SlideShare uma empresa Scribd logo
1 de 53
Baixar para ler offline
Section	4.4
                              Curve	Sketching	I

                                 V63.0121, Calculus	I



                                   March	30, 2009


        Announcements
                Quiz	4	this	week	(Sections	2.5–3.5)
                Office	hours	this	week: M 1–2, T 1–2, W 2–3, R 9–10

        .
.
Image	credit: Fast	Eddie	42
                                                        .   .   .   .   .   .
Office	Hours	and	other	help
In	addition	to	recitation




           Day          Time      Who/What          Where	in	WWH
            M        1:00–2:00    Leingang	OH         718/618
                     3:30–4:30    Katarina	OH            707
                     5:00–7:00    Curto	PS               517
            T        1:00–2:00    Leingang	OH         718/618
                     4:00–5:50    Curto	PS               317
            W        1:00–2:00    Katarina	OH            707
                     2:00–3:00    Leingang	OH         718/618
            R      9:00–10:00am   Leingang	OH         718/618
                   5:00–7:00pm    Maria	OH               807
             F       2:00–4:00    Curto	OH              1310



                                                .     .   .   .    .   .
CIMS/NYU professor	wins	Abel	Prize



     Mikhail	Gromov, born
     1943	in	Russia
     contributions	to
     geometry	and	topology
     discovered	the
     pseudoholomorphic
     curve
     Abel	Prize	is	the	highest
     in	mathematics




                                 .   .   .   .   .   .
On	the	problems	assigned	from	Section	2.8
Announcements	were	made	in	class	but	not	online




         Resubmit	your	Problem	Set	6	on	Wednesday, April	1	with
         Problem	Set 8
         We	will	pick	two	additional	problems	to	grade	from	Problem
         Set 8
         If	the	scores	on	the	makeup	problems	from	PS 8	exceed	the
         scores	of	the	Section	2.8	problems	from	PS 6, the	makeup
         scores	will	be	substituted.
         This	also	takes	care	of	the	problematic	problem	2.8.28.
    This	offer	is	only	good	this	week.




                                                  .   .   .   .    .   .
Outline




  The	Procedure



  The	examples
     A cubic	function
     A quartic	function




                          .   .   .   .   .   .
The	Increasing/Decreasing	Test

   Theorem	(The	Increasing/Decreasing	Test)
   If f′ > 0 on (a, b), then f is	increasing	on (a, b). If f′ < 0 on (a, b),
   then f is	decreasing	on (a, b).

   Proof.
   It	works	the	same	as	the	last	theorem. Pick	two	points x and y in
   (a, b) with x < y. We	must	show f(x) < f(y). By	MVT there	exists
   a	point c in (x, y) such	that

                           f(y) − f(x)
                                       = f′ (c) > 0.
                              y−x

   So
                       f(y) − f(x) = f′ (c)(y − x) > 0.



                                                    .     .   .    .    .      .
Theorem	(Concavity	Test)
     If f′′ (x) > 0 for	all x in I, then	the	graph	of f is	concave
     upward	on I
     If f′′ (x) < 0 for	all x in I, then	the	graph	of f is	concave
     downward	on I

Proof.
Suppose f′′ (x) > 0 on I. This	means f′ is	increasing	on I. Let a and
x be	in I. The	tangent	line	through (a, f(a)) is	the	graph	of

                        L(x) = f(a) + f′ (a)(x − a)

                                                      f(x) − f(a)
                                                                  = f′ (b).
By	MVT,	there	exists	a b between a and x with
                                                         x−a
So

         f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x)

                                                  .    .    .     .    .      .
Graphing	Checklist


   To	graph	a	function f, follow	this	plan:
    0. Find	when f is	positive, negative, zero, not	defined.
    1. Find f′ and	form	its	sign	chart. Conclude	information	about
       increasing/decreasing	and	local	max/min.
    2. Find f′′ and	form	its	sign	chart. Conclude	concave
       up/concave	down	and	inflection.
    3. Put	together	a	big	chart	to	assemble	monotonicity	and
       concavity	data
    4. Graph!




                                               .   .    .     .   .   .
Outline




  The	Procedure



  The	examples
     A cubic	function
     A quartic	function




                          .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.




                                  .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.
  First, let’s	find	the	zeros. We	can	at	least	factor	out	one	power	of
  x:
                          f(x) = x(2x2 − 3x − 12)
  so f(0) = 0. The	other	factor	is	a	quadratic, so	we	the	other	two
  roots	are
                       √
                                                   √
                   3 ± 32 − 4(2)(−12)         3 ± 105
               x=                          =
                              4                    4
  It’s	OK to	skip	this	step	for	now	since	the	roots	are	so
  complicated.


                                                .    .       .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

                         .




                                             .    .      .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

                         .            .          . −2
                                                 x
                                    2
                                    .
                  .                              x
                                                 . +1
                 −
                 .1
                                                 .′ (x)
                                                 f
                  .                   .
                 −                  2
                                    .
                 .1                              f
                                                 .(x)




                                             .    .       .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
                    .                             x
                                                  . +1
                   −
                   .1
                                                  .′ (x)
                                                  f
                    .                 .
                   −                2
                                    .
                   .1                             f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                    .                 .
                   −                2
                                    .
                   .1                             f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
               ..
               +                      .
                 −                  2
                                    .
                 .1                               f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                           −
               ..          .
               +                      .
                 −                  2
                                    .
                 .1                               f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
               −
               ..          .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                           −
               ..          .              .
               +                          +
                                      .
                 −                  2
                                    .
                 .1                               f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                −
                .1
                                                  .′ (x)
                                                  f
                           −
              ..           .              .
              +                           +
                                      .
              ↗−                    2
                                    .
              . .1                                f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                −
                .1
                                                  .′ (x)
                                                  f
                          −
              ..          .               .
              +                           +
                                      .
              ↗−          ↘         2
                                    .
              . .1        .                       f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                −
                .1
                                                  .′ (x)
                                                  f
                          −
              ..          .               .
              +                           +
                                      .
              ↗−          ↘               ↗
                                    2
                                    .
              . .1        .               .       f
                                                  .(x)




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..               .
                                          +
                                      .           . −2
                                                  x
                                    2
                                    .
              −
              ..           .              .
                           +              +
                                                  x
                                                  . +1
                 −
                 .1
                                                  .′ (x)
                                                  f
                          −
              ..          .               .
              +                           +
                                      .
              ↗−          ↘               ↗
                                    2
                                    .
              . .1        .               .       f
                                                  .(x)
                m
                . ax




                                              .   .        .   .   .   .
Monotonicity



              f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
  We	can	form	a	sign	chart	from	this:

               −          −
               .         ..                .
                                           +
                                      .            . −2
                                                   x
                                    2
                                    .
              −
              ..           .               .
                           +               +
                                                   x
                                                   . +1
                 −
                 .1
                                                   .′ (x)
                                                   f
                          −
              ..          .                .
              +                            +
                                       .
              ↗−          ↘                ↗
                                     2
                                     .
              . .1        .                .       f
                                                   .(x)
                m
                . ax               m
                                   . in




                                               .   .        .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .




                                              .     .   .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                               .
                                                    f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−            .
                                                    f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                .+
                                   +
                               .
                                                    f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                .+
                                   +
                               .
                 .
                 ⌢                                  f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                .+
                                   +
                               .
                 .                 .
                 ⌢                 ⌣                f
                             .                      .(x)
                             1/2




                                              .     .      .   .   .   .
Concavity




                    f′′ (x) = 12x − 6 = 6(2x − 1)
  Another	sign	chart:    .

                                                    .′′ (x)
                                                    f
                 −
                 .−                 .+
                                    +
                                .
                 .                  .
                 ⌢                  ⌣               f
                             .                      .(x)
                             1/2
                              I
                              .P




                                              .     .      .   .   .   .
One	sign	chart	to	rule	them	all




                  .




                                  .   .   .   .   .   .
One	sign	chart	to	rule	them	all




                                      .′ (x)
                                      f
               −      −
          . . ..      .           .
          +                       +
                            .
          ↗− ↘        ↘           ↗
                          2
                          .
          . .1 .      .           .   m
                                      . onotonicity




                                      .        .   .   .   .   .
One	sign	chart	to	rule	them	all




                                     .′ (x)
                                     f
                −       −
         ..     ..      .       .
         +                      +
                            .
         ↗−     ↘       ↘.      ↗
                           2
         . .1   .       .       .    m
                                     .′′ onotonicity
                                     f
                                     . (x)
         −
         .−     −
                .− .    .+      .+
                        +       +
         .      .       .       .
         ⌢      ⌢ 1/2   ⌣       ⌣    c
                                     . oncavity
                   .




                                     .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                      .′ (x)
                                      f
                −        −
         ..     ..       .       .
         +                       +
                               .
         ↗−     ↘        ↘       ↗
                             2
                             .
         . .1   .        .       .    m
                                      .′′ onotonicity
                                      f
                                      . (x)
         −
         .−     −
                .− . .+          .+
                         +       +
         .      ⌢ 1/2 .
                .                .
         ⌢               ⌣       ⌣    c
                                      . oncavity
                    .
                  −                   f
                  . 61/2              .(x)
                           −.
                           . 20
             7
             ..        .
            −                2
                             .
            .1      .                 . hape	of f
                                      s
                    1/2
           m
           . ax      I
                     .P    m
                           . in




                                      .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                      .′ (x)
                                      f
                −        −
         ..     ..       .       .
         +                       +
                               .
         ↗−     ↘        ↘       ↗
                             2
                             .
         . .1   .        .       .    m
                                      .′′ onotonicity
                                      f
                                      . (x)
         −
         .−     −
                .− . .+          .+
                         +       +
         .      ⌢ 1/2 .
                .                .
         ⌢               ⌣       ⌣    c
                                      . oncavity
                    .
                  −                   f
                  . 61/2              .(x)
                           −.
                           . 20
             7
             ..        .
          ..1
            −                2
                             .
                    .                 . hape	of f
                                      s
                    1/2
           m
           . ax      I
                     .P    m
                           . in




                                      .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                       .′ (x)
                                       f
                 −        −
         ..      ..       .       .
         +                        +
                                .
         ↗−      ↘        ↘       ↗
                              2
                              .
         . .1    .        .       .    m
                                       .′′ onotonicity
                                       f
                                       . (x)
         −
         .−      −
                 .− . .+          .+
                          +       +
         .       ⌢ 1/2 .
                 .                .
         ⌢                ⌣       ⌣    c
                                       . oncavity
                     .
                   −                   f
                   . 61/2              .(x)
                            −.
                            . 20
              7
              ..        .
          . . 1 . 1/2
             −                2
                              .
                     .                 . hape	of f
                                       s
            m
            . ax      I
                      .P    m
                            . in




                                       .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                       .′ (x)
                                       f
                 −        −
         ..      ..       .       .
         +                        +
                                .
         ↗−      ↘        ↘       ↗
                              2
                              .
         . .1    .        .       .    m
                                       .′′ onotonicity
                                       f
                                       . (x)
         −
         .−      −
                 .− . .+          .+
                          +       +
         .       ⌢ 1/2 .
                 .                .
         ⌢                ⌣       ⌣    c
                                       . oncavity
                     .
                   −                   f
                   . 61/2              .(x)
                            −.
                            . 20
              7
              ..        .
          . . 1 . 1/2 .
             −                2
                              .
                     .                 . hape	of f
                                       s
            m
            . ax      I
                      .P    m
                            . in




                                       .        .   .    .   .   .
One	sign	chart	to	rule	them	all




                                       .′ (x)
                                       f
                 −        −
         ..      ..       .       .
         +                        +
                                .
         ↗−      ↘        ↘       ↗
                              2
                              .
         . .1    .        .       .    m
                                       .′′ onotonicity
                                       f
                                       . (x)
         −
         .−      −
                 .− . .+          .+
                          +       +
         .       ⌢ 1/2 .
                 .                .
         ⌢                ⌣       ⌣    c
                                       . oncavity
                     .
                   −                   f
                   . 61/2              .(x)
                            −.
                            . 20
              7
              ..        .
          . . 1 . 1/2 .            .
             −                2
                              .
                     .                 . hape	of f
                                       s
            m
            . ax      I
                      .P    m
                            . in




                                       .        .   .    .   .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graph

                                     f
                                     .(x)




                          . −1, 7)
                          (
    (√            )           .
    . 3− 4105 , 0                         . 0, 0)
                                          (
                      .               .                             .       x
                                                                        (.          )
                                                                            √
                                                . 1/2, −61/2)
                                                (                         3+ 105
                                                                        .        ,0
                                            .                                4



                                                          .
                                                    . 2, −20)
                                                    (

                                                                .   .       .   .       .   .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10




                                .   .   .   .   .   .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10
   We	know f(0) = 10 and lim f(x) = +∞. Not	too	many	other
                           x→±∞
   points	on	the	graph	are	evident.




                                         .   .   .   .   .   .
Monotonicity



                  f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
  We	make	its	sign	chart.

                 . ..        .           .
                 +0          +           +
                                                  . x2
                                                  4
                   0
                   .
                 −           −
                 .           .         .. .
                                       0+
                                                  . x − 3)
                                                  (
                                       3
                                       .
                                                  .′ (x)
                                                  f
                −0          −
                . ..        .          .. .
                                       0+
                ↘0          ↘          3↗
                ..                     ..
                            .                     f
                                                  .(x)
                                     m
                                     . in




                                              .            .   .   .   .   .
Concavity



                    f′′ (x) = 12x2 − 24x = 12x(x − 2)
  Here	is	its	sign	chart:

                   −0
                   . ..      .           .
                             +           +
                                                    1
                                                    . 2x
                     0
                     .
                   −         −
                   .         .           .
                                    0
                                    ..   +
                                                    . −2
                                                    x
                                    2
                                    .
                                                    .′′ (x)
                                                    f
                            −
                            .−
                  . + ..                 .+
                  +0                0
                                    ..   +
                   ..       .            .
                   ⌣0       ⌢            ⌣
                                    2
                                    .               f
                                                    .(x)
                       I
                       .P          I
                                   .P




                                                .        .    .   .   .   .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
                0
                .           2
                            .      3
                                   .             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..0           2
                            .      3
                                   .             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..     .
                0           2
                            .      3
                                   .             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..     .           ..
                0           2
                            .      3             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Grand	Unified	Sign	Chart
                .



                                                 .′ (x)
                                                 f
             −0      −          −0+
             . ..    .          . .. .
             ↘0      ↘          ↘3↗
             ..                 . ..
                     .                           m
                                                 .′′ onotonicity
                                                 f
                                                 . (x)
                     −
                     .−
            . + ..          .. . + . +
            +0              0+       +
             ..      .          .    .
             ⌣0      ⌢          ⌣    ⌣
                            2
                            .                    c
                                                 . oncavity
                                                 f
                                                 .(x)
                          −       −.
                          . .6 . 17
               1.
               .0
              ..     .           ...
                0           2
                            .      3             s
                                                 . hape
               I
               .P          I
                           .P . inm




                                         .   .       .    .   .    .
Graph

                   y
                   .




        . 0, 10)
        (
                   .
                   .                                      x
                                                          .
                                  .
                                            .
                       . 2, −6)
                       (
                                      . 3, −17)
                                      (


                                           .      .   .       .   .   .

Mais conteúdo relacionado

Mais procurados

JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12
Aidia Propitious
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
SIGIFREDO12222
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
yustar1026
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Destiny Nooppynuchy
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
klorofila
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
lecturer
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
Tarun Gehlot
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD Editor
 

Mais procurados (19)

JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Review for final exam
Review for final examReview for final exam
Review for final exam
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 

Destaque

Destaque (20)

Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear Approximation
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient Rules
 
Lesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationLesson 12: Implicit Differentiation
Lesson 12: Implicit Differentiation
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Lesson 14: Exponential Functions
Lesson 14: Exponential FunctionsLesson 14: Exponential Functions
Lesson 14: Exponential Functions
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
 

Semelhante a Lesson 21: Curve Sketching (Section 10 version)

Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
Matthew Leingang
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
Matthew Leingang
 

Semelhante a Lesson 21: Curve Sketching (Section 10 version) (20)

Lesson 18: Graphing
Lesson 18: GraphingLesson 18: Graphing
Lesson 18: Graphing
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and Series
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)
 
Lesson 20: (More) Optimization Problems
Lesson 20: (More) Optimization ProblemsLesson 20: (More) Optimization Problems
Lesson 20: (More) Optimization Problems
 
Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 10 version)Lesson 22: Optimization II (Section 10 version)
Lesson 22: Optimization II (Section 10 version)
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 

Mais de Matthew Leingang

Mais de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Último

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Último (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 

Lesson 21: Curve Sketching (Section 10 version)

  • 1. Section 4.4 Curve Sketching I V63.0121, Calculus I March 30, 2009 Announcements Quiz 4 this week (Sections 2.5–3.5) Office hours this week: M 1–2, T 1–2, W 2–3, R 9–10 . . Image credit: Fast Eddie 42 . . . . . .
  • 2. Office Hours and other help In addition to recitation Day Time Who/What Where in WWH M 1:00–2:00 Leingang OH 718/618 3:30–4:30 Katarina OH 707 5:00–7:00 Curto PS 517 T 1:00–2:00 Leingang OH 718/618 4:00–5:50 Curto PS 317 W 1:00–2:00 Katarina OH 707 2:00–3:00 Leingang OH 718/618 R 9:00–10:00am Leingang OH 718/618 5:00–7:00pm Maria OH 807 F 2:00–4:00 Curto OH 1310 . . . . . .
  • 3. CIMS/NYU professor wins Abel Prize Mikhail Gromov, born 1943 in Russia contributions to geometry and topology discovered the pseudoholomorphic curve Abel Prize is the highest in mathematics . . . . . .
  • 4. On the problems assigned from Section 2.8 Announcements were made in class but not online Resubmit your Problem Set 6 on Wednesday, April 1 with Problem Set 8 We will pick two additional problems to grade from Problem Set 8 If the scores on the makeup problems from PS 8 exceed the scores of the Section 2.8 problems from PS 6, the makeup scores will be substituted. This also takes care of the problematic problem 2.8.28. This offer is only good this week. . . . . . .
  • 5. Outline The Procedure The examples A cubic function A quartic function . . . . . .
  • 6. The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Proof. It works the same as the last theorem. Pick two points x and y in (a, b) with x < y. We must show f(x) < f(y). By MVT there exists a point c in (x, y) such that f(y) − f(x) = f′ (c) > 0. y−x So f(y) − f(x) = f′ (c)(y − x) > 0. . . . . . .
  • 7. Theorem (Concavity Test) If f′′ (x) > 0 for all x in I, then the graph of f is concave upward on I If f′′ (x) < 0 for all x in I, then the graph of f is concave downward on I Proof. Suppose f′′ (x) > 0 on I. This means f′ is increasing on I. Let a and x be in I. The tangent line through (a, f(a)) is the graph of L(x) = f(a) + f′ (a)(x − a) f(x) − f(a) = f′ (b). By MVT, there exists a b between a and x with x−a So f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x) . . . . . .
  • 8. Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . .
  • 9. Outline The Procedure The examples A cubic function A quartic function . . . . . .
  • 10. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. . . . . . .
  • 11. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadratic, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated. . . . . . .
  • 12. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . . . . .
  • 13. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . −2 x 2 . . x . +1 − .1 .′ (x) f . . − 2 . .1 f .(x) . . . . . .
  • 14. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . . x . +1 − .1 .′ (x) f . . − 2 . .1 f .(x) . . . . . .
  • 15. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f . . − 2 . .1 f .(x) . . . . . .
  • 16. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f .. + . − 2 . .1 f .(x) . . . . . .
  • 17. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . + . − 2 . .1 f .(x) . . . . . .
  • 18. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . − 2 . .1 f .(x) . . . . . .
  • 19. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− 2 . . .1 f .(x) . . . . . .
  • 20. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ 2 . . .1 . f .(x) . . . . . .
  • 21. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ ↗ 2 . . .1 . . f .(x) . . . . . .
  • 22. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ ↗ 2 . . .1 . . f .(x) m . ax . . . . . .
  • 23. Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − − . .. . + . . −2 x 2 . − .. . . + + x . +1 − .1 .′ (x) f − .. . . + + . ↗− ↘ ↗ 2 . . .1 . . f .(x) m . ax m . in . . . . . .
  • 24. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . . . . . . .
  • 25. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f . f . .(x) 1/2 . . . . . .
  • 26. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− . f . .(x) 1/2 . . . . . .
  • 27. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . f . .(x) 1/2 . . . . . .
  • 28. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . . ⌢ f . .(x) 1/2 . . . . . .
  • 29. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . . . ⌢ ⌣ f . .(x) 1/2 . . . . . .
  • 30. Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f − .− .+ + . . . ⌢ ⌣ f . .(x) 1/2 I .P . . . . . .
  • 32. One sign chart to rule them all .′ (x) f − − . . .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m . onotonicity . . . . . .
  • 33. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘. ↗ 2 . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . . . . ⌢ ⌢ 1/2 ⌣ ⌣ c . oncavity . . . . . . .
  • 34. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . − 2 . .1 . . hape of f s 1/2 m . ax I .P m . in . . . . . .
  • 35. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . ..1 − 2 . . . hape of f s 1/2 m . ax I .P m . in . . . . . .
  • 36. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . . . 1 . 1/2 − 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 37. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . . . 1 . 1/2 . − 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 38. One sign chart to rule them all .′ (x) f − − .. .. . . + + . ↗− ↘ ↘ ↗ 2 . . .1 . . . m .′′ onotonicity f . (x) − .− − .− . .+ .+ + + . ⌢ 1/2 . . . ⌢ ⌣ ⌣ c . oncavity . − f . 61/2 .(x) −. . 20 7 .. . . . 1 . 1/2 . . − 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 39. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 40. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 41. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 42. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 43. Graph f .(x) . −1, 7) ( (√ ) . . 3− 4105 , 0 . 0, 0) ( . . . x (. ) √ . 1/2, −61/2) ( 3+ 105 . ,0 . 4 . . 2, −20) ( . . . . . .
  • 44. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 . . . . . .
  • 45. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 We know f(0) = 10 and lim f(x) = +∞. Not too many other x→±∞ points on the graph are evident. . . . . . .
  • 46. Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. . . +0 + + . x2 4 0 . − − . . .. . 0+ . x − 3) ( 3 . .′ (x) f −0 − . .. . .. . 0+ ↘0 ↘ 3↗ .. .. . f .(x) m . in . . . . . .
  • 47. Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0 . .. . . + + 1 . 2x 0 . − − . . . 0 .. + . −2 x 2 . .′′ (x) f − .− . + .. .+ +0 0 .. + .. . . ⌣0 ⌢ ⌣ 2 . f .(x) I .P I .P . . . . . .
  • 48. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 0 . 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 49. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 ..0 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 50. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 .. . 0 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 51. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 .. . .. 0 2 . 3 s . hape I .P I .P . inm . . . . . .
  • 52. Grand Unified Sign Chart . .′ (x) f −0 − −0+ . .. . . .. . ↘0 ↘ ↘3↗ .. . .. . m .′′ onotonicity f . (x) − .− . + .. .. . + . + +0 0+ + .. . . . ⌣0 ⌢ ⌣ ⌣ 2 . c . oncavity f .(x) − −. . .6 . 17 1. .0 .. . ... 0 2 . 3 s . hape I .P I .P . inm . . . . . .
  • 53. Graph y . . 0, 10) ( . . x . . . . 2, −6) ( . 3, −17) ( . . . . . .