SlideShare uma empresa Scribd logo
1 de 136
Baixar para ler offline
Section 4.7
                             Antiderivatives

                            V63.0121.006/016, Calculus I

                                   New York University


                                    April 8, 2010



    Announcements

         Quiz April 16 on §§4.1–4.4
         Final Exam: Monday, May 10, 10:00am

    .
.
Image credit: Ian Hampton
                                                         .   .   .   .   .   .
Announcements




    Quiz April 16 on §§4.1–4.4
    Final Exam: Monday, May 10, 10:00am




                                                            .   .   .    .       .      .

 V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       2 / 32
Outline


What is an antiderivative?

Tabulating Antiderivatives
   Power functions
   Combinations
   Exponential functions
   Trigonometric functions

Finding Antiderivatives Graphically

Rectilinear motion


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       3 / 32
Objectives


      Given an expression for
      function f, find a
      differentiable function F
      such that F′ = f (F is called
      an antiderivative for f).
      Given the graph of a
      function f, find a
      differentiable function F
      such that F′ = f
      Use antiderivatives to
      solve problems in
      rectilinear motion


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       4 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d
                       (x ln x − x)
                    dx

                                                                    .   .   .    .       .      .

  V63.0121, Calculus I (NYU)          Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d                               1
                       (x ln x − x) = 1 · ln x + x · − 1
                    dx                              x

                                                                .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d                               1
                       (x ln x − x) = 1 · ln x + x · − 1 = ln x
                    dx                              x

                                                                .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d
                    dx
                                                    1
                       (x ln x − x) = 1 · ln x + x · − 1 = ln x
                                                    x
                                                                        
                                                                .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Why the MVT is the MITC
Most Important Theorem In Calculus!



Theorem
Let f′ = 0 on an interval (a, b). Then f is constant on (a, b).

Proof.
Pick any points x and y in (a, b) with x  y. Then f is continuous on
[x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y)
such that
                  f(y) − f(x)
                              = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x)
                     y−x

But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b),
then f is constant.

                                                                 .   .   .    .       .      .

   V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       6 / 32
When two functions have the same derivative


Theorem
Suppose f and g are two differentiable functions on (a, b) with f′ = g′ .
Then f and g differ by a constant. That is, there exists a constant C
such that f(x) = g(x) + C.

Proof.

     Let h(x) = f(x) − g(x)
     Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b)
     So h(x) = C, a constant
     This means f(x) − g(x) = C on (a, b)



                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       7 / 32
Outline


What is an antiderivative?

Tabulating Antiderivatives
   Power functions
   Combinations
   Exponential functions
   Trigonometric functions

Finding Antiderivatives Graphically

Rectilinear motion


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       8 / 32
Antiderivatives of power functions


                                                                y
                                                                .
                                                                                .(x) = x2
                                                                                f
 Recall that the derivative of a
 power function is a power
 function.
 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

                                                                    .
                                                                                x
                                                                                .




                                                                    .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                   April 8, 2010       9 / 32
Antiderivatives of power functions

                                                                   ′
                                                                y f
                                                                . . (x) = 2x
                                                                               .(x) = x2
                                                                               f
 Recall that the derivative of a
 power function is a power
 function.
 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

                                                                 .
                                                                               x
                                                                               .




                                                                 .   .    .     .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                  April 8, 2010       9 / 32
Antiderivatives of power functions

                                                                   ′
                                                                y f
                                                                . . (x) = 2x
                                                                               .(x) = x2
                                                                               f
 Recall that the derivative of a
 power function is a power
 function.                                                                     F
                                                                               . (x) = ?

 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

                                                                 .
                                                                               x
                                                                               .




                                                                 .   .    .     .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                  April 8, 2010       9 / 32
Antiderivatives of power functions

                                                                   ′
                                                                y f
                                                                . . (x) = 2x
                                                                               .(x) = x2
                                                                               f
 Recall that the derivative of a
 power function is a power
 function.                                                                     F
                                                                               . (x) = ?

 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

 So in looking for antiderivatives
                                                                 .
 of power functions, try power                                                 x
                                                                               .
 functions!




                                                                 .   .    .     .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                  April 8, 2010       9 / 32
Example
Find an antiderivative for the function f(x) = x3 .




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .

     r − 1 = 3 =⇒ r = 4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4           1
                               x = 4 · x4−1 = x3
                       dx 4             4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4
                       dx 4
                                        1
                               x = 4 · x4−1 = x3
                                        4
                                                                 

                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4
                       dx 4
                                        1
                               x = 4 · x4−1 = x3
                                        4
                                                                 
     Any others?

                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4
                       dx 4
                                        1
                               x = 4 · x4−1 = x3
                                        4
                                                                 
                                  1 4
     Any others? Yes, F(x) =        x + C is the most general form.
                                  4
                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Fact (The Power Rule for antiderivatives)
If f(x) = xr , then
                                            1 r+1
                               F(x) =          x
                                           r+1
is an antiderivative for f…




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   11 / 32
Fact (The Power Rule for antiderivatives)
If f(x) = xr , then
                                         1 r+1
                               F(x) =       x
                                      r+1
is an antiderivative for f as long as r ̸= −1.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   11 / 32
Fact (The Power Rule for antiderivatives)
If f(x) = xr , then
                                         1 r+1
                                  F(x) =    x
                                      r+1
is an antiderivative for f as long as r ̸= −1.

Fact
                       1
If f(x) = x−1 =          , then
                       x
                                  F(x) = ln |x| + C
is an antiderivative for f.




                                                                .   .   .     .       .     .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010   11 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                   {
                                                       ln(x)  if x  0;
                               F(x) = ln |x| =
                                                       ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                        ln |x|
                                     dx




                                                                       .   .   .     .       .     .

  V63.0121, Calculus I (NYU)             Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d           d
                                        ln |x| =    ln(x)
                                     dx          dx




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d           d          1
                                        ln |x| =    ln(x) =
                                     dx          dx         x




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d
                             ln |x|
                          dx


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d           d
                             ln |x| =    ln(−x)
                          dx          dx


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d           d           1
                             ln |x| =    ln(−x) =    · (−1)
                          dx          dx          −x


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d           d           1           1
                             ln |x| =    ln(−x) =    · (−1) =
                          dx          dx          −x          x


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d
                          dx
                             ln |x| =
                                      d
                                      dx
                                         ln(−x) =
                                                  1
                                                  −x
                                                     · (−1) =
                                                              1
                                                              x
                                                                                  

                                                                      .   .   .       .     .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d
                          dx
                             ln |x| =
                                      d
                                      dx
                                         ln(−x) =
                                                  1
                                                  −x
                                                     · (−1) =
                                                              1
                                                              x
                                                                                  
     We prefer the antiderivative with the larger domain.
                                                                      .   .   .       .     .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
Graph of ln |x|

                               y
                               .




                                   .                                 f
                                                                     .(x) = 1/x
                                                                     x
                                                                     .




                                                             .   .    .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives                April 8, 2010   13 / 32
Graph of ln |x|

                               y
                               .




                                                                     F
                                                                     . (x) = ln(x)


                                   .                                 f
                                                                     .(x) = 1/x
                                                                     x
                                                                     .




                                                             .   .    .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives                April 8, 2010   13 / 32
Graph of ln |x|

                               y
                               .




                                                                     . (x) = ln |x|
                                                                     F


                                   .                                 f
                                                                     .(x) = 1/x
                                                                     x
                                                                     .




                                                             .   .    .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives                April 8, 2010   13 / 32
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)

     If F is an antiderivative of f and G is an antiderivative of g, then
     F + G is an antiderivative of f + g.
     If F is an antiderivative of f and c is a constant, then cF is an
     antiderivative of cf.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   14 / 32
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)

     If F is an antiderivative of f and G is an antiderivative of g, then
     F + G is an antiderivative of f + g.
     If F is an antiderivative of f and c is a constant, then cF is an
     antiderivative of cf.

Proof.
These follow from the sum and constant multiple rule for derivatives:
     If F′ = f and G′ = g, then

                               (F + G)′ = F′ + G′ = f + g

     Or, if F′ = f,
                                     (cF)′ = cF′ = cf
                                                                .   .   .     .       .     .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010   14 / 32
Antiderivatives of Polynomials

Example
Find an antiderivative for f(x) = 16x + 5.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Antiderivatives of Polynomials
Example
Find an antiderivative for f(x) = 16x + 5.

Solution
                         1 2
The expression             x is an antiderivative for x, and x is an antiderivative
                         2
for 1. So
                                 (         )
                                     1 2
                  F(x) = 16 ·          x       + 5 · x + C = 8x2 + 5x + C
                                     2

is the antiderivative of f.




                                                                    .   .   .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Antiderivatives of Polynomials
Example
Find an antiderivative for f(x) = 16x + 5.

Solution
                         1 2
The expression             x is an antiderivative for x, and x is an antiderivative
                         2
for 1. So
                                 (         )
                                     1 2
                  F(x) = 16 ·          x       + 5 · x + C = 8x2 + 5x + C
                                     2

is the antiderivative of f.

Question
Why do we not need two C’s?

                                                                    .   .   .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Antiderivatives of Polynomials

Example
Find an antiderivative for f(x) = 16x + 5.

Solution
                                (         )
                                    1 2
                  F(x) = 16 ·         x       + 5 · x + C = 8x2 + 5x + C
                                    2


Question
Why do we not need two C’s?

Answer
A combination of two arbitrary constants is still an arbitrary constant.
                                                                   .   .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .




                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .

Accordingly,
Fact
                                 1 x
If f(x) = ax , then F(x) =           a + C is the antiderivative of f.
                                ln a




                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .

Accordingly,
Fact
                                 1 x
If f(x) = ax , then F(x) =           a + C is the antiderivative of f.
                                ln a

Proof.
Check it yourself.




                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .

Accordingly,
Fact
                                 1 x
If f(x) = ax , then F(x) =           a + C is the antiderivative of f.
                                ln a

Proof.
Check it yourself.

In particular,
Fact
If f(x) = ex , then F(x) = ex + C is the antiderivative of f.
                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Logarithmic functions?

     Remember we found

                                  F(x) = x ln x − x

     is an antiderivative of f(x) = ln x.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   17 / 32
Logarithmic functions?

     Remember we found

                                  F(x) = x ln x − x

     is an antiderivative of f(x) = ln x.
     This is not obvious. See Calc II for the full story.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   17 / 32
Logarithmic functions?

     Remember we found

                                           F(x) = x ln x − x

     is an antiderivative of f(x) = ln x.
     This is not obvious. See Calc II for the full story.
                                            ln x
     However, using the fact that loga x =       , we get:
                                            ln a

Fact
If f(x) = loga (x)

                                1                                  1
                F(x) =              (x ln x − x) + C = x loga x −      x+C
                               ln a                               ln a
is the antiderivative of f(x).
                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   17 / 32
Trigonometric functions


Fact

                         d                          d
                            sin x = cos x              cos x = − sin x
                         dx                         dx




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   18 / 32
Trigonometric functions


Fact

                         d                          d
                            sin x = cos x              cos x = − sin x
                         dx                         dx

So to turn these around,
Fact

     The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   18 / 32
Trigonometric functions


Fact

                         d                          d
                            sin x = cos x              cos x = − sin x
                         dx                         dx

So to turn these around,
Fact

     The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
     The function F(x) = sin x + C is the antiderivative of f(x) = cos x.




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   18 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d      1    d
                =      ·   sec x
             dx   sec x dx


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d      1    d           1
                =      ·   sec x =       · sec x tan x
             dx   sec x dx         sec x


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d      1    d           1
                =      ·   sec x =       · sec x tan x = tan x
             dx   sec x dx         sec x


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d
             dx
                =
                    1
                       ·
                         d
                  sec x dx
                           sec x =
                                     1
                                   sec x
                                         · sec x tan x = tan x            
                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d
             dx
                =
                    1
                       ·
                         d
                  sec x dx
                           sec x =
                                     1
                                   sec x
                                         · sec x tan x = tan x            
More about this later.                                       .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
Outline


What is an antiderivative?

Tabulating Antiderivatives
   Power functions
   Combinations
   Exponential functions
   Trigonometric functions

Finding Antiderivatives Graphically

Rectilinear motion


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   20 / 32
Problem
Below is the graph of a function f. Draw the graph of an antiderivative
for F.

                  y
                  .

                                      .

                                .                                                  . . = f(x)
                                                                                     y

                      .          .     .           .          .            .         .
                                                                                       x
                                                                                       .
                               1
                               .     2
                                     .           3
                                                 .          4
                                                            .            5
                                                                         .         6
                                                                                   .




                                                             .
                                                                               .     .     .     .       .     .

  V63.0121, Calculus I (NYU)               Section 4.7 Antiderivatives                         April 8, 2010   21 / 32
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:
                                                                           ′
                                 .    .    .    .    .    .       .. = F
                                                                   f

    y
    .                                1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .    .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:
                                                                           ′
                                 .    .. .
                                       +        .    .    .       .. = F
                                                                   f

    y
    .                                1
                                     .   2
                                         .     3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .    .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:
                                                                          ′
                                 .    .. .. .
                                       + +          .    .       .. = F
                                                                  f

    y
    .                                1
                                     .   2
                                         .  3
                                            .      4
                                                   .    5
                                                        .        6F
                                                                 ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                       + + −                              ′
                                 .    .. .. .. .         .       .. = F
                                                                  f

    y
    .                                1
                                     .   2
                                         .  3
                                            .  4
                                               .        5
                                                        .        6F
                                                                 ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                       + + − −                            ′
                                 .    .. .. .. .. .              .. = F
                                                                  f

    y
    .                                1
                                     .   2
                                         .  3
                                            .  4
                                               .  5
                                                  .              6F
                                                                 ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1
                                     .    2
                                          .   3
                                              .   4
                                                  .   5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2
                                     . . .    3
                                              .   4
                                                  .   5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2↗3
                                     . . . . .    4
                                                  .   5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2↗3↘4
                                     . . . . . . .    5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2↗3↘4↘5
                                     . . . . . . . . .    6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . . . . . . . . . ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . . . . . . .
                                             max
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .    .    .    .    .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                               .    .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .
                                       +        .    .    .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                               .    .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .. − .
                                       + −           .    .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                                .   .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .. − .. − .
                                       + − −              .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                                .   .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .. − .. − .. + .
                                       + − − +                    .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                               .    .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        .
                                        ⌣
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢ .  ⌢
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢ .  ⌢ .  ⌣
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    .F
                                                              6

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2
                                            .   3
                                                .    4
                                                     .    5
                                                          .    .F
                                                               6
                                           IP
                    .




                                                .    .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .




                                                .    .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .     .    .    .        ..
                                                                     F
                                     1
                                     .    2
                                          .     3
                                                .    4
                                                     .    5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .     .    .    .        ..
                                                                     F
                                        .
                                     1
                                     .    2
                                          .     3
                                                .    4
                                                     .    5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .     .    .        ..
                                                                     F
                                        .    .
                                     1
                                     .    2
                                          .    3
                                               .     4
                                                     .    5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .    .     .        ..
                                                                     F
                                        .    .    .
                                     1
                                     .    2
                                          .    3
                                               .    4
                                                    .     5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .    .    .         ..
                                                                     F
                                        .    .    .    .
                                     1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .         6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .    .    .   ..F
                                        .    .    .    .    . . hape
                                     1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    .s
                                                              6

                                                .    .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                                 + + − − + f              ′
                                       .       . . . . . . . . . . .. = F
     y
     .                                        1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                              . . .. . . . .. . . . . .
                                                      max      min
                  .
              .          .                      + − − + + f′                   ′′
         .    . . . . . .                      .. + .. − .. − .. + .. + . . = F
                                                 ⌣ .
                                                 .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
             1 2 3 4 5 6
             . . . . . .
                           x
                           .                 ..
                                              1     2 ..
                                                    .   3     4
                                                              .   5
                                                                  .    .F
                                                                       6
                                                   IP        IP
                           .
                                      ?
                                      ..   ?
                                           ..   ?
                                                ..   ?
                                                     ..   ?
                                                          ..   ?F
                                                               .. .
                                         .    .    .    .    . . hape
                                      1
                                      .    2
                                           .    3
                                                .    4
                                                     .    5
                                                          .    .s
                                                               6
The only question left is: What are the function values?
                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   22 / 32
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
                                                   .          ..
                                                               f
                                              .    . . . . . .
                                                               x
                                                               .
                                                  1 2 3 4 5 6
                                                  . . . . . .

                                                          .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
                                                               x
                                                               .
                                                  1 2 3 4 5 6
                                                  . . . . . .

                                                          .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
    Using the sign chart, we                                   x
                                                               .
    draw arcs with the                            1 2 3 4 5 6
                                                  . . . . . .
    specified monotonicity and
    concavity                                             .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
    Using the sign chart, we                                   x
                                                               .
    draw arcs with the                            1 2 3 4 5 6
                                                  . . . . . .
    specified monotonicity and
    concavity                                             .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
    Using the sign chart, we                                   x
                                                               .
    draw arcs with the                            1 2 3 4 5 6
                                                  . . . . . .
    specified monotonicity and
    concavity                                             .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)

Mais conteúdo relacionado

Mais procurados

Factor Theorem and Remainder Theorem
Factor Theorem and Remainder TheoremFactor Theorem and Remainder Theorem
Factor Theorem and Remainder TheoremRonalie Mejos
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
Arc Length And Area of a Sector
Arc Length And Area of a SectorArc Length And Area of a Sector
Arc Length And Area of a SectorJosel Jalon
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributionsmandalina landy
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functionssmiller5
 
Composition Of Functions
Composition Of FunctionsComposition Of Functions
Composition Of Functionssjwong
 
Logarithmic Functions
Logarithmic FunctionsLogarithmic Functions
Logarithmic Functionsswartzje
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor TheoremTrish Hammond
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functionsBarbara Knab
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpointJuwileene Soriano
 

Mais procurados (20)

Factor Theorem and Remainder Theorem
Factor Theorem and Remainder TheoremFactor Theorem and Remainder Theorem
Factor Theorem and Remainder Theorem
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
 
Arc Length And Area of a Sector
Arc Length And Area of a SectorArc Length And Area of a Sector
Arc Length And Area of a Sector
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Trigonometry Functions
Trigonometry FunctionsTrigonometry Functions
Trigonometry Functions
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributions
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functions
 
Composition Of Functions
Composition Of FunctionsComposition Of Functions
Composition Of Functions
 
Logarithmic Functions
Logarithmic FunctionsLogarithmic Functions
Logarithmic Functions
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor Theorem
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
 
The integral
The integralThe integral
The integral
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpoint
 

Destaque

Application+of+Integrals
Application+of+IntegralsApplication+of+Integrals
Application+of+Integralsprice_dekho11
 
Applications of integrals
Applications of integralsApplications of integrals
Applications of integralsnitishguptamaps
 
Ibdp _economics_ia_portfolio
Ibdp  _economics_ia_portfolioIbdp  _economics_ia_portfolio
Ibdp _economics_ia_portfolioPaola Reyes Rück
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integralssarcia
 
Application of the integral
Application of the integral Application of the integral
Application of the integral Abhishek Das
 
Lesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and EconomicsLesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and EconomicsMatthew Leingang
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applicationsPoojith Chowdhary
 
Application of calculus in real life.
Application of calculus in real life.Application of calculus in real life.
Application of calculus in real life.University of Potsdam
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
ppt on application of integrals
ppt on application of integralsppt on application of integrals
ppt on application of integralsharshid panchal
 
Application of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group KApplication of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group Kjafar_sadik
 
Applications Of Integration
Applications Of IntegrationApplications Of Integration
Applications Of Integrationlexmath
 

Destaque (20)

Flash cards AoI
Flash cards AoIFlash cards AoI
Flash cards AoI
 
Application+of+Integrals
Application+of+IntegralsApplication+of+Integrals
Application+of+Integrals
 
Applications of integrals
Applications of integralsApplications of integrals
Applications of integrals
 
Ibdp _economics_ia_portfolio
Ibdp  _economics_ia_portfolioIbdp  _economics_ia_portfolio
Ibdp _economics_ia_portfolio
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integrals
 
Application of the integral
Application of the integral Application of the integral
Application of the integral
 
Application of Maqasid al-Shariah in Islamic Finance & Economics
Application of Maqasid al-Shariah in Islamic Finance & EconomicsApplication of Maqasid al-Shariah in Islamic Finance & Economics
Application of Maqasid al-Shariah in Islamic Finance & Economics
 
Lesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and EconomicsLesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and Economics
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applications
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Application of calculus in real life.
Application of calculus in real life.Application of calculus in real life.
Application of calculus in real life.
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
ppt on application of integrals
ppt on application of integralsppt on application of integrals
ppt on application of integrals
 
Application of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group KApplication of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group K
 
Integration Ppt
Integration PptIntegration Ppt
Integration Ppt
 
Applications Of Integration
Applications Of IntegrationApplications Of Integration
Applications Of Integration
 

Semelhante a Lesson 21: Antiderivatives (slides)

Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Matthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Mel Anthony Pepito
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Mel Anthony Pepito
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Matthew Leingang
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Matthew Leingang
 
Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Matthew Leingang
 
Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)Matthew Leingang
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Mel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Mel Anthony Pepito
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Mel Anthony Pepito
 
Lesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of CalculusLesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slidesMatthew Leingang
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Matthew Leingang
 

Semelhante a Lesson 21: Antiderivatives (slides) (20)

Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
 
Lesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of CalculusLesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of Calculus
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 

Mais de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 

Mais de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Último

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 

Último (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 

Lesson 21: Antiderivatives (slides)

  • 1. Section 4.7 Antiderivatives V63.0121.006/016, Calculus I New York University April 8, 2010 Announcements Quiz April 16 on §§4.1–4.4 Final Exam: Monday, May 10, 10:00am . . Image credit: Ian Hampton . . . . . .
  • 2. Announcements Quiz April 16 on §§4.1–4.4 Final Exam: Monday, May 10, 10:00am . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 2 / 32
  • 3. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 3 / 32
  • 4. Objectives Given an expression for function f, find a differentiable function F such that F′ = f (F is called an antiderivative for f). Given the graph of a function f, find a differentiable function F such that F′ = f Use antiderivatives to solve problems in rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 4 / 32
  • 5. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 6. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 7. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 8. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d (x ln x − x) dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 9. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d 1 (x ln x − x) = 1 · ln x + x · − 1 dx x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 10. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d 1 (x ln x − x) = 1 · ln x + x · − 1 = ln x dx x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 11. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx 1 (x ln x − x) = 1 · ln x + x · − 1 = ln x x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 12. Why the MVT is the MITC Most Important Theorem In Calculus! Theorem Let f′ = 0 on an interval (a, b). Then f is constant on (a, b). Proof. Pick any points x and y in (a, b) with x y. Then f is continuous on [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y) such that f(y) − f(x) = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x) y−x But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b), then f is constant. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 6 / 32
  • 13. When two functions have the same derivative Theorem Suppose f and g are two differentiable functions on (a, b) with f′ = g′ . Then f and g differ by a constant. That is, there exists a constant C such that f(x) = g(x) + C. Proof. Let h(x) = f(x) − g(x) Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b) So h(x) = C, a constant This means f(x) − g(x) = C on (a, b) . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 7 / 32
  • 14. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 8 / 32
  • 15. Antiderivatives of power functions y . .(x) = x2 f Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 16. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 17. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. F . (x) = ? Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 18. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. F . (x) = ? Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . So in looking for antiderivatives . of power functions, try power x . functions! . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 19. Example Find an antiderivative for the function f(x) = x3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 20. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 21. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 22. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 23. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 24. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 25. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 1 x = 4 · x4−1 = x3 dx 4 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 26. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 27. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 Any others? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 28. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 1 4 Any others? Yes, F(x) = x + C is the most general form. 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 29. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f… . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 11 / 32
  • 30. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f as long as r ̸= −1. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 11 / 32
  • 31. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f as long as r ̸= −1. Fact 1 If f(x) = x−1 = , then x F(x) = ln |x| + C is an antiderivative for f. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 11 / 32
  • 32. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 33. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d ln |x| dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 34. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d d ln |x| = ln(x) dx dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 35. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d d 1 ln |x| = ln(x) = dx dx x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 36. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 37. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d ln |x| dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 38. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d ln |x| = ln(−x) dx dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 39. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d 1 ln |x| = ln(−x) = · (−1) dx dx −x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 40. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d 1 1 ln |x| = ln(−x) = · (−1) = dx dx −x x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 41. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 42. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x We prefer the antiderivative with the larger domain. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 43. Graph of ln |x| y . . f .(x) = 1/x x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 13 / 32
  • 44. Graph of ln |x| y . F . (x) = ln(x) . f .(x) = 1/x x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 13 / 32
  • 45. Graph of ln |x| y . . (x) = ln |x| F . f .(x) = 1/x x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 13 / 32
  • 46. Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 14 / 32
  • 47. Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. Proof. These follow from the sum and constant multiple rule for derivatives: If F′ = f and G′ = g, then (F + G)′ = F′ + G′ = f + g Or, if F′ = f, (cF)′ = cF′ = cf . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 14 / 32
  • 48. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 49. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 50. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. Question Why do we not need two C’s? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 51. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 Question Why do we not need two C’s? Answer A combination of two arbitrary constants is still an arbitrary constant. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 52. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 53. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 54. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a Proof. Check it yourself. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 55. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a Proof. Check it yourself. In particular, Fact If f(x) = ex , then F(x) = ex + C is the antiderivative of f. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 56. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 17 / 32
  • 57. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 17 / 32
  • 58. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. ln x However, using the fact that loga x = , we get: ln a Fact If f(x) = loga (x) 1 1 F(x) = (x ln x − x) + C = x loga x − x+C ln a ln a is the antiderivative of f(x). . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 17 / 32
  • 59. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 18 / 32
  • 60. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 18 / 32
  • 61. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. The function F(x) = sin x + C is the antiderivative of f(x) = cos x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 18 / 32
  • 62. More Trig Example Find an antiderivative of f(x) = tan x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 63. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 64. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 65. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d = · sec x dx sec x dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 66. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d 1 = · sec x = · sec x tan x dx sec x dx sec x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 67. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d 1 = · sec x = · sec x tan x = tan x dx sec x dx sec x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 68. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 · d sec x dx sec x = 1 sec x · sec x tan x = tan x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 69. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 · d sec x dx sec x = 1 sec x · sec x tan x = tan x More about this later. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 70. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 20 / 32
  • 71. Problem Below is the graph of a function f. Draw the graph of an antiderivative for F. y . . . . . = f(x) y . . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6 . . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 21 / 32
  • 72. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: ′ . . . . . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 73. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: ′ . .. . + . . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 74. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: ′ . .. .. . + + . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 75. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − ′ . .. .. .. . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 76. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − ′ . .. .. .. .. . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 77. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 78. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2 . . . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 79. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3 . . . . . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 80. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3↘4 . . . . . . . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 81. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3↘4↘5 . . . . . . . . . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 82. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . . . . . . . . . .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 83. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . . . . . . . max . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 84. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 85. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 86. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + . + . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 87. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − . + − . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 88. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − .. − . + − − . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 89. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − .. − .. + . + − − + .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 90. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 91. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F . ⌣ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 92. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 93. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 94. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 95. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . .F 6 . . . . . . .
  • 96. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 . 3 . 4 . 5 . .F 6 IP . . . . . . .
  • 97. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .
  • 98. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 99. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 100. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 101. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . . . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 102. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . . . . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 103. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . ..F . . . . . . hape 1 . 2 . 3 . 4 . 5 . .s 6 . . . . . .
  • 104. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . ? .. ? .. ? .. ? .. ? .. ?F .. . . . . . . . hape 1 . 2 . 3 . 4 . 5 . .s 6 The only question left is: What are the function values? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 22 / 32
  • 105. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . . .. f . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 106. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . We start with F(1) = 0. . .. f . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 107. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . We start with F(1) = 0. . .. f . . . . . . . Using the sign chart, we x . draw arcs with the 1 2 3 4 5 6 . . . . . . specified monotonicity and concavity . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 108. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . . We start with F(1) = 0. . .. f . . . . . . . Using the sign chart, we x . draw arcs with the 1 2 3 4 5 6 . . . . . . specified monotonicity and concavity . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 109. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . . We start with F(1) = 0. . .. f . . . . . . . Using the sign chart, we x . draw arcs with the 1 2 3 4 5 6 . . . . . . specified monotonicity and concavity . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .