SlideShare uma empresa Scribd logo
1 de 38
Baixar para ler offline
න 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠
Métodos y Técnicas
de integración
G. Edgar Mata Ortiz
C1
Contenido
Introducción
Las técnicas de
integración permiten
resolver problemas
que no pueden ser
abordados mediante
las fórmulas directas.
Caso 1
La integración por
fracciones parciales
presenta varios casos
(generalmente se
consideran 4), en este
documento se aborda
el que es identificado
como caso 1, que
contiene sólo factores
lineales distintos.
Ejemplo 1
La mejor forma de
aprender
matemáticas es
mediante la práctica,
por ello, se presenta
un ejemplo resuelto,
paso a paso, que
puede servir como
guía para resolver
otros ejercicios
Las técnicas de
integración
Son un conjunto de
artificios matemáticos que
se aplican cuando no es
posible realizar una
integración directamente,
ya sea porque al
diferencial le faltan
variables o le sobran.
Integración por
fracciones parciales
Es una de las técnicas de
integración que más
procesamiento algebraico
requiere, a continuación,
se explica el algoritmo
mediante un ejemplo.
Como en los ejemplos anteriores, no existe
ninguna fórmula que pueda aplicarse,
directamente, a esta integración.
Ejemplo:
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 =
Ejemplo:
𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏)
El primer paso consiste en factorizar el denominador.
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
= 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo:
Las fracciones parciales son:
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Los numeradores de estas fracciones no los
conocemos, será necesario determinarlos.
Ejemplo:
Para determinar los valores de los numeradores de las
fracciones parciales, se utiliza el hecho de que la fracción
original debe ser igual a las fracciones parciales
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Ejemplo:
El primer paso consiste en obtener el común denominador,
multiplicando los denominadores de las tres fracciones:
Equis, por equis más uno, por equis menos uno.
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
1. Primer paso
Ejemplo:
Se divide el común denominador, entre el denominador de
cada fracción, y el resultado se multiplica por el numerador;
en este caso, se divide el común denominador entre equis,
y el resultado (equis más uno por equis menos uno), se
multiplica por “A”.
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝑨(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
2. Paso número dos;
Obtener el numerador
de la fracción
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙
= (𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙(𝒙 − 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
2. Se divide el común
denominador entre el
denominador de cada
fracción, y el resultado
se multiplica por el
numerador
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙 + 𝟏
= 𝒙(𝒙 − 𝟏)
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
2. Se divide el común
denominador entre el
denominador de cada
fracción, y el resultado
se multiplica por el
numerador
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙 − 𝟏
= 𝒙(𝒙 + 𝟏)
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Efectuamos la suma indicada en el lado derecho del signo de igual
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 𝟐
− 𝟏 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Vamos a tomar
esta expresión
para obtener
los valores de A,
B y C
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos
pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan.
−𝟑𝒙 − 𝟏 =
(𝒙 𝟑
− 𝒙)(𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos
pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan.
−𝟑𝒙 − 𝟏 =
(𝒙 𝟑
− 𝒙)(𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
Ejemplo: Se agrupan términos semejantes
Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los
términos independientes.
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
−𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
Ejemplo: Se agrupan términos semejantes
Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los
términos independientes.
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
−𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
Con la finalidad de igualar término por término, en este paso se considera que la
expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis
cuadrada.
𝟎𝒙 𝟐
− 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
Ejemplo: Se igualan los coeficientes
Los coeficientes de equis cuadrada:
𝟎𝒙 𝟐
− 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
𝑨 + 𝑩 + 𝑪 = 𝟎
Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑
Los términos independientes: −𝑨 = −𝟏
Se obtiene un sistema de tres ecuaciones con tres incógnitas.
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: El sistema de ecuaciones obtenido puede resolverse
por cualquiera de los numerosos métodos existentes.
𝑨 + 𝑩 + 𝑪 = 𝟎
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏
Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en:
https://proc-industriales.blogspot.com/2020/10/cramer-method-2020.html
https://licmata-math.blogspot.com/2019/12/gauss-method-explanation.html
https://licmata-math.blogspot.com/2020/10/sistemas-de-2-ecuaciones-lineales-con.html
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏 ∴ 𝑨 = 𝟏
En este caso el sistema de ecuaciones puede simplificarse gracias a que la
tercera ecuación nos proporciona directamente el valor de una de las
incógnitas: A.
El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un
sistema de dos ecuaciones con dos incógnitas.
Sistema de dos ecuaciones
con dos incógnitas
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
Los métodos empleados en la resolución de sistemas 3x3
también pueden emplearse en sistemas de 2x2, sin embargo,
frecuentemente resulta más sencillo emplear otros métodos:
Método de Reducción
Método de Sustitución
Método de Igualación
Método Gráfico
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
En este ejemplo, debido a los coeficientes de las ecuaciones es
conveniente aplicar el:
Método de Reducción o de suma y resta
Se elige este método porque al sumar las dos ecuaciones, se
eliminará la incógnita B, obteniéndose una sencilla ecuación de
primer grado con una incógnita (C), de la que se despeja y
obtiene el valor de C.
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
Método de Reducción o de suma y resta
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
𝟐𝑪 = −𝟒
𝑪 =
−𝟒
𝟐
∴
Obtenemos el
valor de la
incógnita C
𝑪 = −𝟐
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
Método de Reducción o de suma y resta
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
𝟐𝑪 = −𝟒
𝑪 =
−𝟒
𝟐
∴
𝑪 = −𝟐
El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones
que conforman el sistema de 2x2 y se despeja la incógnita faltante (B).
𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐
𝑩 = 𝟏
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: No olvidemos que todo este proceso fue realizado
para determinar los valores de las tres incógnitas que
conforman el sistema original.
𝑨 + 𝑩 + 𝑪 = 𝟎
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏
Las soluciones fueron:
𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: Significado de las soluciones del sistema de 3x3
Las soluciones fueron:
𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
Estas soluciones son los
numeradores de las
fracciones parciales
planteadas para
descomponer la fracción
propia que se desea
integrar
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 =
Ejemplo: Ahora conocemos los numeradores de las fracciones parciales.
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
Ejemplo: En lugar de integrar la fracción original, se integrarán sus
fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
Ejemplo: En lugar de integrar la fracción original, se integrarán sus
fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: En lugar de integrar la fracción original,
se integrarán sus fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: En lugar de integrar la fracción original,
se integrarán sus fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪
= ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝑪
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪
= ln 𝑥 𝑥 + 1 𝑥 − 1 −2
𝑪
= ln 𝑪
𝑥 𝑥 + 1
𝑥 − 1 2
Solución del problema:
El objetivo de las fracciones parciales es expresar una fracción propia que
no puede integrarse directamente, en sus fracciones parciales que sí
pueden integrase con alguna de las fórmulas básicas de integración.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = ln 𝐶
𝑥 𝑥 + 1
𝑥 − 1 2
Integ by part frac01

Mais conteúdo relacionado

Mais procurados

Teoría de un método Iterativo
Teoría de un método IterativoTeoría de un método Iterativo
Teoría de un método Iterativo
Erik Orozco Valles
 

Mais procurados (19)

Coeficientes multinomiales y generalizacion del triangulo de Pascal
Coeficientes multinomiales y generalizacion del triangulo de PascalCoeficientes multinomiales y generalizacion del triangulo de Pascal
Coeficientes multinomiales y generalizacion del triangulo de Pascal
 
Combinatoria
CombinatoriaCombinatoria
Combinatoria
 
Mi 02 integration by parts
Mi 02   integration by partsMi 02   integration by parts
Mi 02 integration by parts
 
Mi 02 integration by parts 01
Mi 02   integration by parts 01Mi 02   integration by parts 01
Mi 02 integration by parts 01
 
Distribucion espacial de coeficientes de un polinomio elevado a la m :Resumen
Distribucion espacial de coeficientes de un polinomio elevado a la m :ResumenDistribucion espacial de coeficientes de un polinomio elevado a la m :Resumen
Distribucion espacial de coeficientes de un polinomio elevado a la m :Resumen
 
Geometría analítica plana
Geometría analítica planaGeometría analítica plana
Geometría analítica plana
 
Numeros complejos
Numeros complejosNumeros complejos
Numeros complejos
 
Método de cuadratura gausseana 1
Método de cuadratura gausseana 1Método de cuadratura gausseana 1
Método de cuadratura gausseana 1
 
INTEGRALES MATEMATICA II Miguel Garrido
INTEGRALES MATEMATICA II Miguel GarridoINTEGRALES MATEMATICA II Miguel Garrido
INTEGRALES MATEMATICA II Miguel Garrido
 
Matrices
MatricesMatrices
Matrices
 
Programacion numerica 1
Programacion numerica 1Programacion numerica 1
Programacion numerica 1
 
Ejercicios de fenomenos de transporte bird
Ejercicios de fenomenos de transporte birdEjercicios de fenomenos de transporte bird
Ejercicios de fenomenos de transporte bird
 
Academia sabatina jóvenes talentos
Academia sabatina jóvenes talentosAcademia sabatina jóvenes talentos
Academia sabatina jóvenes talentos
 
Ecuaciones lineales
Ecuaciones linealesEcuaciones lineales
Ecuaciones lineales
 
formulario matematicas
formulario matematicasformulario matematicas
formulario matematicas
 
Teoría de un método Iterativo
Teoría de un método IterativoTeoría de un método Iterativo
Teoría de un método Iterativo
 
Matlab
MatlabMatlab
Matlab
 
Algebralineal.docx
Algebralineal.docxAlgebralineal.docx
Algebralineal.docx
 
MONOGRAFIA Integrales Racionales
MONOGRAFIA Integrales RacionalesMONOGRAFIA Integrales Racionales
MONOGRAFIA Integrales Racionales
 

Semelhante a Integ by part frac01

1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf
MarquitosQuiroga
 
Determinantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdf
Determinantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdfDeterminantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdf
Determinantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdf
MarielaVVergara
 
Matrices 2°parte
Matrices 2°parteMatrices 2°parte
Matrices 2°parte
Daniel
 

Semelhante a Integ by part frac01 (20)

Mi 03 integration by partial fractions
Mi 03   integration by partial fractionsMi 03   integration by partial fractions
Mi 03 integration by partial fractions
 
Mi 03 integración por fracciones parciales
Mi 03   integración por fracciones parcialesMi 03   integración por fracciones parciales
Mi 03 integración por fracciones parciales
 
Matematica daniel parra
Matematica daniel parraMatematica daniel parra
Matematica daniel parra
 
Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)
 
Apuntes ecuaciones exponenciales
Apuntes ecuaciones exponencialesApuntes ecuaciones exponenciales
Apuntes ecuaciones exponenciales
 
1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf
 
Academia sabatina jóvenes talentos
Academia sabatina jóvenes talentosAcademia sabatina jóvenes talentos
Academia sabatina jóvenes talentos
 
Resumen psu matemática 2016
Resumen psu matemática 2016Resumen psu matemática 2016
Resumen psu matemática 2016
 
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptxSISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
 
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptxDIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
 
Derivadas y su interpretacion
Derivadas y su interpretacionDerivadas y su interpretacion
Derivadas y su interpretacion
 
Sistema de ecuaciones
Sistema de ecuacionesSistema de ecuaciones
Sistema de ecuaciones
 
Álgebra Lineal
Álgebra LinealÁlgebra Lineal
Álgebra Lineal
 
Determinantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdf
Determinantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdfDeterminantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdf
Determinantes - Apunte Lorena_cbfee726d8ed4a6e496e1f34d001fec7.pdf
 
Ecuaciones diferenciales aplicadas a la cinetica quimica
Ecuaciones diferenciales aplicadas a  la cinetica quimicaEcuaciones diferenciales aplicadas a  la cinetica quimica
Ecuaciones diferenciales aplicadas a la cinetica quimica
 
Integrales ciclicas
Integrales ciclicasIntegrales ciclicas
Integrales ciclicas
 
Matrices 2°parte
Matrices 2°parteMatrices 2°parte
Matrices 2°parte
 
Examen unidad iii
Examen unidad iiiExamen unidad iii
Examen unidad iii
 
NÚMEROS COMPLEJOS.pptx
NÚMEROS COMPLEJOS.pptxNÚMEROS COMPLEJOS.pptx
NÚMEROS COMPLEJOS.pptx
 
100411 300
100411 300100411 300
100411 300
 

Mais de Edgar Mata

Mais de Edgar Mata (20)

Activity 12 c numb
Activity 12 c numbActivity 12 c numb
Activity 12 c numb
 
Pw roo complex numbers 2021
Pw roo complex numbers 2021Pw roo complex numbers 2021
Pw roo complex numbers 2021
 
Ar complex num 2021
Ar complex num 2021Ar complex num 2021
Ar complex num 2021
 
Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01
 
Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021
 
Problem identification 2021
Problem identification 2021Problem identification 2021
Problem identification 2021
 
Formato 1 1-limits ea2021
Formato 1 1-limits ea2021Formato 1 1-limits ea2021
Formato 1 1-limits ea2021
 
Activity 1 1 real numbers
Activity 1 1 real numbersActivity 1 1 real numbers
Activity 1 1 real numbers
 
Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021
 
Course presentation differential calculus ea2021
Course presentation differential calculus ea2021Course presentation differential calculus ea2021
Course presentation differential calculus ea2021
 
Course presentation linear algebra ea2021
Course presentation linear algebra ea2021Course presentation linear algebra ea2021
Course presentation linear algebra ea2021
 
Formato cramer 3x3
Formato cramer 3x3Formato cramer 3x3
Formato cramer 3x3
 
Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020
 
Exercise 4 1 - vector algebra
Exercise 4 1 - vector algebraExercise 4 1 - vector algebra
Exercise 4 1 - vector algebra
 
Exercise 3 2 - cubic function
Exercise 3 2 - cubic functionExercise 3 2 - cubic function
Exercise 3 2 - cubic function
 
Problemas cramer 3x3 nl
Problemas cramer 3x3 nlProblemas cramer 3x3 nl
Problemas cramer 3x3 nl
 
Cramer method in excel
Cramer method in excelCramer method in excel
Cramer method in excel
 
Cramer method sd2020
Cramer method sd2020Cramer method sd2020
Cramer method sd2020
 
Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020
 
Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020
 

Último

INFORME de pregrado ingenieria de vias.pdf
INFORME de pregrado ingenieria de vias.pdfINFORME de pregrado ingenieria de vias.pdf
INFORME de pregrado ingenieria de vias.pdf
octaviosalazar18
 
Tipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplosTipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplos
andersonsubero28
 
sistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gstsistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gst
DavidRojas870673
 

Último (20)

INFORME de pregrado ingenieria de vias.pdf
INFORME de pregrado ingenieria de vias.pdfINFORME de pregrado ingenieria de vias.pdf
INFORME de pregrado ingenieria de vias.pdf
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operaciones
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxEFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
 
PostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCDPostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCD
 
Tipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplosTipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplos
 
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
 
sistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gstsistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gst
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.ppt
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
 
SESION 02-DENSIDAD DE POBLACION Y DEMANDA DE AGUA (19-03-2024).pdf
SESION 02-DENSIDAD DE POBLACION Y DEMANDA DE AGUA (19-03-2024).pdfSESION 02-DENSIDAD DE POBLACION Y DEMANDA DE AGUA (19-03-2024).pdf
SESION 02-DENSIDAD DE POBLACION Y DEMANDA DE AGUA (19-03-2024).pdf
 
27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt
 
27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt
 
2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf
2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf
2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf
 

Integ by part frac01

  • 2. Contenido Introducción Las técnicas de integración permiten resolver problemas que no pueden ser abordados mediante las fórmulas directas. Caso 1 La integración por fracciones parciales presenta varios casos (generalmente se consideran 4), en este documento se aborda el que es identificado como caso 1, que contiene sólo factores lineales distintos. Ejemplo 1 La mejor forma de aprender matemáticas es mediante la práctica, por ello, se presenta un ejemplo resuelto, paso a paso, que puede servir como guía para resolver otros ejercicios
  • 3. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  • 4. Integración por fracciones parciales Es una de las técnicas de integración que más procesamiento algebraico requiere, a continuación, se explica el algoritmo mediante un ejemplo.
  • 5. Como en los ejemplos anteriores, no existe ninguna fórmula que pueda aplicarse, directamente, a esta integración. Ejemplo: න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  • 6. Ejemplo: 𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏) El primer paso consiste en factorizar el denominador. න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = = 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 7. Ejemplo: Las fracciones parciales son: න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Los numeradores de estas fracciones no los conocemos, será necesario determinarlos.
  • 8. Ejemplo: Para determinar los valores de los numeradores de las fracciones parciales, se utiliza el hecho de que la fracción original debe ser igual a las fracciones parciales න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏)
  • 9. Ejemplo: El primer paso consiste en obtener el común denominador, multiplicando los denominadores de las tres fracciones: Equis, por equis más uno, por equis menos uno. 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 1. Primer paso
  • 10. Ejemplo: Se divide el común denominador, entre el denominador de cada fracción, y el resultado se multiplica por el numerador; en este caso, se divide el común denominador entre equis, y el resultado (equis más uno por equis menos uno), se multiplica por “A”. 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝑨(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 2. Paso número dos; Obtener el numerador de la fracción 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙 = (𝒙 + 𝟏)(𝒙 − 𝟏)
  • 11. Ejemplo: La fracción original debe ser igual a las fracciones parciales 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙(𝒙 − 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 2. Se divide el común denominador entre el denominador de cada fracción, y el resultado se multiplica por el numerador 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙 + 𝟏 = 𝒙(𝒙 − 𝟏)
  • 12. Ejemplo: La fracción original debe ser igual a las fracciones parciales 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 2. Se divide el común denominador entre el denominador de cada fracción, y el resultado se multiplica por el numerador 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙 − 𝟏 = 𝒙(𝒙 + 𝟏)
  • 13. Ejemplo: La fracción original debe ser igual a las fracciones parciales න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Efectuamos la suma indicada en el lado derecho del signo de igual −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 14. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 15. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Vamos a tomar esta expresión para obtener los valores de A, B y C
  • 16. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 17. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
  • 18. Ejemplo: Se agrupan términos semejantes Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los términos independientes. −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 −𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
  • 19. Ejemplo: Se agrupan términos semejantes Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los términos independientes. −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 −𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 Con la finalidad de igualar término por término, en este paso se considera que la expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis cuadrada. 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
  • 20. Ejemplo: Se igualan los coeficientes Los coeficientes de equis cuadrada: 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 𝑨 + 𝑩 + 𝑪 = 𝟎 Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑 Los términos independientes: −𝑨 = −𝟏 Se obtiene un sistema de tres ecuaciones con tres incógnitas.
  • 21. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: El sistema de ecuaciones obtenido puede resolverse por cualquiera de los numerosos métodos existentes. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en: https://proc-industriales.blogspot.com/2020/10/cramer-method-2020.html https://licmata-math.blogspot.com/2019/12/gauss-method-explanation.html https://licmata-math.blogspot.com/2020/10/sistemas-de-2-ecuaciones-lineales-con.html
  • 22. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴ 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 ∴ 𝑨 = 𝟏 En este caso el sistema de ecuaciones puede simplificarse gracias a que la tercera ecuación nos proporciona directamente el valor de una de las incógnitas: A. El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un sistema de dos ecuaciones con dos incógnitas. Sistema de dos ecuaciones con dos incógnitas
  • 23. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Los métodos empleados en la resolución de sistemas 3x3 también pueden emplearse en sistemas de 2x2, sin embargo, frecuentemente resulta más sencillo emplear otros métodos: Método de Reducción Método de Sustitución Método de Igualación Método Gráfico
  • 24. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas En este ejemplo, debido a los coeficientes de las ecuaciones es conveniente aplicar el: Método de Reducción o de suma y resta Se elige este método porque al sumar las dos ecuaciones, se eliminará la incógnita B, obteniéndose una sencilla ecuación de primer grado con una incógnita (C), de la que se despeja y obtiene el valor de C.
  • 25. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ Obtenemos el valor de la incógnita C 𝑪 = −𝟐
  • 26. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ 𝑪 = −𝟐 El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones que conforman el sistema de 2x2 y se despeja la incógnita faltante (B). 𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐 𝑩 = 𝟏
  • 27. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: No olvidemos que todo este proceso fue realizado para determinar los valores de las tres incógnitas que conforman el sistema original. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
  • 28. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: Significado de las soluciones del sistema de 3x3 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏 Estas soluciones son los numeradores de las fracciones parciales planteadas para descomponer la fracción propia que se desea integrar න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  • 29. Ejemplo: Ahora conocemos los numeradores de las fracciones parciales. −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏
  • 30. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥
  • 31. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 32. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 33. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
  • 34. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 35. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪 = ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝑪 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 36. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪 = ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝑪 = ln 𝑪 𝑥 𝑥 + 1 𝑥 − 1 2
  • 37. Solución del problema: El objetivo de las fracciones parciales es expresar una fracción propia que no puede integrarse directamente, en sus fracciones parciales que sí pueden integrase con alguna de las fórmulas básicas de integración. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = ln 𝐶 𝑥 𝑥 + 1 𝑥 − 1 2