • Option: Real Time Monitoring



 http://www.svgopen.org/2005/papers/abstract_neumann_thematic_navigation_in_space_and_time/
Umsetzung mit GIS
„Modelling and visualizing time and spatio-
temporal navigation in GIS is truly a
multidisciplinary research topic, including
domains such as
• geography,
• social and live sciences,
• psychology,
• philosophy,
• GIScience,
• GIS,
• cartography,
• computer science,                           Substantial input is currently contributed
                                              from information visualization, a discipline
• information visualization,                  that deals a lot with interactive graphics,
• multimedia design,                          visualizing large data sets and data mining
• mathematics, statistics, etc.               issues“
                                                    [Card et al 1999 in A. Neumann, 2005]
Beispiel: Minard‘s Karte
• Der französische Bauingenieur Charles Joseph Minard
  veröffentlichte 1869 eine Grafik zu den Verlusten der
  französischen Armee während Napoleons Russlandfeldzug,
  die Carte figurative des pertes successives en hommes de
  l'Armée Française dans la campagne de Russie 1812–1813.
                                                       [Wikipedia]
Carte figurative des pertes successives en hommes de l'Armée
      Française dans la campagne de Russie 1812–1813




                                                       [Wikipedia]
2D -> 3D
Minards Karte ist Sankey Diagramm   Darstellung als Raum-Zeit-Würfel
(Darstellungen mit
mengenproportionalen Pfeilen).




                                                            Kraak 2003
Praxisbeispiele

1. Wetterradar
2. Küstenentwicklung
3. Tsunamimodellierung
Beispiel 1: Wetterradar
Datenbasis
•   Dreidimensionale Volumenscans
    der Atmosphäre.
•   Frequenz: 5 Minuten
•   Auflösung: 1km
•   Eingangsdaten: Constant Altitude
    Plan Position Indicator (CAPPI)
    (zweidimensionale „Schnitte“)
•   Maximales Echo über alle
    Schnittebenen: MaxCAPPI
•   Produkt:
     – Niederschlagskarten
     – „Pluviogramme“


•   Abgeleitete Größe:
    Niederschlagserosivität
Processing: High Level View
         Lower Atmosphere         MRL-5 Radar,
                                  SAWS
                                                     Large Amounts
                                                       of 3D Data



                                        2D              Rainfall
                                   Rainfall Data         Maps



                                   Erosivity Model

A complete scan of the lower
atmosphere (up to 18km, 200km        Erosivity
radius) takes 5 minutes:              Pulses

●288 data sets daily
●8,064 – 8928 data sets monthly                      Visualization
                                  Erosivity Maps
●195,120 data sets per year
MaxCAPPI                                                     Σ
                     Reflectivity
                       16:18:50 Hours 16:43:30 Hours16:59:56 Hours 24h total


    Erosivität                                                  Σ      erosive

                     Erosivity


Left: Reflectivity
Centre: Rainfall
Right: Erosivity
The Challenge
●   Can we trust the 2D rainfall data ?
    –   Metadata appears correct.
    –   [are the rainfall fields correct ?]
●   Weather Radar provides 3D data.
    –   [3D->2D transformation: Correctly done?]
Garbage in, Garbage out

●   Can we trust the rainfall information of the weather radar ?
●   Model results are based on rainfall data.
●   Errors and Biases in the rainfall data will affect all derived
    products.
●   What about transient biases which might vary in time or
    space?
●   One should have a close look at the data !
                                            3D data
                                 Trust      „Flattening
                                                              Overall
                                                 “
                                                               Trust

                                         2D information
From single drawings
  1      2     3


                       „Radar Rain Flip-Book“




                        „Erosivity Peaks Flip-
                               Book“
Boredom in, Boredom out
●   Large data archives exist and more data are
    added every day (288 data sets in our example).
●   How can we easily identify time intervals
    when „some interesting weather“ has
    occurred?
●   We could watch it all in 4D (3D over time):
    –   Takes too much time, is incredibly boring
    –   Problem to watch the right things at the right
        time.
Data Errors
     Flip-book Volume                        (ground targets)



               3
               3


               2
               2           time


               1
               1
2D Space: Rainfall field

                                  Not real                      Yellow: Rainfall
                                  clouds !                      Red: Erosivity
Ce n'est pas un nuage!
        Painting of a pipe
Quality Control




                                                                                Rods of
                                   The height of a rainfall track tells          eternal
                                   us how long it did rain at a                 soaking:
                                   certain location                            Data errors




A precipitation field and its resulting erosivity pulses shown in side-view.
Beispiel 2: Küstenschutz
             [Materialien von Prof. Helena Mitasova, 2011]

    Analysis of barrier islands vulnerability
     and evolution:
       Airborne lidar surveys since 1996
       Analysis of DEM time series
       Space-time cube
Datenbasis
• Datenquelle: LIDAR Scans
• Auflösung: 0.3-1.0m
• Frequenz: Jährlich
Barrier islands
                                Dynamic topography:
    Nags Head                   sand is redistributed by wind, waves,
                                storm surge
                                Vulnerable:
                                coastal erosion, sea level rise,
                                inundation
                                First line of defense against storms




                Cape Hatteras
0      10km
                  N
Vulnerability: Dune ridgeline
Vulnerability: function of dune ridge and toe position
Least cost path method for ridgeline extraction:
Continuous line, robust to elevation anomalies, highly automated




   Elevation surface             Cost surface
Vulnerability: Dune toeline
Dune toe extraction: elastic sheet, cost surface and least cost path




                                                        Cost Surface
Evolution metrics from DEM series
    t1
                       Core surface z-min for each cell
    t2                 Envelope surface z-max for each cell
    tNags Head
    .
      3
                       Dynamic layer: bounds terrain evolution for a
    .
    tn
                         given period
                       Shoreline band: defined by shoreline from core
    result               and envelope, bounds shoreline dynamics for
                         given period

0            4km
                   N
Evolution metrics
                                    core, envelope, DEM
                                                                    1999


                                    0       100m

                                                                    2001




                                                                    2004
Orthophoto and shoreline band


   2008              1999
                                                                    2008
                                c
                                    1999
                                    2001                              min
                                    2004                              max
                                    2005                              2001
                                    2007                              2005
                                    2008                              2007
                                                          0   50m     2008
Time of maximum
Terrain evolution in space-time cube
How does evolution pattern change with elevation?
What is the direction of fastest elevation change?

Time series of (x,y,z) point clouds interpolated to voxel model

                     tn
               ...                                             space-time cube
          t3
     t2
                                       z=f(x,y,t)
t1


                                                    Time
                                                    [year]

                          15
                           7
                                                                 Y[m]
                           0m
                                                        X[m]
Contour evolution as isosurface

  Isosurface representation of 10, 11 and 12m
  elevation contours for time series

  Elevation:   10   11   12 m




                                         2008
                                         2005
                                         2001
                                         1999

  Time

    Y
                                                0   100m

         X
Contour evolution with overwash
    DEM [year]                      z = 4.5m          0           200m
                                        2005
    2005                                2003
                                        2001
                                        1999
                                        1997                             beach

    2003


                                                           2005 shoreline
    1997

           4.6 m contours



Time
[year]
2005                                                                  Time
2003                                                                  [year]
2001                        beach                                                     Y[m]
1999                                                      Elevation
                                    0          200m                            X[m]
1997                                                       4.5m
Dynamics at different elevations
Different spatial pattern of dynamics at different elevations:
0.3m shoreline, 1.5m upper beach, 4.5m mid-dune, 7.5m dune ridge          2005
                                                                          2003
                                                                          2001
                                                                          1999
                                           z=4.5m                         1997
       z=1.5m
2005
2003
2001               2005 dune rebuilt
1999               2003 dune overwash
1997                                                                      2005
                                                                          2003
                sand disposal                                             2001
                                                                          1999
                                           z=7.5m                         1997
       z=0.3m
2005
2003
2001
1999                                                            Time
1997                                                            [year]
                                0   200m
                                           stable dune peaks
                                                               X[m]      Y[m]
Beispiel 3: Tsunamiwarnung
Tsunamifrühwarnsysteme
• Tsunami Early Warning Systems    1. Erdbeben-Lokation -> Auswahl
  (TEWS) basieren auf online          „passender“ Tsunamimodelle
  Sensoren und Modelldaten.        2. Reduktion der in Frage
                                      kommenden Simulationen
• Tsunamiausbreitungs-modelle
                                      anhand von online-Sensoren.
  werden in Bibliotheken für den
                                   3. Informationslogistik auf Basis
  Ernstfall vorgehalten.
                                      des prognostizierten
                                      Tsunamiverlaufs.
Datenbasis
• Tsunamimodellrechnungen
   – Vergangenheit
   – „What-If“
• Inhalte:
   – Wellenhöhenraster
   – Mareogramme
     („Fieberkurven“)
• Frequenz: 2-5 Minuten
• Abgeleitete Daten:
   – Maximale Wellenhöhen
                              Maximale Wellenhöhen des Tohoku-Tsunami 2011
• Kritisch: Validität der     (GFZ)

  Simulation
Validität der Simulation
• Wellenausbreitungen sind dynamisch
• Verifikation an historischen Testfällen ist
  „schwierig“
• Beurteilung der Stabilität/Belastbarkeit der
  Simulationen :
   – Räumliches Verhalten
   – Zeitliches Verhalten
   – Informationsgehalt
Beispiel: Kreta 356n.Chr.

Wellenaus-
 breitung




                           Maximale
                          Wellenhöhen
Datenfehler
Tohoku Tsunami 11.3.2011
•   Magnitude 9 Beben
•   Bruchlänge: 400 km
•   27m Gesamt-Versatz
•   7m Vertikalbewegung
•   „Live-Übertragung“ via KML
Tohoku Raumzeitwürfel
Negative Wellen
Positive Wellen
Einladung:
    Lange Nacht der Wissenschaften
             2. Juni 2011.
• Raumzeitwürfel in
  3D im Visiolab des
  GFZ.
5D -> 3D
• Kollabieren
  höherdimensionaler
  Daten am Beispiel
  Wetterradar
Datenkollaps der Höheninformation
(Wurde schon gezeigt)

The 2D (xy) rainfall field was „squeezed“ out of the 3D (xyz) weather
   radar data, implicitly „collapsing“ the vertical dimension.

The stacking of the time frame „flip-book“ pages substituted the altitude
   (z) dimension by the time dimension.
Next Step: Spatial Collapse
This approach can be followed further:
●   In the previous example we collapsed the z-
    dimension
●   Now we collapse the horizontal (xy)
    dimension.
●   The resulting diagram is a preview format:
    „Contoured Altitude by Frequency
    Diagram“ (CFAD).
Contoured Frequency by Altitude
            Diagrams (CFAD)
●   CFAD can be created from 3D radar reflectivity data (original
    airspace radar scan). The 3D data set is sliced vertically.
●   Histograms of the reflectivities (1D) are generated for each
    slice/layer.
●   Stacking the histograms gives us a 2D synopsis of the current
    situation in the scanned airspace.
●   This tells us a lot about the weather and potential measurement
    errors.
CFAD – An Example




                                        Largest count of
                                         hydrometeors




Contoured Frequency by Altitude Diagram (CFAD).
Numbers on contour lines give the number of voxels in the observation area
with a given radar reflectivity.
The CFAD gives a snapshot of weather intensity at different altitudes in the lower atmosphere.
CFATD = Raum-Zeit-Würfel
●   Contoured Frequency Altitude by Time
    Diagram adds the time dimension, resulting in
    a volume body -> .
●   The shape of the CFATD makes it easy to
    identify:
    ●   periods of high radar reflectivity, i.e. intense
        weather, and
    ●   Errors in the radar or processing chain.
Beispiel




                                       Iso Surfaces resemble
                                       levels of droplet
                                       counts (a few, many,
Altitude                               lots)



                  Critical threshold: If the inner
                  layer (many droplets) of the
                  „loaf“ exceeds it, then there is
                  heavy downpour or even hail.
Visual Quality Control
●   CFATD gives a convenient and reliable quality measure for observations not to use

●   If the CFATD structure appears blocky, or „non-organic“: discard the data




                                                                      Faulty
                                                                       data




    Faulty data
Better data, better models
●   4D previews for „Live Quality Control“ in sensor systems:
     –   Weather Radar does „now-casting“
           ●   It looks into the distance (right now)
           ●   but not into the future
     –   Real-time generation of CFATD „loaves“ could be used for radar system
         calibration and maintenance.




                                                          What level of quality
                                                        do we get RIGHT NOW ?
Fazit
• Raum-Zeit-Würfel können in verschiedenen
  Szenarien eingesetzt werden
• Sie vermitteln Übersicht über zeitlich/räumlich
  fluktuierende Datensätze für Analyse und Diskussion
• Möglichkeit zur Analyse von räumlich/zeitlichen
  Fehlern
• Nutzung ist retrospektiv und in „real-time“ möglich.
• In Verbindung mit Datenreduktionsmethoden (CFAD)
  können auch höherdimensionale Daten genutzt
  werden.
Danke für die Aufmerksamkeit

Mais conteúdo relacionado

Mais de Peter Löwe

INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...
INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...
INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...
Peter Löwe
 
FOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-Projekte
FOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-ProjekteFOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-Projekte
FOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-Projekte
Peter Löwe
 
The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...
The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...
The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...
Peter Löwe
 
Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...
Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...
Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...
Peter Löwe
 
First public screening of the high resolution version of the GRASS GIS video...
First public screening of the high resolution version of the  GRASS GIS video...First public screening of the high resolution version of the  GRASS GIS video...
First public screening of the high resolution version of the GRASS GIS video...
Peter Löwe
 
3D-printing with GRASS GIS – a work in progress in report FOSS4G 2014
3D-printing with GRASS GIS – a work in progress in report FOSS4G 20143D-printing with GRASS GIS – a work in progress in report FOSS4G 2014
3D-printing with GRASS GIS – a work in progress in report FOSS4G 2014
Peter Löwe
 
Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...
Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...
Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...
Peter Löwe
 
Data Science: History repeated? – The heritage of the Free and Open Source GI...
Data Science: History repeated? – The heritage of the Free and Open Source GI...Data Science: History repeated? – The heritage of the Free and Open Source GI...
Data Science: History repeated? – The heritage of the Free and Open Source GI...
Peter Löwe
 
Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)
Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)
Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)
Peter Löwe
 
Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...
Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...
Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...
Peter Löwe
 

Mais de Peter Löwe (20)

EGU GA 2014 OSGeo Townhall
EGU GA 2014 OSGeo TownhallEGU GA 2014 OSGeo Townhall
EGU GA 2014 OSGeo Townhall
 
EGU 2013 Splinter Meeting: FOSS in the Geosciences
EGU 2013 Splinter Meeting: FOSS in the Geosciences EGU 2013 Splinter Meeting: FOSS in the Geosciences
EGU 2013 Splinter Meeting: FOSS in the Geosciences
 
2012 egu foss_splinter_session
2012 egu foss_splinter_session2012 egu foss_splinter_session
2012 egu foss_splinter_session
 
INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...
INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...
INTEGRATION OPTIONS FOR PERSISTENT IDENTIFIERS IN OSGEO PROJECT REPOSITORIES:...
 
Research Data Management for Econometrics
Research Data Management for EconometricsResearch Data Management for Econometrics
Research Data Management for Econometrics
 
FOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-Projekte
FOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-ProjekteFOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-Projekte
FOSSGIS 2015: Das audiovisuelle Erbe der OSGeo-Projekte
 
Unlocking conference videos by DOI/MFID for software project communities
Unlocking conference videos by DOI/MFID for software project communitiesUnlocking conference videos by DOI/MFID for software project communities
Unlocking conference videos by DOI/MFID for software project communities
 
Libraries in the Big Data Era: Strategies and Challenges in Archiving and Sha...
Libraries in the Big Data Era: Strategies and Challenges in Archiving and Sha...Libraries in the Big Data Era: Strategies and Challenges in Archiving and Sha...
Libraries in the Big Data Era: Strategies and Challenges in Archiving and Sha...
 
The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...
The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...
The TIB|AV Portal : OSGeo conference videos as a resource for scientific res...
 
TIB's action for research data managament as a national library's strategy in...
TIB's action for research data managament as a national library's strategy in...TIB's action for research data managament as a national library's strategy in...
TIB's action for research data managament as a national library's strategy in...
 
GIS Day 2015: Geoinformatics, Open Source and Videos - a library perspective
GIS Day 2015: Geoinformatics, Open Source and Videos - a library perspectiveGIS Day 2015: Geoinformatics, Open Source and Videos - a library perspective
GIS Day 2015: Geoinformatics, Open Source and Videos - a library perspective
 
GIS DAY 2015: Guerilla globes
GIS DAY 2015: Guerilla globes GIS DAY 2015: Guerilla globes
GIS DAY 2015: Guerilla globes
 
Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...
Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...
Acquisition of audiovisual Scientific Technical Information from OSGeo: A wor...
 
First public screening of the high resolution version of the GRASS GIS video...
First public screening of the high resolution version of the  GRASS GIS video...First public screening of the high resolution version of the  GRASS GIS video...
First public screening of the high resolution version of the GRASS GIS video...
 
GRASS GIS, Star Trek and old Video Tape – a reference case on audiovisual pre...
GRASS GIS, Star Trek and old Video Tape – a reference case on audiovisual pre...GRASS GIS, Star Trek and old Video Tape – a reference case on audiovisual pre...
GRASS GIS, Star Trek and old Video Tape – a reference case on audiovisual pre...
 
3D-printing with GRASS GIS – a work in progress in report FOSS4G 2014
3D-printing with GRASS GIS – a work in progress in report FOSS4G 20143D-printing with GRASS GIS – a work in progress in report FOSS4G 2014
3D-printing with GRASS GIS – a work in progress in report FOSS4G 2014
 
Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...
Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...
Tectonic Storytelling with Open Source and Digital Object Identifiers - a cas...
 
Data Science: History repeated? – The heritage of the Free and Open Source GI...
Data Science: History repeated? – The heritage of the Free and Open Source GI...Data Science: History repeated? – The heritage of the Free and Open Source GI...
Data Science: History repeated? – The heritage of the Free and Open Source GI...
 
Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)
Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)
Scientific 3D Printing with GRASS GIS (FOSSGIS 2014)
 
Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...
Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...
Potentiale und Chancen von Free Open Source Software (FOSS) GIS für die Forsc...
 

Visualisierung Raum-Zeit Würfel

  • 1. Blockwoche Visualisierung Raum-Zeit-Würfel Raum-Zeit-Würfel Peter Löwe, GFZ Potsdam ploewe@gfz-potsdam.de
  • 2. Übersicht • Einführung Raum-Zeit-Würfel • Anwendungsbeispiele 2D->3D – Wetterradar – Küstenschutz – Tsunami-Frühwarnsystem • Anwendungsbeispiel 5D->3D – Qualitätssicherung Wetterradar
  • 3. Motivation „Time is often considered as the fourth cartographic or geographic dimension“ [Wikipedia:“Time“]
  • 4. Zeitgeographie • 1960er: Torsten Hägerstrand • Raum-Zeit-Würfel: begründet die Zeitgeographie: – X/Y: Geographischer Raum – Z: Zeit – Raum-Zeit-Modell • Zeigt die Beziehungen – Raum-Zeit-Pfad zwischen Zeit, Raum und weiteren Variablen – Raum-Zeit-Würfel • Aufzeigen von Raum-Zeit- Pfaden für Objekte/Individuen • Explorative Datenanalyse • Option: Real Time Monitoring http://www.svgopen.org/2005/papers/abstract_neumann_thematic_navigation_in_space_and_time/
  • 5. Umsetzung mit GIS „Modelling and visualizing time and spatio- temporal navigation in GIS is truly a multidisciplinary research topic, including domains such as • geography, • social and live sciences, • psychology, • philosophy, • GIScience, • GIS, • cartography, • computer science, Substantial input is currently contributed from information visualization, a discipline • information visualization, that deals a lot with interactive graphics, • multimedia design, visualizing large data sets and data mining • mathematics, statistics, etc. issues“ [Card et al 1999 in A. Neumann, 2005]
  • 6. Beispiel: Minard‘s Karte • Der französische Bauingenieur Charles Joseph Minard veröffentlichte 1869 eine Grafik zu den Verlusten der französischen Armee während Napoleons Russlandfeldzug, die Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812–1813. [Wikipedia]
  • 7. Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812–1813 [Wikipedia]
  • 8. 2D -> 3D Minards Karte ist Sankey Diagramm Darstellung als Raum-Zeit-Würfel (Darstellungen mit mengenproportionalen Pfeilen). Kraak 2003
  • 11. Datenbasis • Dreidimensionale Volumenscans der Atmosphäre. • Frequenz: 5 Minuten • Auflösung: 1km • Eingangsdaten: Constant Altitude Plan Position Indicator (CAPPI) (zweidimensionale „Schnitte“) • Maximales Echo über alle Schnittebenen: MaxCAPPI • Produkt: – Niederschlagskarten – „Pluviogramme“ • Abgeleitete Größe: Niederschlagserosivität
  • 12. Processing: High Level View Lower Atmosphere MRL-5 Radar, SAWS Large Amounts of 3D Data 2D Rainfall Rainfall Data Maps Erosivity Model A complete scan of the lower atmosphere (up to 18km, 200km Erosivity radius) takes 5 minutes: Pulses ●288 data sets daily ●8,064 – 8928 data sets monthly Visualization Erosivity Maps ●195,120 data sets per year
  • 13. MaxCAPPI Σ Reflectivity 16:18:50 Hours 16:43:30 Hours16:59:56 Hours 24h total Erosivität Σ erosive Erosivity Left: Reflectivity Centre: Rainfall Right: Erosivity
  • 14. The Challenge ● Can we trust the 2D rainfall data ? – Metadata appears correct. – [are the rainfall fields correct ?] ● Weather Radar provides 3D data. – [3D->2D transformation: Correctly done?]
  • 15. Garbage in, Garbage out ● Can we trust the rainfall information of the weather radar ? ● Model results are based on rainfall data. ● Errors and Biases in the rainfall data will affect all derived products. ● What about transient biases which might vary in time or space? ● One should have a close look at the data ! 3D data Trust „Flattening Overall “ Trust 2D information
  • 16. From single drawings 1 2 3 „Radar Rain Flip-Book“ „Erosivity Peaks Flip- Book“
  • 17. Boredom in, Boredom out ● Large data archives exist and more data are added every day (288 data sets in our example). ● How can we easily identify time intervals when „some interesting weather“ has occurred? ● We could watch it all in 4D (3D over time): – Takes too much time, is incredibly boring – Problem to watch the right things at the right time.
  • 18. Data Errors Flip-book Volume (ground targets) 3 3 2 2 time 1 1 2D Space: Rainfall field Not real Yellow: Rainfall clouds ! Red: Erosivity
  • 19. Ce n'est pas un nuage! Painting of a pipe
  • 20. Quality Control Rods of The height of a rainfall track tells eternal us how long it did rain at a soaking: certain location Data errors A precipitation field and its resulting erosivity pulses shown in side-view.
  • 21. Beispiel 2: Küstenschutz [Materialien von Prof. Helena Mitasova, 2011] Analysis of barrier islands vulnerability and evolution:  Airborne lidar surveys since 1996  Analysis of DEM time series  Space-time cube
  • 22. Datenbasis • Datenquelle: LIDAR Scans • Auflösung: 0.3-1.0m • Frequenz: Jährlich
  • 23. Barrier islands Dynamic topography: Nags Head sand is redistributed by wind, waves, storm surge Vulnerable: coastal erosion, sea level rise, inundation First line of defense against storms Cape Hatteras 0 10km N
  • 24. Vulnerability: Dune ridgeline Vulnerability: function of dune ridge and toe position Least cost path method for ridgeline extraction: Continuous line, robust to elevation anomalies, highly automated Elevation surface Cost surface
  • 25. Vulnerability: Dune toeline Dune toe extraction: elastic sheet, cost surface and least cost path Cost Surface
  • 26. Evolution metrics from DEM series t1 Core surface z-min for each cell t2 Envelope surface z-max for each cell tNags Head . 3 Dynamic layer: bounds terrain evolution for a . tn given period Shoreline band: defined by shoreline from core result and envelope, bounds shoreline dynamics for given period 0 4km N
  • 27. Evolution metrics core, envelope, DEM 1999 0 100m 2001 2004 Orthophoto and shoreline band 2008 1999 2008 c 1999 2001 min 2004 max 2005 2001 2007 2005 2008 2007 0 50m 2008 Time of maximum
  • 28. Terrain evolution in space-time cube How does evolution pattern change with elevation? What is the direction of fastest elevation change? Time series of (x,y,z) point clouds interpolated to voxel model tn ... space-time cube t3 t2 z=f(x,y,t) t1 Time [year] 15 7 Y[m] 0m X[m]
  • 29. Contour evolution as isosurface Isosurface representation of 10, 11 and 12m elevation contours for time series Elevation: 10 11 12 m 2008 2005 2001 1999 Time Y 0 100m X
  • 30. Contour evolution with overwash DEM [year] z = 4.5m 0 200m 2005 2005 2003 2001 1999 1997 beach 2003 2005 shoreline 1997 4.6 m contours Time [year] 2005 Time 2003 [year] 2001 beach Y[m] 1999 Elevation 0 200m X[m] 1997 4.5m
  • 31. Dynamics at different elevations Different spatial pattern of dynamics at different elevations: 0.3m shoreline, 1.5m upper beach, 4.5m mid-dune, 7.5m dune ridge 2005 2003 2001 1999 z=4.5m 1997 z=1.5m 2005 2003 2001 2005 dune rebuilt 1999 2003 dune overwash 1997 2005 2003 sand disposal 2001 1999 z=7.5m 1997 z=0.3m 2005 2003 2001 1999 Time 1997 [year] 0 200m stable dune peaks X[m] Y[m]
  • 33. Tsunamifrühwarnsysteme • Tsunami Early Warning Systems 1. Erdbeben-Lokation -> Auswahl (TEWS) basieren auf online „passender“ Tsunamimodelle Sensoren und Modelldaten. 2. Reduktion der in Frage kommenden Simulationen • Tsunamiausbreitungs-modelle anhand von online-Sensoren. werden in Bibliotheken für den 3. Informationslogistik auf Basis Ernstfall vorgehalten. des prognostizierten Tsunamiverlaufs.
  • 34. Datenbasis • Tsunamimodellrechnungen – Vergangenheit – „What-If“ • Inhalte: – Wellenhöhenraster – Mareogramme („Fieberkurven“) • Frequenz: 2-5 Minuten • Abgeleitete Daten: – Maximale Wellenhöhen Maximale Wellenhöhen des Tohoku-Tsunami 2011 • Kritisch: Validität der (GFZ) Simulation
  • 35. Validität der Simulation • Wellenausbreitungen sind dynamisch • Verifikation an historischen Testfällen ist „schwierig“ • Beurteilung der Stabilität/Belastbarkeit der Simulationen : – Räumliches Verhalten – Zeitliches Verhalten – Informationsgehalt
  • 36. Beispiel: Kreta 356n.Chr. Wellenaus- breitung Maximale Wellenhöhen
  • 38. Tohoku Tsunami 11.3.2011 • Magnitude 9 Beben • Bruchlänge: 400 km • 27m Gesamt-Versatz • 7m Vertikalbewegung • „Live-Übertragung“ via KML
  • 42. Einladung: Lange Nacht der Wissenschaften 2. Juni 2011. • Raumzeitwürfel in 3D im Visiolab des GFZ.
  • 43. 5D -> 3D • Kollabieren höherdimensionaler Daten am Beispiel Wetterradar
  • 44. Datenkollaps der Höheninformation (Wurde schon gezeigt) The 2D (xy) rainfall field was „squeezed“ out of the 3D (xyz) weather radar data, implicitly „collapsing“ the vertical dimension. The stacking of the time frame „flip-book“ pages substituted the altitude (z) dimension by the time dimension.
  • 45. Next Step: Spatial Collapse This approach can be followed further: ● In the previous example we collapsed the z- dimension ● Now we collapse the horizontal (xy) dimension. ● The resulting diagram is a preview format: „Contoured Altitude by Frequency Diagram“ (CFAD).
  • 46. Contoured Frequency by Altitude Diagrams (CFAD) ● CFAD can be created from 3D radar reflectivity data (original airspace radar scan). The 3D data set is sliced vertically. ● Histograms of the reflectivities (1D) are generated for each slice/layer. ● Stacking the histograms gives us a 2D synopsis of the current situation in the scanned airspace. ● This tells us a lot about the weather and potential measurement errors.
  • 47. CFAD – An Example Largest count of hydrometeors Contoured Frequency by Altitude Diagram (CFAD). Numbers on contour lines give the number of voxels in the observation area with a given radar reflectivity. The CFAD gives a snapshot of weather intensity at different altitudes in the lower atmosphere.
  • 48. CFATD = Raum-Zeit-Würfel ● Contoured Frequency Altitude by Time Diagram adds the time dimension, resulting in a volume body -> . ● The shape of the CFATD makes it easy to identify: ● periods of high radar reflectivity, i.e. intense weather, and ● Errors in the radar or processing chain.
  • 49. Beispiel Iso Surfaces resemble levels of droplet counts (a few, many, Altitude lots) Critical threshold: If the inner layer (many droplets) of the „loaf“ exceeds it, then there is heavy downpour or even hail.
  • 50. Visual Quality Control ● CFATD gives a convenient and reliable quality measure for observations not to use ● If the CFATD structure appears blocky, or „non-organic“: discard the data Faulty data Faulty data
  • 51. Better data, better models ● 4D previews for „Live Quality Control“ in sensor systems: – Weather Radar does „now-casting“ ● It looks into the distance (right now) ● but not into the future – Real-time generation of CFATD „loaves“ could be used for radar system calibration and maintenance. What level of quality do we get RIGHT NOW ?
  • 52. Fazit • Raum-Zeit-Würfel können in verschiedenen Szenarien eingesetzt werden • Sie vermitteln Übersicht über zeitlich/räumlich fluktuierende Datensätze für Analyse und Diskussion • Möglichkeit zur Analyse von räumlich/zeitlichen Fehlern • Nutzung ist retrospektiv und in „real-time“ möglich. • In Verbindung mit Datenreduktionsmethoden (CFAD) können auch höherdimensionale Daten genutzt werden.
  • 53. Danke für die Aufmerksamkeit