SlideShare uma empresa Scribd logo
1 de 42
Baixar para ler offline
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions




                           Stability of an asteroid satellite


                   Anne Lemaître, Audrey Compère, Nicolas Delsate
                               Department of Mathematics FUNDP Namur

                                               14 June 2010
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



     1 Introduction
     2 Satellites of asteroids
            System Ida-Dactyl
            Previous results
     3    Stability tests
            Numerical simulations
            Classical calculation of the potential
            MacMillan potential
            Chaos indicator : MEGNO
     4    Chaos Maps
            Gravitational resonances
            Frequency analysis
     5    Analytical development
            MacMillan potential
            Approximated formulation
            1:1 resonance
            Equatorial resonant orbits
            Polar resonant orbits
     6    Conclusions
Introduction    Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Motivation



               Previous studies : rotation of the planets and natural satellites
               and space debris on geostationary orbits
               Collaboration Grasse - CNES : stability conditions for the
               motion of a probe around an asteroid
               To test our methods on asteroid satellites (PhD - not
               published)
               Stability : numerical tests and dynamical models
               Several approaches of the potential of a non spherical body
                     Trace-free tensors in elliptical harmonics
                     Geometrical approach
                     MacMillan potential : the only one presented here (Paolo)
Introduction     Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Vocabulary

      Binary asteroid :        system of two asteroids
      Two categories :
          1    The two bodies have the same size : double asteroid
               Ex : Antiope - Dynamics intensively studied in particular by Scheeres and
               collaborators




          2    A body is much smaller than the other one : asteroid and its satellite
               Ex : Ida-Dactyl
Introduction   Satellites of asteroids   Stability tests   Chaos Maps    Analytical development   Conclusions



Natural system Ida-Dactyl

      Ida : main belt asteroid (Koronis family), very irregular shape and fast spin




                                                Ida                       Dactyl

                  Mass              (4.2 ± 0.6) × 1016 kg               ∼ 4.1012 kg

                  Diameter          59.8 × 25.4 × 18.6 km          1.6 × 1.4 × 1.2 km
Introduction   Satellites of asteroids   Stability tests       Chaos Maps    Analytical development   Conclusions




      Dactyl :
                             Orbit data :

                             Semimajor axis (a)            :   108 km
                             Orbital period (P)            :   1.54 days
                             Eccentricity (e)              :   ≥ 0.2?

                             Other data :

                             Mean radius                   :   0.7 km
                             Principal diameters           :   1.6 × 1.4 × 1.2 km
                             Shape                         :   less irregular then Ida
                             Ellisoidal t (radii)         :   0,8 × 0,7 × 0,6 km
                             Mass                          :   ∼ 4.1012 kg
                             Surface area                  :   6,3 km2
                             Volume                        :   1,4 km3
                             Spin period                   :    8 hr
Introduction     Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Ida-Dactyl simulations

      J-M Petit et al : 1998, Belton, 1996
      Context :
               Ida mass is not known precisely.
               Each value of the mass corresponds to a Keplerian orbit for Dactyl
               To constraint the mass of Ida by Dactyl's orbit

                                                   Belton,1996
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Petit et al


      1. Stability bounds on Ida mass


      First model
      Ida is represented by an ellipsoid.
      Gravitational potential : elliptic integrals
      Integrator : Bulirsch and Stoer with a precision of 10−10
      Masses : between 3.65 × 1016 and 5.7 × 1016 kg

      Results :

      Orbits with M  4.93 × 1016 kg (q  63 km) are very unstable.
        → crash or escape after several hours or days
      The other orbits are stable for hundreds of years.
      Second model
      Approximation of Ida by a collection of 44 spheres of dierent sizes.
        ⇒ more precise bounds.
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Resonant stable orbits

      The Ida-Dactyl system should be stable for long time ⇒ search for resonances
      between the rotation of Ida and the orbital frequency of Dactyl.
      Simulations results :




                                 Most probable resonances 5:1 and 9:2
Introduction    Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Numerical simulations




               Model : a point mass orbiting an ellipsoid
               Parameters : shape, mass and spin of the primary, initial
               conditions of the satellite
               Purpose : search for stable or resonant systems
               Technique : chaos maps (MEGNO)
               Software : NIMASTEP (N. Delsate) written for numerical
               integration of an articial satellite around a telluric planet
               Dierences : irregular shape and fast rotation of the primary,
               large eccentricity of the satellite, relative importance of the
               perturbations
Introduction    Satellites of asteroids     Stability tests   Chaos Maps     Analytical development   Conclusions



First calculation of the potential



      Based on the spherical harmonics as for the telluric planets
      Small deformations of a sphere

                                                n
                         GM               ∞
                                                        Re    n
      V (r , θ, λ) =              1+                              Pnm (sin θ) (Cnm   cos   mλ + Snm    sin   mλ)
                          r               n=2 m=0
                                                        r

               (r , θ, λ) are the spherical coordinates
               Re is the equatorial radius
               Pnm are the Legendre's polynomials

               Cnm et Snm are the spherical harmonics coecients
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Check of the integrations

      Paper of A. Rossi, F. Marzari and P. Farinella (1999) : Orbital
      evolution around irregular bodies in Earth, Planets, Space.
      Four approaches of the potential :
           Ivory's approach : direct calculation of the potential of an
           homogeneous triaxial ellipsoid
           Spherical harmonics approach (4th order)
           Mascons approach : the body is approximated by a set of
           point masses placed in a suitable place to reproduce the mass
           distribution
           Polyhedral approach : the body is approximated by a
           polyhedron with a great number of faces

      Axisymmetric ellipsoid (a = b = 10 km, c= 5 km) or triaxial
      ellipsoid (a=30 km, b=10 km and c = 6.66 km).
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Tests of Rossi, Marzari and Farinella




      Four cases :
          Case 0 : Sphere (not considered here)
          Case 1 : Axisymmetric ellipsoid with inclined circular orbits
          (i = 10◦ ) at a distance of 20km - 5835 mascons - 1521 faces -
          Mass = 2.0831015 kg - ρ = 1g cm3 .
          Case 2 : Axisymmetric ellipsoid with inclined elliptic orbits
          (e = 0.2)
          Case 3 : Axisymmetric ellipsoid with distant inclined elliptic
          orbits at a distance of 40km
Introduction      Satellites of asteroids      Stability tests     Chaos Maps      Analytical development       Conclusions



Comparisons




      First tests : Variation of the ascending node (in radians                                  s
                                                                                                     −1 )   :
                                     Secular Theory (J2 )        polygones       mascons     spherical harmonics

              Case 1
         circular inclined                  -7.7 10−6            -1.09 10−5     -1.11 10−5       -1.07 10−5

              Case 2
         elliptic inclined                  -8.37 10−6           -1.25 10−5     -1.33 10−5       -1.27 10−5

                Case 3
   elliptic, inclined and distant           -7.10 10−7           -7.76 10−7     -7.92 10−7       -7.85 10−7
Introduction       Satellites of asteroids    Stability tests      Chaos Maps         Analytical development   Conclusions



MacMillan potential




      New potential : Potential for an ellipsoid : MacMillan (1958)

       V (x , y , z ) = 3 GM
                                         +∞
                                                       x2         y2             z2                  ds
                                    Z         „                                          «
                                                  1−        −              −                 √        √
                        2               λ1             s2       s 2 − h2       s2 − k2        s 2 − h2 s 2 − k 2
       where
               h
                   2
                  = a2 − b2 et k 2 = a2 − c 2 (a, b et                           c   are the semi-major
               axes of the ellipsoid with a ≥ b ≥ c )
               (x , y , z ) are the cartesian coordinates of the point
               λ1 is the rst ellipsoidal coordinate of the point
Introduction    Satellites of asteroids    Stability tests   Chaos Maps   Analytical development   Conclusions




      For each (x , y , z ) :
                 x
                     2        y
                                  2            z
                                                   2
                         + 2     + 2     =1                         Equation of degree 3 in s 2
                 s2       s − h2  s − k2


      Roots : λ2 , λ2 et λ2 with 0 ≤ λ2 ≤ h2 ≤ λ2 ≤ k 2 ≤ λ2 .
               1 2        3           3         2          1

      Geometrically (x , y , z ) is the intersection between
               an ellipsoid with axes ( λ2 , λ2 − h2 ,
                                         1     1                           λ2 − k 2 )
                                                                            1
               an hyperboloid of one sheet with axes
               ( λ2 ,
                  2         λ2 − h2 ,
                             2                k2   − λ2 )
                                                      2
               an hyperboloid of two sheets with axes
               ( λ2 ,
                  3         h2    − λ2 ,
                                     3        k2   − λ2 )
                                                      3
      Ellipsoidal coordinates : (λ1 , λ2 , λ3 )
Introduction     Satellites of asteroids   Stability tests     Chaos Maps       Analytical development         Conclusions



New tests and comparisons with Rossi et al



               Calculation of the force components explicitly (partial
               derivatives)
               Gauss-Legendre quadrature for the integrals
               Introduction in NIMASTEP

      New tests : Variation of the ascending node (in radians                                   s
                                                                                                    −1 )   :
                   Secular Theory (J2 )     polygones         mascons        spherical harmonics      Mac Millan

        Case 1           -7.7 10−6         -1.09 10−5        -1.11 10−5         -1.07 10−5           -1.11 10−5

                                   −6                 −5                −5                 −5
        Case 2          -8.37 10           -1.25 10          -1.33 10           -1.27 10             -1.33 10−5

        Case 3          -7.10 10−7         -7.76 10−7        -7.92 10−7         -7.85 10−7           -7.86 10−7
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Orbits
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Tests on the system Ida-Dactyl

      Test on eccentric Dactyl orbits :




      Resultats :
           Crash or escapes for M ≥ 5 × 1016 kg
           Regular orbits for M ≤ 5 × 1016 kg
      ⇒ same results as Petit et al. (1998)
Introduction     Satellites of asteroids            Stability tests   Chaos Maps   Analytical development       Conclusions



Chaos indicator : MEGNO


      MEGNO = Mean Exponential Growth factor of Nearby Orbits
      (Cincotta et Simo, 2000)
               Dynamical system : : dt x (t ) = f (x (t )), x ∈ IR2n .
                                       d

               φ(t ) a solution function of time t
               δφ (t ) the tangent vector along φ(t ) with δ˙φ = ∂ x (φ(t ))δφ (t ).
                                                                   ∂f



      The MEGNO is :
                                               t                                               t
                                   2               ˙                               1
                                       Z                                               Z
                                                   δφ · δφ
                      Yφ (t ) = t                  δφ · δφ
                                                             s ds     and   Yφ = t                 Yφ (s ) ds
                                           0                                               0


                    = measure of the divergence rate between two close orbits.

      Periodic orbit : Yφ → 0
      Quasi-periodic orbit : Yφ → 2
      Chaotic orbit : Yφ is increasing with time
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Chaos Maps




      We set :
            the mass and the rotation rate of the asteroid (ellipsoid)
            the initial conditions of the satellite (a=148.8km, i = 3 rad)
            a the largest semi-axis of the ellipsoid
      Variations of the primary shape (through the semi-axes b and c ).


      Integrator : Runge-Kutta-Fehlberg with variable step
      Precision : 10−12

      Results of the chaos indicator MEGNO are given in the plane (b/a,c/a)
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions




                          M=3.895551 106 kg, rotation rate = −3.76687 × 10−4 rad/s
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions




                          M=3.745722 106 kg, rotation rate = −3.76687 × 10−4 rad/s
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions




                           M=5.693498 106 kg, rotation rate = 3.76687 × 10−4 rad/s
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions




      However let us remind that the mass is constant in these graphics, some of
      these cases correspond to impossible values of the densities (chosen between 1
      and 3 gr/cm3 ) - The mass M and the axis a are xed.
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Evolution of the MEGNO with time


                 After 0.1 year                            after 1 year




                 after 5 years                             after 10 years
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Spin

                v = −2.5 10−4 rad/s                        v = −4.0 10−4 rad/s




                v = −3.76687 10−4 rad/s                     Inuence of the spin v
Introduction        Satellites of asteroids   Stability tests     Chaos Maps   Analytical development   Conclusions



Semi major-axis

               a   =130 km                                 a    =170 km




               a   =148.8 km                                Evolution with semi-major axis
Introduction   Satellites of asteroids   Stability tests   Chaos Maps         Analytical development   Conclusions



Reference case




                                    M=3.895551 106 kg, initial orbit   i   3 rad)
                                     rotation rate v = −3.76687 × 10−4 rad/s
Introduction     Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Gravitational resonance




      A resonance between
           the rotation of the primary (P = 4, 63 hours)
           the orbital period of the satellite (specic to each point)
      Tests on a few points
      Q1       : b=18.6 km, c=8.9 km and Y → 2 - period of 2.50 days
      Q2       : b=18.9 km, c=8.9 km and Y → +∞ - period of 2.48 days
      Q3       : b=20.1 km, c=8.9 km and Y → 2 - period of 2.48 days

       Gravitational resonance 1:13
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Frequency analysis (J. Laskar)

      c= 8.9 km is constant and b varies
      Analysis (a ∗ cos (M ), a ∗ sin(M )) :
Introduction   Satellites of asteroids   Stability tests   Chaos Maps     Analytical development   Conclusions



Second case




                          M=3.745722 106 kg,    i    2.99), v = −3.76687 × 10−4 rad/s
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



      Choosing again c = 8.9 km and b varies with time

        Analysis of (a ∗ cos (M ) , a ∗ sin(M ))
Introduction     Satellites of asteroids    Stability tests      Chaos Maps         Analytical development   Conclusions



Analytical development



      MacMillan Potential for an ellipsoid (1958) :
       V (x , y , z ) = 3 GM
                                       +∞
                                                     x2         y2             z2                  ds
                                  Z         „                                          «
                                                1−        −              −                 √        √
                        2             λ1             s2       s 2 − h2       s2 − k2        s 2 − h2 s 2 − k 2
      with h2 = a2 − b2 and k 2 = a2 − c 2
      a, b et c are the semi- axes of the ellipsoid with a ≥ b ≥ c .
               Chauvineau, B., Farinella, P. and Mignard, F. (Icarus, 1993)
               Planar orbits about a triaxial body - Application to asteroidal
               satellites

               Scheeres, D. (Icarus, 1994) Dynamics about uniformly rotating
               triaxial ellipsoids : applications to asteroids
Introduction    Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Expansion of the potential




               Expansion of MacMillan potential in powers of h/R and k /R
               where R 2 = x 2 + y 2 + z 2
               Keplerian orbit about a rotating body (about its vertical axis)
               perturbed by MacMillan potential
                                                         √
               Delaunay's Hamiltonian momentum : L = µ¯      a

                          µ       µ      2    2    3µ 2 2         2 2
                  H = −
                         2L2 − 10R 3 (h + k ) + 10R 5 (y h + z k )
Introduction   Satellites of asteroids   Stability tests   Chaos Maps      Analytical development   Conclusions



1:1 resonance, circular and equatorial




      The curve corresponds to an curve :                     k
                                                                  2   − 2h 2    0
Introduction       Satellites of asteroids       Stability tests       Chaos Maps     Analytical development    Conclusions



1:1 resonance model




                                                                       = L sin(M +
                                                                          2
               Simplications :              z   = 0 and           y
                                                                         µ                      − φ)
               φ=v         t

               Resonant variable : σ = M + − φ
               Same equilibria as Scheeres or others
                               µ                     µ4       2   2                3µ4        2 (1 − cos 2σ).
               H   =−          −v        L   −            6 (h + k ) +                    h
                           2L2                     10L                             20L6
      The exact 1:1 resonance :                       v   =n:           k
                                                                            2   − 2h2 = 0
Introduction       Satellites of asteroids   Stability tests    Chaos Maps   Analytical development   Conclusions



Other resonances in the equatorial cases




                                      = L sin(f +
                                         2
               z   = 0 and        y
                                        µ                      − φ)
               The eccentricity is used to develop f in multiples of M
               Extraction of the resonant angle σ
               σ is now conjugated to P = L − G .
               Introduction of the pericentre motion (second degree of
               freedom) responsible for the multipliers of the exact resonance
               Higher orders of resonances require higher powers of the
               eccentricity
               Case Ida - Dactyl : potential 5:1 or 9:2 resonance (eccentricity
               of Dactyl high)
Introduction                           Satellites of asteroids                  Stability tests                                     Chaos Maps   Analytical development   Conclusions



Non-equatorial cases : polar case




      Map of the resonances between the rotation of Vesta and the
      orbital motion of a polar satellite : numerical work
                                         LAMO                                      HAMO
                                                                                                   14
                              1000                                                                 13
                                                                                                                                             Paper of Tricarico and Sykes
                                                                                                                                     The dynamical environment of Vesta
                                                                                                   12
                              900                                                                  11


                              800
                                                                                                   10                           submitted to Planetary and Space Science
                                                                              1:2                  9
        Distance Range [km]




                                                                                                        Orbital Period [hour]
                                                                                                   8
                              700
                                                                                                   7
                                                                2:3
                              600                                                                  6

                                                                                                   5
                              500
                                                   1:1                                             4
                              400
                                                                                                   3
                                           4:3
                                         3:2
                              300                                                                  2

                                 300   400   500      600      700      800     900      1000
                                                     Initial Radius [km]


        Figure 4: Distance range as a function of the initial radius of a circular orbit, computed over a
        period of 50 days. The central mark in each bar represents the median of the range. The rotation
        period used for Vesta is of 5.3421288 hours (Harris et al., 2008). Five spin-orbit resonances have
        been identified and marked in the plot. The 1:1 resonance affects the largest interval in initial
        radius, but the strongest perturbations come from the 2:3 resonance. The leftmost data point,
Introduction    Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Our results




               Numerical integration with NIMASTEP (especially drawn for
               polar orbits)
               Resonance map : position and importance of each resonance
               Complete agreement with Tricarico and Sykes
               Discovery of smaller structures ignored by Tricarico and Sykes
               Analysis of each resonance to compare their width and shape
Introduction   Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions
Introduction    Satellites of asteroids   Stability tests   Chaos Maps   Analytical development   Conclusions



Conclusions



               MEGNO is very ecient for the detection of gravitational
               resonances
               Use of the frequency map for the identication of the
               resonances
               Eciency and precision of MacMillan potential for ellipsoidal
               bodies
               Explicit approximated formulation in h and k
               Specic i : j resonance models : strength, width, equilibria
               Equatorial and polar cases (Ida and Vesta)
               Paolo's contribution : pioneer and omnipresent in the
               literature about asteroid dynamics

Mais conteúdo relacionado

Mais procurados

Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Sérgio Sacani
 
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_starTemperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Sérgio Sacani
 
The identification of_93_day_periodic_photometric_variability_for_yso_ylw_16a
The identification of_93_day_periodic_photometric_variability_for_yso_ylw_16aThe identification of_93_day_periodic_photometric_variability_for_yso_ylw_16a
The identification of_93_day_periodic_photometric_variability_for_yso_ylw_16a
Sérgio Sacani
 
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Sérgio Sacani
 
The nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_lookThe nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_look
Sérgio Sacani
 
Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766
Sérgio Sacani
 
The Evolution of Elliptical Galaxies in Rich Clusters
The Evolution of Elliptical Galaxies in Rich ClustersThe Evolution of Elliptical Galaxies in Rich Clusters
The Evolution of Elliptical Galaxies in Rich Clusters
Robert Berrington
 

Mais procurados (20)

A nearby yoiung_m_dwarf_with_wide_possibly_planetary_m_ass_companion
A nearby yoiung_m_dwarf_with_wide_possibly_planetary_m_ass_companionA nearby yoiung_m_dwarf_with_wide_possibly_planetary_m_ass_companion
A nearby yoiung_m_dwarf_with_wide_possibly_planetary_m_ass_companion
 
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
Probing the innermost_regions_of_agn_jets_and_their_magnetic_fields_with_radi...
 
Science with small telescopes - exoplanets
Science with small telescopes - exoplanetsScience with small telescopes - exoplanets
Science with small telescopes - exoplanets
 
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_knownEvidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
Evidence for reflected_lightfrom_the_most_eccentric_exoplanet_known
 
The parkes hi zone of avoidance survey
The parkes hi zone of avoidance surveyThe parkes hi zone of avoidance survey
The parkes hi zone of avoidance survey
 
Asassn 15ih a_highly_super_luminous_supernova
Asassn 15ih a_highly_super_luminous_supernovaAsassn 15ih a_highly_super_luminous_supernova
Asassn 15ih a_highly_super_luminous_supernova
 
CV_Calamida
CV_CalamidaCV_Calamida
CV_Calamida
 
Cosmology Research in China
Cosmology Research in ChinaCosmology Research in China
Cosmology Research in China
 
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_starTemperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
Temperate earth sized_planets_transiting_a_nearly_ultracool_dwarf_star
 
The identification of_93_day_periodic_photometric_variability_for_yso_ylw_16a
The identification of_93_day_periodic_photometric_variability_for_yso_ylw_16aThe identification of_93_day_periodic_photometric_variability_for_yso_ylw_16a
The identification of_93_day_periodic_photometric_variability_for_yso_ylw_16a
 
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GT...
 
Kic8462852 faded at_an_average_rate_of_0165_0013_magnitudes_per_century_from_...
Kic8462852 faded at_an_average_rate_of_0165_0013_magnitudes_per_century_from_...Kic8462852 faded at_an_average_rate_of_0165_0013_magnitudes_per_century_from_...
Kic8462852 faded at_an_average_rate_of_0165_0013_magnitudes_per_century_from_...
 
Eso1221
Eso1221Eso1221
Eso1221
 
The nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_lookThe nustar extragalactic_survey_a_first_sensitive_look
The nustar extragalactic_survey_a_first_sensitive_look
 
Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766
 
N.30 milani asteroids-families-new-ideas-and-reuse-of-the-o
N.30 milani asteroids-families-new-ideas-and-reuse-of-the-oN.30 milani asteroids-families-new-ideas-and-reuse-of-the-o
N.30 milani asteroids-families-new-ideas-and-reuse-of-the-o
 
Modleing giant extrasolar_ring_systems_in_eclipse_and_the_case_j1407_sculptin...
Modleing giant extrasolar_ring_systems_in_eclipse_and_the_case_j1407_sculptin...Modleing giant extrasolar_ring_systems_in_eclipse_and_the_case_j1407_sculptin...
Modleing giant extrasolar_ring_systems_in_eclipse_and_the_case_j1407_sculptin...
 
Presentation
PresentationPresentation
Presentation
 
Small scatter and_nearly_isothermal_mass_profiles_to_four_half_light_radii_fr...
Small scatter and_nearly_isothermal_mass_profiles_to_four_half_light_radii_fr...Small scatter and_nearly_isothermal_mass_profiles_to_four_half_light_radii_fr...
Small scatter and_nearly_isothermal_mass_profiles_to_four_half_light_radii_fr...
 
The Evolution of Elliptical Galaxies in Rich Clusters
The Evolution of Elliptical Galaxies in Rich ClustersThe Evolution of Elliptical Galaxies in Rich Clusters
The Evolution of Elliptical Galaxies in Rich Clusters
 

Destaque

Systems and Chaos Theory
Systems and Chaos TheorySystems and Chaos Theory
Systems and Chaos Theory
guest2a16eb
 
Choas Theory3
Choas Theory3Choas Theory3
Choas Theory3
zmiers
 
Chaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial ImplicationsChaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial Implications
Taimur Khan
 
Choas Theory2
Choas Theory2Choas Theory2
Choas Theory2
zmiers
 
Chaos And Systems Theory
Chaos And Systems TheoryChaos And Systems Theory
Chaos And Systems Theory
futterman
 
Chaos theory the butterfly effect
Chaos theory the butterfly effectChaos theory the butterfly effect
Chaos theory the butterfly effect
Assaad Moawad
 

Destaque (18)

Chaos Theory, PowerPoints, and Cartography: From Presentations to Career Plan...
Chaos Theory, PowerPoints, and Cartography: From Presentations to Career Plan...Chaos Theory, PowerPoints, and Cartography: From Presentations to Career Plan...
Chaos Theory, PowerPoints, and Cartography: From Presentations to Career Plan...
 
Chaos in the Solar System
Chaos in the Solar SystemChaos in the Solar System
Chaos in the Solar System
 
Introduction to chaos
Introduction to chaosIntroduction to chaos
Introduction to chaos
 
Systems and Chaos Theory
Systems and Chaos TheorySystems and Chaos Theory
Systems and Chaos Theory
 
Choas Theory3
Choas Theory3Choas Theory3
Choas Theory3
 
Chaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial ImplicationsChaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial Implications
 
Chaos Theory
Chaos TheoryChaos Theory
Chaos Theory
 
Choas Theory2
Choas Theory2Choas Theory2
Choas Theory2
 
Chaos1
Chaos1Chaos1
Chaos1
 
Chaos And Systems Theory
Chaos And Systems TheoryChaos And Systems Theory
Chaos And Systems Theory
 
Chaos theory the butterfly effect
Chaos theory the butterfly effectChaos theory the butterfly effect
Chaos theory the butterfly effect
 
Chaos Theory: An Introduction
Chaos Theory: An IntroductionChaos Theory: An Introduction
Chaos Theory: An Introduction
 
Chaos theory
Chaos theoryChaos theory
Chaos theory
 
Chaos
ChaosChaos
Chaos
 
Chaos
ChaosChaos
Chaos
 
Chaos Theory
Chaos TheoryChaos Theory
Chaos Theory
 
Chaos Analysis
Chaos AnalysisChaos Analysis
Chaos Analysis
 
Theories of Social Work
Theories of Social WorkTheories of Social Work
Theories of Social Work
 

Semelhante a N4.Lemaitre - "Stability of an asteroid satellite"

Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
Dr Jim Kelly
 
A rock composition_for_earth_sized_exoplanets
A rock composition_for_earth_sized_exoplanetsA rock composition_for_earth_sized_exoplanets
A rock composition_for_earth_sized_exoplanets
Sérgio Sacani
 
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Sérgio Sacani
 
An earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densityAn earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_density
Sérgio Sacani
 
Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...
Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...
Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...
Sérgio Sacani
 
Third epoch magellanic_clouud_proper_motions
Third epoch magellanic_clouud_proper_motionsThird epoch magellanic_clouud_proper_motions
Third epoch magellanic_clouud_proper_motions
Sérgio Sacani
 
stellar struture and evolution
stellar struture and evolutionstellar struture and evolution
stellar struture and evolution
Niwamanya Rick
 

Semelhante a N4.Lemaitre - "Stability of an asteroid satellite" (20)

H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
H. Stefancic: The Accelerated Expansion of the Universe and the Cosmological ...
 
American Astronomical Society plenary talk
American Astronomical Society plenary talkAmerican Astronomical Society plenary talk
American Astronomical Society plenary talk
 
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
Gwendolyn Eadie: A New Method for Time Series Analysis in Astronomy with an A...
 
N.32 marzari changing-the-orbital-configuration-of-planets-
N.32 marzari changing-the-orbital-configuration-of-planets-N.32 marzari changing-the-orbital-configuration-of-planets-
N.32 marzari changing-the-orbital-configuration-of-planets-
 
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
 
Advanced space propulsion concepts for interstellar travel
Advanced space propulsion concepts for interstellar travelAdvanced space propulsion concepts for interstellar travel
Advanced space propulsion concepts for interstellar travel
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
 
A rock composition_for_earth_sized_exoplanets
A rock composition_for_earth_sized_exoplanetsA rock composition_for_earth_sized_exoplanets
A rock composition_for_earth_sized_exoplanets
 
Measurement of Jupiter’s asymmetric gravity field
Measurement of Jupiter’s asymmetric gravity fieldMeasurement of Jupiter’s asymmetric gravity field
Measurement of Jupiter’s asymmetric gravity field
 
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
Eccentricity from transit_photometry_small_planets_in_kepler_multi_planet_sys...
 
Huterer_UM_colloq
Huterer_UM_colloqHuterer_UM_colloq
Huterer_UM_colloq
 
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
 
An earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_densityAn earth sized_planet_with_an_earth_sized_density
An earth sized_planet_with_an_earth_sized_density
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
 
Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...
Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...
Kepler 62 a_five_planet_system_with_planets_of_1_4_and_1_6_earth_radii_in_the...
 
Third epoch magellanic_clouud_proper_motions
Third epoch magellanic_clouud_proper_motionsThird epoch magellanic_clouud_proper_motions
Third epoch magellanic_clouud_proper_motions
 
Stellar quantities 2018
Stellar quantities 2018Stellar quantities 2018
Stellar quantities 2018
 
stellar struture and evolution
stellar struture and evolutionstellar struture and evolution
stellar struture and evolution
 
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingThe mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
 
Eso1134b
Eso1134bEso1134b
Eso1134b
 

Mais de IAPS

Falling stars
Falling starsFalling stars
Falling stars
IAPS
 
a spasso tra i pianeti
a spasso tra i pianetia spasso tra i pianeti
a spasso tra i pianeti
IAPS
 
Stage2011 saraceno-pianeta-abitabile
Stage2011 saraceno-pianeta-abitabileStage2011 saraceno-pianeta-abitabile
Stage2011 saraceno-pianeta-abitabile
IAPS
 
Stage2011 piccioni-andare-nello-spazio
Stage2011 piccioni-andare-nello-spazioStage2011 piccioni-andare-nello-spazio
Stage2011 piccioni-andare-nello-spazio
IAPS
 
Stage2011 piccioni-mondo-a-colori
Stage2011 piccioni-mondo-a-coloriStage2011 piccioni-mondo-a-colori
Stage2011 piccioni-mondo-a-colori
IAPS
 
Stage2011 orosei-sistema solare
Stage2011 orosei-sistema solareStage2011 orosei-sistema solare
Stage2011 orosei-sistema solare
IAPS
 
Stage2011 dabramo-luce
Stage2011 dabramo-luceStage2011 dabramo-luce
Stage2011 dabramo-luce
IAPS
 
Stage2011 badiali-vita stelle
Stage2011 badiali-vita stelleStage2011 badiali-vita stelle
Stage2011 badiali-vita stelle
IAPS
 
Stage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianetiStage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianeti
IAPS
 
Stage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetariStage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetari
IAPS
 
Stage2011 badiali-astronomia moderna
Stage2011 badiali-astronomia modernaStage2011 badiali-astronomia moderna
Stage2011 badiali-astronomia moderna
IAPS
 
Stage2011 adriani-pianeta terra
Stage2011 adriani-pianeta terraStage2011 adriani-pianeta terra
Stage2011 adriani-pianeta terra
IAPS
 
Stage2011 iasf-astrofisica spaziale
Stage2011 iasf-astrofisica spazialeStage2011 iasf-astrofisica spaziale
Stage2011 iasf-astrofisica spaziale
IAPS
 
N.12 harigel weaponization-of-space-and-impact-on-its-peaceful-usel
N.12 harigel weaponization-of-space-and-impact-on-its-peaceful-uselN.12 harigel weaponization-of-space-and-impact-on-its-peaceful-usel
N.12 harigel weaponization-of-space-and-impact-on-its-peaceful-usel
IAPS
 

Mais de IAPS (20)

Falling stars
Falling starsFalling stars
Falling stars
 
a spasso tra i pianeti
a spasso tra i pianetia spasso tra i pianeti
a spasso tra i pianeti
 
Stage2011 saraceno-pianeta-abitabile
Stage2011 saraceno-pianeta-abitabileStage2011 saraceno-pianeta-abitabile
Stage2011 saraceno-pianeta-abitabile
 
Stage2011 piccioni-andare-nello-spazio
Stage2011 piccioni-andare-nello-spazioStage2011 piccioni-andare-nello-spazio
Stage2011 piccioni-andare-nello-spazio
 
Stage2011 piccioni-mondo-a-colori
Stage2011 piccioni-mondo-a-coloriStage2011 piccioni-mondo-a-colori
Stage2011 piccioni-mondo-a-colori
 
Stage2011 orosei-sistema solare
Stage2011 orosei-sistema solareStage2011 orosei-sistema solare
Stage2011 orosei-sistema solare
 
Stage2011 dabramo-luce
Stage2011 dabramo-luceStage2011 dabramo-luce
Stage2011 dabramo-luce
 
Stage2011 badiali-vita stelle
Stage2011 badiali-vita stelleStage2011 badiali-vita stelle
Stage2011 badiali-vita stelle
 
Stage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianetiStage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianeti
 
Stage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetariStage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetari
 
Stage2011 badiali-astronomia moderna
Stage2011 badiali-astronomia modernaStage2011 badiali-astronomia moderna
Stage2011 badiali-astronomia moderna
 
Stage2011 adriani-pianeta terra
Stage2011 adriani-pianeta terraStage2011 adriani-pianeta terra
Stage2011 adriani-pianeta terra
 
Stage2011 iasf-astrofisica spaziale
Stage2011 iasf-astrofisica spazialeStage2011 iasf-astrofisica spaziale
Stage2011 iasf-astrofisica spaziale
 
N.12 harigel weaponization-of-space-and-impact-on-its-peaceful-usel
N.12 harigel weaponization-of-space-and-impact-on-its-peaceful-uselN.12 harigel weaponization-of-space-and-impact-on-its-peaceful-usel
N.12 harigel weaponization-of-space-and-impact-on-its-peaceful-usel
 
N.36 turrini jupiter-and-the-early-collisional-evolution-of
N.36 turrini jupiter-and-the-early-collisional-evolution-ofN.36 turrini jupiter-and-the-early-collisional-evolution-of
N.36 turrini jupiter-and-the-early-collisional-evolution-of
 
N.35 perozzi resonant-encounters-with-neas
N.35 perozzi resonant-encounters-with-neasN.35 perozzi resonant-encounters-with-neas
N.35 perozzi resonant-encounters-with-neas
 
N.34 michel great-influence-of paolo-farinella-in-studies-of
N.34 michel great-influence-of paolo-farinella-in-studies-ofN.34 michel great-influence-of paolo-farinella-in-studies-of
N.34 michel great-influence-of paolo-farinella-in-studies-of
 
N.33 dvorak captured-trojans
N.33 dvorak captured-trojansN.33 dvorak captured-trojans
N.33 dvorak captured-trojans
 
N.29 claude the-asteroids-families-problem
N.29 claude the-asteroids-families-problemN.29 claude the-asteroids-families-problem
N.29 claude the-asteroids-families-problem
 
N.28 di martino-impact-and-non-impact-craters-in-eastern-sah
N.28 di martino-impact-and-non-impact-craters-in-eastern-sahN.28 di martino-impact-and-non-impact-craters-in-eastern-sah
N.28 di martino-impact-and-non-impact-craters-in-eastern-sah
 

Último

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
SoniaTolstoy
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

N4.Lemaitre - "Stability of an asteroid satellite"

  • 1. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Stability of an asteroid satellite Anne Lemaître, Audrey Compère, Nicolas Delsate Department of Mathematics FUNDP Namur 14 June 2010
  • 2. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions 1 Introduction 2 Satellites of asteroids System Ida-Dactyl Previous results 3 Stability tests Numerical simulations Classical calculation of the potential MacMillan potential Chaos indicator : MEGNO 4 Chaos Maps Gravitational resonances Frequency analysis 5 Analytical development MacMillan potential Approximated formulation 1:1 resonance Equatorial resonant orbits Polar resonant orbits 6 Conclusions
  • 3. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Motivation Previous studies : rotation of the planets and natural satellites and space debris on geostationary orbits Collaboration Grasse - CNES : stability conditions for the motion of a probe around an asteroid To test our methods on asteroid satellites (PhD - not published) Stability : numerical tests and dynamical models Several approaches of the potential of a non spherical body Trace-free tensors in elliptical harmonics Geometrical approach MacMillan potential : the only one presented here (Paolo)
  • 4. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Vocabulary Binary asteroid : system of two asteroids Two categories : 1 The two bodies have the same size : double asteroid Ex : Antiope - Dynamics intensively studied in particular by Scheeres and collaborators 2 A body is much smaller than the other one : asteroid and its satellite Ex : Ida-Dactyl
  • 5. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Natural system Ida-Dactyl Ida : main belt asteroid (Koronis family), very irregular shape and fast spin Ida Dactyl Mass (4.2 ± 0.6) × 1016 kg ∼ 4.1012 kg Diameter 59.8 × 25.4 × 18.6 km 1.6 × 1.4 × 1.2 km
  • 6. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Dactyl : Orbit data : Semimajor axis (a) : 108 km Orbital period (P) : 1.54 days Eccentricity (e) : ≥ 0.2? Other data : Mean radius : 0.7 km Principal diameters : 1.6 × 1.4 × 1.2 km Shape : less irregular then Ida Ellisoidal t (radii) : 0,8 × 0,7 × 0,6 km Mass : ∼ 4.1012 kg Surface area : 6,3 km2 Volume : 1,4 km3 Spin period : 8 hr
  • 7. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Ida-Dactyl simulations J-M Petit et al : 1998, Belton, 1996 Context : Ida mass is not known precisely. Each value of the mass corresponds to a Keplerian orbit for Dactyl To constraint the mass of Ida by Dactyl's orbit Belton,1996
  • 8. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Petit et al 1. Stability bounds on Ida mass First model Ida is represented by an ellipsoid. Gravitational potential : elliptic integrals Integrator : Bulirsch and Stoer with a precision of 10−10 Masses : between 3.65 × 1016 and 5.7 × 1016 kg Results : Orbits with M 4.93 × 1016 kg (q 63 km) are very unstable. → crash or escape after several hours or days The other orbits are stable for hundreds of years. Second model Approximation of Ida by a collection of 44 spheres of dierent sizes. ⇒ more precise bounds.
  • 9. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Resonant stable orbits The Ida-Dactyl system should be stable for long time ⇒ search for resonances between the rotation of Ida and the orbital frequency of Dactyl. Simulations results : Most probable resonances 5:1 and 9:2
  • 10. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Numerical simulations Model : a point mass orbiting an ellipsoid Parameters : shape, mass and spin of the primary, initial conditions of the satellite Purpose : search for stable or resonant systems Technique : chaos maps (MEGNO) Software : NIMASTEP (N. Delsate) written for numerical integration of an articial satellite around a telluric planet Dierences : irregular shape and fast rotation of the primary, large eccentricity of the satellite, relative importance of the perturbations
  • 11. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions First calculation of the potential Based on the spherical harmonics as for the telluric planets Small deformations of a sphere n GM ∞ Re n V (r , θ, λ) = 1+ Pnm (sin θ) (Cnm cos mλ + Snm sin mλ) r n=2 m=0 r (r , θ, λ) are the spherical coordinates Re is the equatorial radius Pnm are the Legendre's polynomials Cnm et Snm are the spherical harmonics coecients
  • 12. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Check of the integrations Paper of A. Rossi, F. Marzari and P. Farinella (1999) : Orbital evolution around irregular bodies in Earth, Planets, Space. Four approaches of the potential : Ivory's approach : direct calculation of the potential of an homogeneous triaxial ellipsoid Spherical harmonics approach (4th order) Mascons approach : the body is approximated by a set of point masses placed in a suitable place to reproduce the mass distribution Polyhedral approach : the body is approximated by a polyhedron with a great number of faces Axisymmetric ellipsoid (a = b = 10 km, c= 5 km) or triaxial ellipsoid (a=30 km, b=10 km and c = 6.66 km).
  • 13. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Tests of Rossi, Marzari and Farinella Four cases : Case 0 : Sphere (not considered here) Case 1 : Axisymmetric ellipsoid with inclined circular orbits (i = 10◦ ) at a distance of 20km - 5835 mascons - 1521 faces - Mass = 2.0831015 kg - ρ = 1g cm3 . Case 2 : Axisymmetric ellipsoid with inclined elliptic orbits (e = 0.2) Case 3 : Axisymmetric ellipsoid with distant inclined elliptic orbits at a distance of 40km
  • 14. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Comparisons First tests : Variation of the ascending node (in radians s −1 ) : Secular Theory (J2 ) polygones mascons spherical harmonics Case 1 circular inclined -7.7 10−6 -1.09 10−5 -1.11 10−5 -1.07 10−5 Case 2 elliptic inclined -8.37 10−6 -1.25 10−5 -1.33 10−5 -1.27 10−5 Case 3 elliptic, inclined and distant -7.10 10−7 -7.76 10−7 -7.92 10−7 -7.85 10−7
  • 15. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions MacMillan potential New potential : Potential for an ellipsoid : MacMillan (1958) V (x , y , z ) = 3 GM +∞ x2 y2 z2 ds Z „ « 1− − − √ √ 2 λ1 s2 s 2 − h2 s2 − k2 s 2 − h2 s 2 − k 2 where h 2 = a2 − b2 et k 2 = a2 − c 2 (a, b et c are the semi-major axes of the ellipsoid with a ≥ b ≥ c ) (x , y , z ) are the cartesian coordinates of the point λ1 is the rst ellipsoidal coordinate of the point
  • 16. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions For each (x , y , z ) : x 2 y 2 z 2 + 2 + 2 =1 Equation of degree 3 in s 2 s2 s − h2 s − k2 Roots : λ2 , λ2 et λ2 with 0 ≤ λ2 ≤ h2 ≤ λ2 ≤ k 2 ≤ λ2 . 1 2 3 3 2 1 Geometrically (x , y , z ) is the intersection between an ellipsoid with axes ( λ2 , λ2 − h2 , 1 1 λ2 − k 2 ) 1 an hyperboloid of one sheet with axes ( λ2 , 2 λ2 − h2 , 2 k2 − λ2 ) 2 an hyperboloid of two sheets with axes ( λ2 , 3 h2 − λ2 , 3 k2 − λ2 ) 3 Ellipsoidal coordinates : (λ1 , λ2 , λ3 )
  • 17. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions New tests and comparisons with Rossi et al Calculation of the force components explicitly (partial derivatives) Gauss-Legendre quadrature for the integrals Introduction in NIMASTEP New tests : Variation of the ascending node (in radians s −1 ) : Secular Theory (J2 ) polygones mascons spherical harmonics Mac Millan Case 1 -7.7 10−6 -1.09 10−5 -1.11 10−5 -1.07 10−5 -1.11 10−5 −6 −5 −5 −5 Case 2 -8.37 10 -1.25 10 -1.33 10 -1.27 10 -1.33 10−5 Case 3 -7.10 10−7 -7.76 10−7 -7.92 10−7 -7.85 10−7 -7.86 10−7
  • 18. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Orbits
  • 19. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Tests on the system Ida-Dactyl Test on eccentric Dactyl orbits : Resultats : Crash or escapes for M ≥ 5 × 1016 kg Regular orbits for M ≤ 5 × 1016 kg ⇒ same results as Petit et al. (1998)
  • 20. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Chaos indicator : MEGNO MEGNO = Mean Exponential Growth factor of Nearby Orbits (Cincotta et Simo, 2000) Dynamical system : : dt x (t ) = f (x (t )), x ∈ IR2n . d φ(t ) a solution function of time t δφ (t ) the tangent vector along φ(t ) with δ˙φ = ∂ x (φ(t ))δφ (t ). ∂f The MEGNO is : t t 2 ˙ 1 Z Z δφ · δφ Yφ (t ) = t δφ · δφ s ds and Yφ = t Yφ (s ) ds 0 0 = measure of the divergence rate between two close orbits. Periodic orbit : Yφ → 0 Quasi-periodic orbit : Yφ → 2 Chaotic orbit : Yφ is increasing with time
  • 21. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Chaos Maps We set : the mass and the rotation rate of the asteroid (ellipsoid) the initial conditions of the satellite (a=148.8km, i = 3 rad) a the largest semi-axis of the ellipsoid Variations of the primary shape (through the semi-axes b and c ). Integrator : Runge-Kutta-Fehlberg with variable step Precision : 10−12 Results of the chaos indicator MEGNO are given in the plane (b/a,c/a)
  • 22. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions M=3.895551 106 kg, rotation rate = −3.76687 × 10−4 rad/s
  • 23. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions M=3.745722 106 kg, rotation rate = −3.76687 × 10−4 rad/s
  • 24. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions M=5.693498 106 kg, rotation rate = 3.76687 × 10−4 rad/s
  • 25. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions However let us remind that the mass is constant in these graphics, some of these cases correspond to impossible values of the densities (chosen between 1 and 3 gr/cm3 ) - The mass M and the axis a are xed.
  • 26. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Evolution of the MEGNO with time After 0.1 year after 1 year after 5 years after 10 years
  • 27. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Spin v = −2.5 10−4 rad/s v = −4.0 10−4 rad/s v = −3.76687 10−4 rad/s Inuence of the spin v
  • 28. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Semi major-axis a =130 km a =170 km a =148.8 km Evolution with semi-major axis
  • 29. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Reference case M=3.895551 106 kg, initial orbit i 3 rad) rotation rate v = −3.76687 × 10−4 rad/s
  • 30. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Gravitational resonance A resonance between the rotation of the primary (P = 4, 63 hours) the orbital period of the satellite (specic to each point) Tests on a few points Q1 : b=18.6 km, c=8.9 km and Y → 2 - period of 2.50 days Q2 : b=18.9 km, c=8.9 km and Y → +∞ - period of 2.48 days Q3 : b=20.1 km, c=8.9 km and Y → 2 - period of 2.48 days Gravitational resonance 1:13
  • 31. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Frequency analysis (J. Laskar) c= 8.9 km is constant and b varies Analysis (a ∗ cos (M ), a ∗ sin(M )) :
  • 32. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Second case M=3.745722 106 kg, i 2.99), v = −3.76687 × 10−4 rad/s
  • 33. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Choosing again c = 8.9 km and b varies with time Analysis of (a ∗ cos (M ) , a ∗ sin(M ))
  • 34. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Analytical development MacMillan Potential for an ellipsoid (1958) : V (x , y , z ) = 3 GM +∞ x2 y2 z2 ds Z „ « 1− − − √ √ 2 λ1 s2 s 2 − h2 s2 − k2 s 2 − h2 s 2 − k 2 with h2 = a2 − b2 and k 2 = a2 − c 2 a, b et c are the semi- axes of the ellipsoid with a ≥ b ≥ c . Chauvineau, B., Farinella, P. and Mignard, F. (Icarus, 1993) Planar orbits about a triaxial body - Application to asteroidal satellites Scheeres, D. (Icarus, 1994) Dynamics about uniformly rotating triaxial ellipsoids : applications to asteroids
  • 35. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Expansion of the potential Expansion of MacMillan potential in powers of h/R and k /R where R 2 = x 2 + y 2 + z 2 Keplerian orbit about a rotating body (about its vertical axis) perturbed by MacMillan potential √ Delaunay's Hamiltonian momentum : L = µ¯ a µ µ 2 2 3µ 2 2 2 2 H = − 2L2 − 10R 3 (h + k ) + 10R 5 (y h + z k )
  • 36. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions 1:1 resonance, circular and equatorial The curve corresponds to an curve : k 2 − 2h 2 0
  • 37. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions 1:1 resonance model = L sin(M + 2 Simplications : z = 0 and y µ − φ) φ=v t Resonant variable : σ = M + − φ Same equilibria as Scheeres or others µ µ4 2 2 3µ4 2 (1 − cos 2σ). H =− −v L − 6 (h + k ) + h 2L2 10L 20L6 The exact 1:1 resonance : v =n: k 2 − 2h2 = 0
  • 38. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Other resonances in the equatorial cases = L sin(f + 2 z = 0 and y µ − φ) The eccentricity is used to develop f in multiples of M Extraction of the resonant angle σ σ is now conjugated to P = L − G . Introduction of the pericentre motion (second degree of freedom) responsible for the multipliers of the exact resonance Higher orders of resonances require higher powers of the eccentricity Case Ida - Dactyl : potential 5:1 or 9:2 resonance (eccentricity of Dactyl high)
  • 39. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Non-equatorial cases : polar case Map of the resonances between the rotation of Vesta and the orbital motion of a polar satellite : numerical work LAMO HAMO 14 1000 13 Paper of Tricarico and Sykes The dynamical environment of Vesta 12 900 11 800 10 submitted to Planetary and Space Science 1:2 9 Distance Range [km] Orbital Period [hour] 8 700 7 2:3 600 6 5 500 1:1 4 400 3 4:3 3:2 300 2 300 400 500 600 700 800 900 1000 Initial Radius [km] Figure 4: Distance range as a function of the initial radius of a circular orbit, computed over a period of 50 days. The central mark in each bar represents the median of the range. The rotation period used for Vesta is of 5.3421288 hours (Harris et al., 2008). Five spin-orbit resonances have been identified and marked in the plot. The 1:1 resonance affects the largest interval in initial radius, but the strongest perturbations come from the 2:3 resonance. The leftmost data point,
  • 40. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Our results Numerical integration with NIMASTEP (especially drawn for polar orbits) Resonance map : position and importance of each resonance Complete agreement with Tricarico and Sykes Discovery of smaller structures ignored by Tricarico and Sykes Analysis of each resonance to compare their width and shape
  • 41. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions
  • 42. Introduction Satellites of asteroids Stability tests Chaos Maps Analytical development Conclusions Conclusions MEGNO is very ecient for the detection of gravitational resonances Use of the frequency map for the identication of the resonances Eciency and precision of MacMillan potential for ellipsoidal bodies Explicit approximated formulation in h and k Specic i : j resonance models : strength, width, equilibria Equatorial and polar cases (Ida and Vesta) Paolo's contribution : pioneer and omnipresent in the literature about asteroid dynamics