SlideShare uma empresa Scribd logo
1 de 104
Baixar para ler offline
Lecture'2
Monte&Carlo&Methods
Dahua%Lin
The$Chinese$University$of$Hong$Kong
1
Monte&Carlo&
Methods
Monte&Carlo&methods!are!a!large!
family!of!computa0onal!
algorithms!that!rely!on!random&
sampling.!These!methods!are!
mainly!used!for
• Numerical+integra/on
• Stochas/c+op/miza/on
• Characterizing+distribu/ons
2
Expecta(ons,in,Sta(s(cal,Analysis
Compu&ng)expecta'on)is)perhaps)the)most)common)
opera&on)in)sta&s&cal)analysis.
• Compu'ng*the*normaliza)on*factor*in*posterior*
distribu'on:
3
Expecta(ons,in,Sta(s(cal,Analysis,
(cont'd)
• Compu'ng*marginaliza'on:
• Compu'ng*expecta'on*of*func'ons:
4
Compu&ng)Expecta&on
• Generally,*expecta'on*can*be*wri/en*as*
• For*discrete*space:*
• For*con7nuous*space:*
5
Law$of$Large$Numbers
• (Strong))Law)of)Large)Numbers)(LLN):#Let#
#be#i.i.d#random#variables#and# #be#a#
measurable#func6on.#Then
6
Monte&Carlo&Integra-on
• We$can$use$sample'mean$to$approximate$
expecta.on:
• How%many%samples%are%enough?
7
Variance(of(Sample(Mean
• By$the$Central(Limit(Theorem((CLT):
Here,$ $is$the$variance$of$ .
• The$variance$of$ $is$ .$The$number$of$
samples$required$to$a=ain$a$certain$variance$ $is$
at$least$ .
8
Random'Number'Genera.on
• All$sampling$methods$rely$on$a$stream$of$random'
numbers$to$construct$random$samples.
• "True"$random$numbers$are$difficult$to$obtain.$A$
more$widely$used$approach$is$to$use$computa:onal$
algorithms$to$produce$long$sequences$of$apparently'
random$numbers,$called$pseudorandom'numbers.
9
Random'Number'Genera.on'(cont'd)
• The%sequence%of%pseudorandom+numbers%is%
determined%by%a%seed.
• If%a%randomized%simula9on%is%based%on%a%single%
random+stream,%it%can%be%exactly%reproduced%by%
fixing%the%seed%ini9ally.
10
RNGs
• Linear(Congruen-al(Generator((LCG):(
.
• C(and(Java's(buil-n.
• Useful(for(simple(randomized(program.
• Not(good(enough(for(serious(Monte(Carlo(
simula-on.
11
RNGs
• Mersenne'Twister'(MT):'
• Passes'Die$hard'tests,'good'enough'for'most'
Monte'Carlo'experiments
• Provided'by'C++'11'or'Boost
• Default'RNG'for'MATLAB,'Numpy,'Julia,'and'
many'other'numerical'soLwares
• Not'amenable'to'parallel'use
12
RNGs
• Xorshi(1024:.
• Proposed.in.year.2014
• Passes.BigCrush
• Incredibly.simple.(5*+*6.lines.of.C.code)
13
Sampling)a)Discrete)Distribu2on
• Linear(search:(
• Sorted(search:(
• but(much(faster(when(prob.(mass(concentrates(
on(a(few(values
• Binary(search:( ,(
• but(each(step(is(a(bit(more(expensive
• Can(we(do(be?er?
14
Sampling)a)Discrete)Distribu2on
• Huffman(coding:(
• (preprocessing(+( (per(sample
• Alias(methods((by(A.#J.#Walker):(
• (preprocessing(+( (per(sample
15
Transform)Sampling
• Let% %be%the%cumula&ve)distribu&on)func&on)(cdf)%of%
a%distribu0on% .%Let% ,%then%
.
• Why% ?
• How%to%generate%a%exponen&ally)distributed%
sample%?
16
Sampling)from)Mul/variate)Normal
How$to$draw$a$sample$from$a$mul$variate+normal+
distribu$on$ $?
(Algorithm)
1. Perform)Cholesky)decomposi4on)to)get) )s.t.)
.
2. Generate)a)vector) )comprised)of)iid)values)from)
3. Let) .
17
Rejec%on(Sampling
• (Rejec&on)sampling)algorithm):"To"sample"from"a"
distribu2on" ,"which"has" "for"
some" :
1. Sample"
2. Accept" "with"probability" .
• Why"does"this"algorithm"yield"the"desired"
distribu2on"?
18
Rejec%on(Sampling((cont'd)
• What&are&the&acceptance&rate?
• What&are&the&problems&of&this&method?
19
Importance+Sampling
• Basic&idea:"generate"samples"from"an"easier&
distribu+on" ,"which"is"o4en"referred"to"as"the"
proposal&distribu+on,"and"then"reweight"the"
samples.
20
Importance+Sampling+(cont'd)
• Let% %be%the%target&distribu,on%and% %be%the%
proposal&distribu,on%with% ,%and%let%the%
importance&weight%be% .%Then
• We$can$approximate$ $with
21
Importance+Sampling+(cont'd)
• By$the$strong'law'of'large'numbers,$we$have$
• How%to%choose%a%good%proposal%distribu4on% ?
22
Variance(of(Importance(Sampling
• The%variance%of% %is
• The%2nd%term%does%not%depend%on% ,%while%the%1st%
term%has
23
Op#mal'Proposal
• The%lower%bound%is%a1ained%when:
• The%op#mal'proposal'distribu#on%is%generally%difficult%
to%sample%from.%
• However,%this%analysis%leads%us%to%an%insight:%we'can'
achieve'high'sampling'efficiency'by'emphasizing'
regions'where'the'value'of' 'is'high.
24
Adap%ve(Importance(Sampling
• Basic'idea'**'Learn'to'do'sampling
• choose'the'proposal'from'a'tractable'family:'
.
• Objec;ve:'minimize'the'sample'mean'of'
.'Update'the'parameter' 'as:
25
Self%Normalized.Weights
• In$many$prac+cal$cases,$ $is$
known$only$upto$a$normalizing$constant.
• For$such$case,$we$may$approximate$ $with
• Here,& &is&called&the&self%normalized.weight.
26
Self%Normalized.Weights.(cont'd)
Note:
By#strong#law#of#large#numbers,#we#have#
27
MCMC:$Mo&va&on
Simple'strategies'like'transform)sampling,'rejec1on)
sampling,'and'importance)sampling'all'rely'on'drawing'
independent)samples'from' 'or'a'proposal'distribu7on'
'over'the'sample'space.
This%can%become%very%difficult%(if%not%impossible)%for%
complex%distribu:ons.
28
MCMC:$Overview
• Markov'Chain'Monte'Carlo'(MCMC)"explores"the"
sample"space"through"an"ergodic"Markov"chain,"
whose"equilibrium"distribu;on"is"the"target"
distribu;on" .
• Many"important"samplers"belong"to"MCMC,"e.g."
Gibbs,sampling,"Metropolis4Has6ngs,algorithm,"and"
Slice,sampling.
29
Markov'Processes
• A#Markov'process#is#a#stochas+c#process#where#the#
future#depends#only#on#the#present#and#not#on#the#
past.
• A#sequence#of#random#variables# #
defined#on#a#measurable#space# #is#called#a#
(discrete01me)'Markov'process#if#it#sa+sfies#the#
Markov'property:
30
Countable*Markov*Chain
We#first#review#the#formula2on#and#proper2es#of#
Markov'chains#under#a#simple#se6ng,#where# #is#a#
countable#space.#We#will#later#extend#the#analysis#to#
more#general#spaces.
31
Homogeneous)Markov)Chains
A"homogeneous)Markov)chain"on"a"countable"space" ,"
denoted"by" "is"characterized"by"an"
ini5al"distribu5on" "and"a"transi2on)probability)matrix)
(TPM),"denoted"by" ,"such"that
• ,#and
• .
32
Stochas(c)Matrix
The$transi+on$probability$matrix$ $is$a$stochas'c(
matrix,$namely$it$is$nonnega've$and$has:$
."
33
Evolu&on(of(State(Distribu&ons
Let$ $be$the$distribu,on$of$ ,$then:
We#can#simply#write# .
34
Mul$%step*Transi$on*Probabili$es
• Consider*two*transi.on*steps:
• More&generally,& .
• Let& &be&the&distribu6on&of& ,&then&
35
Classes&of&States
• A#state# #is#said#to#be#accessible#from#state# ,#or# #
leads)to# ,#denoted#by# ,#if# #for#
some# .
• States# #and# #are#said#to#communicate#with#each#
other,#denoted#by# ,#if# #and# .
• #is#an#equivalence)rela2on#on# ,#which#
par88ons# #into#communica2ng)classes,#where#
states#within#the#same#class#communicate#with#
each#other.
36
Irreducibility
A"Markov"chain"is"said"to"be"irreducible"if"it"forms"a"
single"communica7ng"class,"or"in"other"words,"all"
states"communicate"with"any"other"states.
37
Exercise(1
• Is$this$Markov$chain$irreducible$?
• Please$iden5fy$the$communica-ng/classes.
38
Periods(of(Markov(Chains
• The%period%of%a%state% %is%defined%as
• A#state# #is#said#to#be#aperiodic#if# .
• Period#is#a#class#property:#if# ,#then#
.
39
Aperiodic)Chains
• A#Markov#chain#is#called#aperiodic,#if#all#states#are#
aperiodic.
• An#irreducible,Markov,chain#is#aperiodic,#if#there#
exists#an#aperiodic#state.
• Lazyness#breaks#periodicity:# .
40
First&Return&Time
• Suppose(the(chain(is(ini/ally(at(state( ,(the(first%
return%)me(to(state( (is(defined(to(be
Note(that( (is(a(random(variable.
• We(also(define( ,(the(probability(
that(the(chain(returns(to( (for%the%first%)me(a<er( (
steps.
41
Recurrence
A"state" "is"said"to"be"recurrent"if"it"is"guaranteed"to"
have"a"finite)hi+ng)-me,"as
Otherwise,* *is*said*to*be*transient.
42
Recurrence'(cont'd)
• "is"recurrent"iff"it"returns"to" "infinitely+o-en:
• Recurrence"is"a"class"property:"if" "and" "is"
recurrent,"then" "is"also"recurrent.
• Every"finite"communica9ng"class"is"recurrent.
• An"irreducible"finite"Markov"chain"is"recurrent.
43
Invariant(Distribu-ons
Consider)a)Markov)chain)with)TPM) )on) :
• A#distribu+on# #over# #is#called#an#invariant'
distribu,on#(or#sta,onary'distribu,on)#if# .
• Invariant'distribu,on#is#NOT#necessarily#existent#and#
unique.
• Under#certain#condi+on#(ergodicity),#there#exists#a#
unique#invariant#distribu+on# .#In#such#cases,# #is#
oAen#called#an#equilibrium'distribu,on.
44
Exercise(2
• Is$this$chain$irreducible?
• Is$this$chain$periodic?
• Please$compute$the$invariant/distribu1on.
45
Posi%ve(Recurrence
• The%expected'return'+me%of%a%state% %is%defined%to%
be% .
• When% %is%transient,% .%If% %is%recurrent,% %
is%NOT%necessarily%finite.
• A%recurrent'state% %is%called%posi+ve'recurrent%if%
.%Otherwise,%it%is%called%null'recurrent.
46
Existence)of)Invariant)Distribu3ons
For$an$irreducible$Markov$chain,$if$some$state$is$
posi,ve.recurrent,$then$all$states$are$posi,ve.recurrent$
and$the$chain$has$an$invariance.distribu,on$ $given$by$
47
Example:)1D)Random)Walk
• Under'what'condi/on'is'this'chain'recurrent?
• When'it'is'recurrent,'is'it'posi+ve-recurrent'or'null-
recurrent?
48
Ergodic(Markov(Chains
• An$irreducible,$aperiodic,$and$posi-ve/recurrent$
Markov$chain$is$called$an$ergodic/Markov/chain,$or$
simply$ergodic/chain.
• A$finite$Markov$chain$is$ergodic$if$and$only$if$it$is$
irreducible$and$aperiodic.
• A$Markov$chain$is$ergodic$if$it$is$aperiodic$and$there$
exist$ $such$that$any$state$can$be$reached$from$
any$other$state$within$ $steps$with$posi>ve$
probability.
49
Convergence)to)Equilibrium
Let$ $be$the$transi,on$probability$matrix$of$an$ergodic$
Markov$chain,$then$there$exists$a$unique$invariant,
distribu0on$ .$Then$with$any$ini,al$distribu,on,$
!
Par$cularly,* *as* *for*all*
.
50
Ergodic(Theorem
• The%ergodic(theorem%relates%,me(mean%to%space(
mean:
• Let% %be%an%ergodic(Markov(chain%over%
%with%equilibrium%distribu7on% ,%and% %be%a%
measurable%func7on%on% ,%then
51
Ergodic(Theorem((cont'd)
• More&generally,&we&have&for&any&posi4ve&integer& :
• The%ergodic(theorem%is%the%theore+cal%founda+on%
for%MCMC.
52
Total&Varia*on&Distance
• The%total%varia)on%distance%between%two%measures%
%and% %is%defined%as
• The%total%varia)on%distance%is%a%metric.%If% %is%
countable,%we%have
53
Mixing&Time
The$%me$required$by$a$Markov$chain$to$get$close$to$
the$equilibrium$distribu%on$is$measured$by$the$mixing&
'me,$defined$as$
In#par'cular# .
54
Spectral)Representa-on
• "be"a"finite"stochas'c(matrix"over" "with" .
• The"spectral(radius"of" ,"namely"the"maximum"
absolute"value"of"all"eigenvalues,"is" .
• Assume" "is"ergodic"and"reversible"with"equilibrium"
distribu=on" .
• Define"an"inner"product:"
55
Spectral)Representa-on)(cont'd)
All#eigenvalues#of# #are#real#values,#given#by#
.#Let# #be#the#right#
eigenvector#associated#with# .#Then#the#le:#
eigenvector#is# #(element'wise+product),#and# #
can#be#represented#as
56
Spectral)Gap
Let$ .$Then$the$spectral)
gap$is$defined$to$be$ $and$the$absolute)
spectral)gap$is$defined$to$be$ .$Then:
Here,% .
57
Bounds'of'Mixing'Time
The$mixing&'me$can$be$bounded$by$the$inverse$of$
absolute&spectral&gap:
Generally,)the)goal)to)design)a)rapidly(mixing)
reversible)Markov)chain)is)to)maximize)the)absolute)
spectral)gap) .
58
Ergodic(Flow
Consider)an)ergodic)Markov)chain)on)a)finite)space) )
with)transi5on)probability)matrix) )and)equilibrium)
distribu5on) :
• The%ergodic(flow%from%a%subset% %to%another%subset%
%is%defined%as
59
Conductance
The$conductance$of$a$Markov$chain$is$defined$as
60
Bounds'of'Spectral'Gap
(Jerrum'and'Sinclair'(1989))!The!spectral!gap!is!
bounded!by
61
Exercise(3
Consider)an)ergodic)finite)chain) )with) .)To)
improve)the)mixing)7me,)one)can)add)a)li:le)bit)
lazyness)as) .)
Please&solve&the&op,mal&value&of& &that&maximizes&
the&absolute)spectral)gap& .
62
Exercise(4
Consider)a) )stochas.c)matrix) ,)given)by)
)when) .
• Please'specify'the'condi2on'under'which' 'is'
ergodic.
• What'is'the'equilibrium'distribu2on'when' 'is'
ergodic?
• Solve'the'op2mal'value'of' 'that'maximizes'the'
absolute'spectral'gap.
63
General'Markov'Chains
Next,&we&extend&the&formula2on&of&Markov'chain&from&
countable'space&to&general&measurable'space.
• First,(the(Markov'property(remains.
• But,&the&transi.on&probability&matrix&makes&no&
sense&in&general.
64
General'Markov'Chains'(cont'd)
• Generally,*a*homogeneous)Markov)chain,*denoted*by*
,*over*a*measurable*space* *is*
characterized*by*
• an*ini1al)measure* ,*and*
• a*transi1on)probability)kernel* :
65
Stochas(c)Kernel
The$transi'on)probability)kernel$ $is$a$stochas'c)kernel:
• Given' ,' 'is'a'probability*
measure'over' .
• Given'a'measurable'subset' ,'
'is'a'measurable'func5on.
• When' 'is'a'countable'space,' 'reduces'to'a'
stochas1c*matrix.
66
Evolu&on(of(State(Distribu&ons
Suppose'the'distribu.on'of' 'is' ,'then
Again,'we'can'simply'write'this'as' .
67
Composi'on)of)Stochas'c)Kernels
• Composi(on*of*stochas(c*kernels* *and* *remains*
a*stochas(c*kernel,*denoted*by* ,*defined*as:
• Recursive*composi.on*of* *for* *.mes*results*in*a*
stochas.c*kernel*denoted*by* ,*and*we*have*
*and* .
68
Example:)Random)Walk)in)
Here,%the%stochas,c%kernel%is%given%by% .
69
Occupa&on)Time,)Return)Time,)and)
Hi4ng)Time
Let$ $be$a$measurable$set:
• The%occupa&on(&me:% .
• The%return(&me:% .
• The%hi/ng(&me:% .
• ,% %and% %are%all%random%variables.
70
!irreducibility
• Define&
.
• Given&a&posi/ve&measure& &over& ,&a&markov&
chain&is&called& !irreducible&if& &
whenever& &is& !posi-ve,&i.e.& .
• Intui/vely,&it&means&that&for&any& >posi/ve&set& ,&
there&is&posi/ve&chance&that&the&chain&enters& &
within&finite&/me,&no&ma?er&where&it&begins.
71
!irreducibility,(cont'd)
• A#Markov#chain#over# #is# 0irreducible#if#and#only#if#
either#of#the#following#statement#holds:
•
•
72
!irreducibility,(cont'd)
• Typical)spaces)usually)come)with)natural'measure) :
• The)natural'measure)for)countable)space)is)the)
coun-ng'measure.)In)this)case,)the)no:on)of) ;
irreducibility)coincides)with)the)one)introduced)
earlier.
• The)natural'measure)for) ,) ,)or)a)finite;
dimensional)manifold)is)the)Lebesgue'measure
73
Transience)and)Recurrence
Given&a&Markov&chain& &over& ,&and& :
• "is"called"transient"if" "for"every" .
• "is"called"uniformly.transient"if"there"exists" "
such"that" "for"every" .
• "is"called"recurrent"if" "for"every" .
74
Transience)and)Recurrence)(cont'd)
• Consider*an* ,irreducible*chain,*then*either:
• Every* ,posi9ve*subset*is*recurrent,*then*we*call*
the*chain*recurrent
• *is*covered*by*countably*many*uniformly*
transient*sets,*then*we*call*the*chain*transient.
75
Invariant(Measures
• A#measure# #is#called#an#invariant'measure#w.r.t.#the#
stochas2c#kernel# #if# ,#i.e.
• A#recurrent#Markov#chain#admits#a#unique#invariant'
measure# #(up#to#a#scale#constant).
• Note:#This#measure# #can#be#finite#or#infinite.
76
Posi%ve(Chains
• A#Markov#chain#is#called#posi%ve#if#it#is#irreducible#
and#admits#an#invariant,probability,measure# .
• The#study#of#the#existence#of# #requires#more#
sophis<cated#analysis.
• We#are#not#going#into#these#details,#as#in#MCMC#
prac<ce,#existence#of# #is#usually#not#an#issue.
77
Subsampled+Chains
Let$ $be$a$stochas+c$kernel$and$ $be$a$probability$
vector$over$ .$Then$ $defined$as$below$is$also$a$
stochas+c$kernel:
The$chain$with$kernel$ $is$called$a$subsampled*chain$
with$ .
78
Subsampled+Chains+(cont'd)
• When& ,& .
• If& &is&invariant&w.r.t.& ,&then& &is&also&invariant&w.r.t.&
.
79
Sta$onary)Process
• A#stochas*c#process# #is#called#sta$onary#if
• A#Markov#chain#is#sta$onary#if#it#has#an#invariant#
probability#measure#and#that#is#also#its#ini9al#
distribu9on.
80
Birkhoff(Ergodic(Theorem
• (Birkhoff)Ergodic)Theorem)"Every"irreducible)
sta8onary"Markov"chain" "is"ergodic,"that"is,"for"
any"real5valued"measurable"func:on" :
where" "is"the"invariant"probability"measure.
81
Markov'Chain'Monte'Carlo
(Markov(Chain(Monte(Carlo):"To"sample"from"a"target(
distribu6on" :
• We$first$construct$a$Markov$chain$with$transi'on)
probability)kernel$ $such$that$ .
• This$is$the$most$difficult$part.
82
Markov'Chain'Monte'Carlo'(cont'd)
• Then&we&simulate&the&chain,&usually&in&two&stages:
• (Burning(stage)&simulate&the&chain&and&ignore&all&
samples,&un8l&it&gets&close&to&sta.onary
• (Sampling(stage)&collect&samples& &from&
a&subsampled&chain& &or& .
• Approximate&the&expecta8on&of&the&func8on& &of&
interest&using&the&sample&mean.
83
Detailed(Balance
Most%Markov%chains%in%MCMC%prac0ce%falls%in%a%
special%family:%reversible(chains
• A#distribu+on# #over#a#countable*space#is#said#to#be#
in*detailed*balance#with# #if#
.
• Detailed(balance"implies"invariance.
• The"converse"is"not"true.
84
Reversible)Chains
An#irreducible#Markov#chain# #with#transi5on#
probability#matrix# #and#an#invariant#distribu5on# :
• This&Markov&chain&is&called&reversible&if& &is&in&
detailed+balance&with& .
• Under&this&condi7on,&it&has:
85
Reversible)Chains)on)General)Spaces
Over%a%general%measurable%space% ,%a%stochas4c%
kernel% %is%called%reversible%w.r.t.%a%probability%measure%
%if
for$any$bounded$measurable$func0on$ .
• If$ $is$reversible$w.r.t.$ ,$then$ $is$an$invariant$to$ .
86
Detailed(Balance(on(General(Spaces
Suppose'both' 'and' 'are'absolutely'con2nuous'
w.r.t.'a'base'measure' :'
Then%the%chain%is%reversible%if%and%only%if
which%is%called%the%detailed'balance.
87
Detailed(Balance(on(General(Spaces
More%generally,%if%
where% ,%then%the%chain%is%reversible%
iff
88
Metropolis*Has-ngs:1Overview
• In$MCMC$prac+ce,$the$target&distribu,on$ $is$
usually$known$up$to$an$unnormalized&density$ ,$
such$that$ ,$and$the$normalizing&
constant$ $is$o9en$intractable$to$compute.
• The$Metropolis6Has,ngs&algorithm&(M6H&algorithm)$is$
a$classical$and$popular$approach$to$MCMC$
sampling,$which$requires$only$the$unnormalized&
density$ .$
89
Metropolis*Has-ngs:1How1it1Works
1. It%is%associated%with%a%proposal'kernel% .
2. At%each%itera2on,%a%candidate%is%generated%from% %
given%the%current%state% .
3. With%a%certain%acceptance%ra2o,%which%depends%on%
both% %and% ,%the%candidate%is%accepted.
• The%acceptance%ra2o%is%determined%in%a%way%that%
maintains%detailed'balance,%so%the%resultant%chain%
is%reversible%w.r.t.% .
90
Metropolis*Algorithm
• The%Metropolis*algorithm%is%a%precursor%(and%a%
special%case)%of%the%M6H%algorithm,%which%requires%
the%designer%to%provide%a%symmetric*kernel% ,%i.e.%
,%where% %is%the%density%of% .
• Note:% %is%not%necessarily%invariant%to%
• Gaussian*random*walk%is%a%symmetric%kernel.
91
Metropolis*Algorithm*(cont'd)
• At$each$itera+on,$with$current$state$ :
1. Generate$a$candidate$ $from$
2. Accept$the$candidate$with$acceptance'ra)o$
.
• The$Metropolis'update$sa+sfies$detailed'balance.$
Why?
92
Metropolis*Has-ngs0Algorithm
• The%Metropolis*Has-ngs0algorithm%requires%a%
proposal0kernel% ,
• %is%NOT%necessarily%symmetric%and%does%NOT%
necessarily%admit% %as%an%invariant%measure.
93
Metropolis*Has-ngs0Algorithm
• At$each$itera+on,$with$current$status$ :
• Generate$a$candidate$ $from$
• Accept$the$candidate$with$acceptance'ra)o$
,$with
• The$Metropolis/Has)ngs'update$sa+sfies$detailed'
balance.$Why?
94
Gibbs%Sampling
• The%Gibbs%sampler%was%introduced%by%Geman%and%
Geman%(1984)%from%sampling%from%a%Markov%
random%field%over%images,%and%popularized%by%
Gelfand%and%Smith%(1990).
• Each%state% %is%comprised%of%mulIple%components%
.
95
Gibbs%Sampling%(cont'd)
At#each#itera*on,#following#a#permuta*on# #over#
.#For# ,#let# ,#update# #by#
re;drawing# #condi*oned#on#all#other#components:
Here$ $indicates$the$condi&onal)distribu&on$of$ $
given$all$other$components.$
96
Gibbs%Sampling%(cont'd)
• At$each$itera+on,$one$can$use$either$a$random'scan$
or$a$fixed'scan.
• Different$schedules$can$be$used$at$different$
itera+ons$to$scan$the$components.
• The$Gibbs'update$is$a$special$case$of$M4H'update,$
and$thus$sa+sfies$detailed4balance.$Why?
97
Example(1:(Gaussian(
Mixture(Model
98
Example(1:(Gibbs(Sampling
Given& ,&ini(alize& &and& .
Condi&oned(on( (and( :
99
Example(1:(Gibbs(Sampling((cont'd)
Condi&oned(on( (and( :
with
100
Example(2:(Ising(
Model
The$normalizing$constant$ $is$
usually$unknown$and$intractable$
to$compute.
101
Example(2:(Gibbs(Sampling
• Let% %denote%the%en*re% %vector%except%for%one%
entry% ,
• How%can%we%schedule%the%computa2on%so%that%
many%updates%can%be%done%in%parallel?
• Coloring
102
Mixture(of(MCMC(Kernels
Let$ $be$stochas'c(kernels$with$the$same$
invariant$probability$measure$ :
• Let% %be%a%probability%vector,%then% %
remains%a%stochas'c(kernel%with%invariant%probability%
measure% .
• Furthermore,%if% %are%all%reversible,%
then% %is%reversible.
103
Composi'on)of)MCMC)Kernels
• "is"also"a"stochas'c(kernel"with"
invariant"probability"measure" .
• Note:" "is"generally"not"reversible"even"when"
"are"all"reversible,"except"when"
.
104

Mais conteúdo relacionado

Mais procurados

Derivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 ruleDerivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 ruleHapPy SumOn
 
Applications of linear algebra
Applications of linear algebraApplications of linear algebra
Applications of linear algebraPrerak Trivedi
 
Transportation model and assignment model
Transportation model and assignment modelTransportation model and assignment model
Transportation model and assignment modelpriyanka yadav
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline InterpolationVARUN KUMAR
 
Conditional Probability
Conditional ProbabilityConditional Probability
Conditional ProbabilityArijitDhali
 
1.8. equivalence of finite automaton and regular expressions
1.8. equivalence of finite automaton and regular expressions1.8. equivalence of finite automaton and regular expressions
1.8. equivalence of finite automaton and regular expressionsSampath Kumar S
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex VariablesSolo Hermelin
 
Lecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsLecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsFrank Kienle
 
1.9. minimization of dfa
1.9. minimization of dfa1.9. minimization of dfa
1.9. minimization of dfaSampath Kumar S
 
Probability Concepts Applications
Probability Concepts  ApplicationsProbability Concepts  Applications
Probability Concepts Applicationsguest44b78
 
Resume for Computer Science Faculty
Resume for Computer Science FacultyResume for Computer Science Faculty
Resume for Computer Science Facultyyogesh gupta
 
Binomial probability distributions ppt
Binomial probability distributions pptBinomial probability distributions ppt
Binomial probability distributions pptTayab Ali
 
Floyd Warshall algorithm easy way to compute - Malinga
Floyd Warshall algorithm easy way to compute - MalingaFloyd Warshall algorithm easy way to compute - Malinga
Floyd Warshall algorithm easy way to compute - MalingaMalinga Perera
 
Auto Correlation Presentation
Auto Correlation PresentationAuto Correlation Presentation
Auto Correlation PresentationIrfan Hussain
 
Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...
Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...
Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...IJLT EMAS
 

Mais procurados (20)

Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Derivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 ruleDerivation of Simpson's 1/3 rule
Derivation of Simpson's 1/3 rule
 
Applications of linear algebra
Applications of linear algebraApplications of linear algebra
Applications of linear algebra
 
Transportation model and assignment model
Transportation model and assignment modelTransportation model and assignment model
Transportation model and assignment model
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
Conditional Probability
Conditional ProbabilityConditional Probability
Conditional Probability
 
1.8. equivalence of finite automaton and regular expressions
1.8. equivalence of finite automaton and regular expressions1.8. equivalence of finite automaton and regular expressions
1.8. equivalence of finite automaton and regular expressions
 
Discrete probability distributions
Discrete probability distributionsDiscrete probability distributions
Discrete probability distributions
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Lecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsLecture: Monte Carlo Methods
Lecture: Monte Carlo Methods
 
1.9. minimization of dfa
1.9. minimization of dfa1.9. minimization of dfa
1.9. minimization of dfa
 
Probability Concepts Applications
Probability Concepts  ApplicationsProbability Concepts  Applications
Probability Concepts Applications
 
Resume for Computer Science Faculty
Resume for Computer Science FacultyResume for Computer Science Faculty
Resume for Computer Science Faculty
 
Interpolation Methods
Interpolation MethodsInterpolation Methods
Interpolation Methods
 
Basic concepts of probability
Basic concepts of probability Basic concepts of probability
Basic concepts of probability
 
Binomial probability distributions ppt
Binomial probability distributions pptBinomial probability distributions ppt
Binomial probability distributions ppt
 
Chi square distribution
Chi square distribution Chi square distribution
Chi square distribution
 
Floyd Warshall algorithm easy way to compute - Malinga
Floyd Warshall algorithm easy way to compute - MalingaFloyd Warshall algorithm easy way to compute - Malinga
Floyd Warshall algorithm easy way to compute - Malinga
 
Auto Correlation Presentation
Auto Correlation PresentationAuto Correlation Presentation
Auto Correlation Presentation
 
Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...
Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...
Optimum Solution of Quadratic Programming Problem: By Wolfe’s Modified Simple...
 

Destaque

MLPI Lecture 1: Maths for Machine Learning
MLPI Lecture 1: Maths for Machine LearningMLPI Lecture 1: Maths for Machine Learning
MLPI Lecture 1: Maths for Machine LearningDahua Lin
 
MLPI Lecture 0: Overview
MLPI Lecture 0: OverviewMLPI Lecture 0: Overview
MLPI Lecture 0: OverviewDahua Lin
 
Lecture 5: Variational Estimation and Inference
Lecture 5: Variational Estimation and InferenceLecture 5: Variational Estimation and Inference
Lecture 5: Variational Estimation and InferenceDahua Lin
 
MLPI Lecture 4: Graphical Model and Exponential Family
MLPI Lecture 4: Graphical Model and Exponential FamilyMLPI Lecture 4: Graphical Model and Exponential Family
MLPI Lecture 4: Graphical Model and Exponential FamilyDahua Lin
 
MLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling TechniquesMLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling TechniquesDahua Lin
 
European pricing with monte carlo simulation
European pricing with monte carlo simulationEuropean pricing with monte carlo simulation
European pricing with monte carlo simulationGiovanni Della Lunga
 

Destaque (8)

Variance reduction techniques (vrt)
Variance reduction techniques (vrt)Variance reduction techniques (vrt)
Variance reduction techniques (vrt)
 
MLPI Lecture 1: Maths for Machine Learning
MLPI Lecture 1: Maths for Machine LearningMLPI Lecture 1: Maths for Machine Learning
MLPI Lecture 1: Maths for Machine Learning
 
MLPI Lecture 0: Overview
MLPI Lecture 0: OverviewMLPI Lecture 0: Overview
MLPI Lecture 0: Overview
 
Lecture 5: Variational Estimation and Inference
Lecture 5: Variational Estimation and InferenceLecture 5: Variational Estimation and Inference
Lecture 5: Variational Estimation and Inference
 
MLPI Lecture 4: Graphical Model and Exponential Family
MLPI Lecture 4: Graphical Model and Exponential FamilyMLPI Lecture 4: Graphical Model and Exponential Family
MLPI Lecture 4: Graphical Model and Exponential Family
 
MLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling TechniquesMLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling Techniques
 
Lecture set 6
Lecture set 6Lecture set 6
Lecture set 6
 
European pricing with monte carlo simulation
European pricing with monte carlo simulationEuropean pricing with monte carlo simulation
European pricing with monte carlo simulation
 

Semelhante a MLPI Lecture 2: Monte Carlo Methods (Basics)

ARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.pptARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.pptREFOTDEBuea
 
Graph Models for Deep Learning
Graph Models for Deep LearningGraph Models for Deep Learning
Graph Models for Deep LearningExperfy
 
Data analysis patterns, tools and data types in genomics
Data analysis patterns, tools and data types in genomicsData analysis patterns, tools and data types in genomics
Data analysis patterns, tools and data types in genomicsAltuna Akalin
 
Outlier analysis for Temporal Datasets
Outlier analysis for Temporal DatasetsOutlier analysis for Temporal Datasets
Outlier analysis for Temporal DatasetsQuantUniversity
 
Performance OR Capacity #CMGimPACt2016
Performance OR Capacity #CMGimPACt2016 Performance OR Capacity #CMGimPACt2016
Performance OR Capacity #CMGimPACt2016 Alex Gilgur
 
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...Vahid Taslimitehrani
 
DataONE Education Module 09: Analysis and Workflows
DataONE Education Module 09: Analysis and WorkflowsDataONE Education Module 09: Analysis and Workflows
DataONE Education Module 09: Analysis and WorkflowsDataONE
 
Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"Julius Hietala
 
03-Data-Exploration.pptx
03-Data-Exploration.pptx03-Data-Exploration.pptx
03-Data-Exploration.pptxShree Shree
 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptxShree Shree
 
Esoteric Data structures
Esoteric Data structures Esoteric Data structures
Esoteric Data structures Mugisha Moses
 
2013 py con awesome big data algorithms
2013 py con awesome big data algorithms2013 py con awesome big data algorithms
2013 py con awesome big data algorithmsc.titus.brown
 

Semelhante a MLPI Lecture 2: Monte Carlo Methods (Basics) (20)

07 Data-Exploration.pdf
07 Data-Exploration.pdf07 Data-Exploration.pdf
07 Data-Exploration.pdf
 
ARIMA Model.ppt
ARIMA Model.pptARIMA Model.ppt
ARIMA Model.ppt
 
ARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.pptARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.ppt
 
ARIMA Model.ppt
ARIMA Model.pptARIMA Model.ppt
ARIMA Model.ppt
 
Graph Models for Deep Learning
Graph Models for Deep LearningGraph Models for Deep Learning
Graph Models for Deep Learning
 
Data analysis patterns, tools and data types in genomics
Data analysis patterns, tools and data types in genomicsData analysis patterns, tools and data types in genomics
Data analysis patterns, tools and data types in genomics
 
Data wrangling week 10
Data wrangling week 10Data wrangling week 10
Data wrangling week 10
 
Outlier analysis for Temporal Datasets
Outlier analysis for Temporal DatasetsOutlier analysis for Temporal Datasets
Outlier analysis for Temporal Datasets
 
TQM UNIT 3.ppt
TQM UNIT 3.pptTQM UNIT 3.ppt
TQM UNIT 3.ppt
 
Natural Language Processing using Java
Natural Language Processing using JavaNatural Language Processing using Java
Natural Language Processing using Java
 
Performance OR Capacity #CMGimPACt2016
Performance OR Capacity #CMGimPACt2016 Performance OR Capacity #CMGimPACt2016
Performance OR Capacity #CMGimPACt2016
 
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
A new CPXR Based Logistic Regression Method and Clinical Prognostic Modeling ...
 
DataONE Education Module 09: Analysis and Workflows
DataONE Education Module 09: Analysis and WorkflowsDataONE Education Module 09: Analysis and Workflows
DataONE Education Module 09: Analysis and Workflows
 
Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"Slides for "Do Deep Generative Models Know What They Don't know?"
Slides for "Do Deep Generative Models Know What They Don't know?"
 
7 QC - NEW.ppt
7 QC - NEW.ppt7 QC - NEW.ppt
7 QC - NEW.ppt
 
03-Data-Exploration.pptx
03-Data-Exploration.pptx03-Data-Exploration.pptx
03-Data-Exploration.pptx
 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx
 
Quality tools.pptx
Quality tools.pptxQuality tools.pptx
Quality tools.pptx
 
Esoteric Data structures
Esoteric Data structures Esoteric Data structures
Esoteric Data structures
 
2013 py con awesome big data algorithms
2013 py con awesome big data algorithms2013 py con awesome big data algorithms
2013 py con awesome big data algorithms
 

Último

Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)itwameryclare
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxSimeonChristian
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 

Último (20)

Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 

MLPI Lecture 2: Monte Carlo Methods (Basics)