SlideShare uma empresa Scribd logo
1 de 26
Baixar para ler offline
Reverse- and Forward-
Engineering Specificity of
Carbohydrate Processing
Enzymes
The James Hutton Institute
23rd March 2016
Leighton Pritchard, Sean Chapman, Tracey Gloster, Eirini Xemantilotou
Information and Computational Sciences
The James Hutton Institute
Acceptable Use Policy
Recording of this talk, taking photos, discussing the content using
email, Twitter, blogs, etc. is permitted (and encouraged),
providing distraction to others during the presentation is minimised.
These slides will be made available on SlideShare.
Project Plan
Project Start:
October 2015
Public data:
genomes
(NCBI)
Public data:
sequences
(CAZy)
Public data:
structures
(RCSB)
Identify set of
candidate diverse
enzyme families:
literature
sequence analysis
dN/dS
Determine
additional
structures
Candidate
enzyme set
Determine
assays
Directed
evolution/gene
shuffling
Saturating
single-site
mutagenesis
Screen
specificity/
activity
Library of
diverse
specificity
Sectors/
epistatic
pathways
Novel
synthetic
pathways
New waste
processing
applications
Structure-
function
relationships
Rational
engineering
of specificity
Engineering	of	plant	cell	wall	degrading	enzymes	for	enhanced	biocatalysis	in	biofuel	produc8on
REV	0.1 Project	flowchart 20/3/2016 LP
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Food or Fuel? a
a
Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033
• Biofuels: ”Riches to Rags”
• 1st generation: fuel from food crops
• 2nd generation: fuel from cellulosic crops, e.g. miscanthus,
willow
• Stealing food, or stealing land/water?
Food and Fuel? a
a
Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033
• Waste material = carbon-neutral feedstock
• Agricultural waste as feedstock?
• 2nd generation fuel from food crops?
• Maize stover, straw, sugarcane bagasse, etc.
What’s in waste? a
a
Miedes et al. (2014) Front. Plant Sci. doi:10.3389/fpls.2014.00358
• Plant primary cell walls: largely carbohydrate
• cellulose, hemicellulose, pectin, O-glycoprotein
• Plant secondary cell walls: lignocellulosic
• cellulose, xylan, lignin
• lignocellulosic biomass: only feasible renewable resource for
fuel/feedstock
Microbial Energy Research a
a
Torto-Alalibo et al. (2014) Front. Microbiol. doi:10.3389/fpls.2014.00358
• Engineered multi-enzyme processes
• Production of advanced biofuels/chemical precursors
• alcohols (butanol, isopropanol, etc.)
• processing of isoprenoids, terpenes, fatty acids, etc.
• Supplements/substitute for gasoline, diesel, jet fuel
• Manufactured/stored/distributed by existing infrastructure
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Why Dickeya a b
a
Ma et al. (2007) Phytopath. doi:10.1094/PHYTO-97-9-1150
b
Toth et al. (2011) Plant Path. doi:10.1111/j.1365-3059.2011.02427.x
• Dickeya spp.: group of significant Soft Rot Enterobacterial
pathogens
• Attacks ornamental and crop plants
• Blackleg and stem rot
• Diverse genus, wide host range
• Diverse set of Plant Cell Wall Degrading Enzymes (PCWDEs)
Processing Waste a b c
a
Beall & Ingram (1993) J. Indust. Micro. 11:151-155
b
Zhou et al. (1999) Appl. Environ. Microbiol. 65:2439-2445
c
Edwards et al. (2011) Appl. Environ. Microbiol. doi:10.1128/AEM.05700-11
• Soft rot pathogens
• Plant Cell Wall Degrading Enzymes (PCWDEs):
hydrolases and lyases
• Engineer pathogens for ethanol production?
• Beall & Ingram, 1993
• Express PCWDEs in ethanologenic E. coli?
• Zhou et al. 1999, Edwards et al. 2011
• PCWDE libraries for synthetic biology?
• SynBio is a platform technology
• automated platforms for engineered microbial pathways
(e.g. Cellulect, UoEdinburgh)
• understanding enzyme structure-function relationships
Function Space
Functional space
theoretically available to
enzyme family structure/
sequence
Functional
space
explored in
nature
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
CAZy a
a
Lombard et al. (2014) Nucl. Acids Res. doi:10.1093/nar/gkt1178
• CAZy: Carbohydrate-Active Enzymes database (http://www.cazy.org/)
• 5 Dickeya, 14 Erwinia, 9 Pectobacterium genomes
• 63 Dickeya, 66 Erwinia, 74 Pectobacterium families
• Survey/mine natural diversity of CAZymes
Pathogen Diversity a
a
Pritchard et al. (2016) Anal. Methods doi:10.1039/C5AY02550H
• 48 Dickeya, 38 Erwinia, 57 Pectobacteria genomes
• Survey/mine natural diversity of PCWDEs
Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533
Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533
0.00
0.25
0.50
0.75
1.00
ANIm_percentage_identity
Protein Structures a b
a
Chapon et al. (2001) J. Mol. Biol. doi:10.1006/jmbi.2001.4787
b
Larson et al. (2003) Biochem. doi:10.1021/bi034144c
• Several landmark enzyme structures from Dickeya
• First GH5 xylanase structure (1NOF)
• Cel5 (1EGZ)
• Obtain novel structures for Dickeya CAZymes
Project Plan
Project Start:
October 2015
Public data:
genomes
(NCBI)
Public data:
sequences
(CAZy)
Public data:
structures
(RCSB)
Identify set of
candidate diverse
enzyme families:
literature
sequence analysis
dN/dS
Determine
additional
structures
Candidate
enzyme set
Determine
assays
Directed
evolution/gene
shuffling
Saturating
single-site
mutagenesis
Screen
specificity/
activity
Library of
diverse
specificity
Sectors/
epistatic
pathways
Novel
synthetic
pathways
New waste
processing
applications
Structure-
function
relationships
Rational
engineering
of specificity
Engineering	of	plant	cell	wall	degrading	enzymes	for	enhanced	biocatalysis	in	biofuel	produc8on
REV	0.1 Project	flowchart 20/3/2016 LP
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Generate Diversity
• Gene shuffling/directed evolution
• Saturating site-directed mutagenesis
Functional space
theoretically available to enzyme family
structure/sequence
Functional
space explored
in nature
Gene Shuffling a
a
Crameri et al. (1998) Nature doi:10.1038/34663
• Generate novel diversity and select for substrate specificity
Positional epistasis a
a
McLaughlin et al. (2012) Nature doi:10.1038/nature11500
• Context-dependence of mutation and function: epistasis
• “hotspots”/pathways for control of substrate specificity
• Saturated single substitutions, with substrate assay screens
Protein Sectors a b
a
Pritchard & Dufton (2000) J. Theor. Biol. doi:10.1006/jtbi.1999.1043
b
Halabi et al. (2009) Cell doi:10.1016/j.cell.2009.07.038
• Sequence diversity and protein structure enables:
• Correlated mutation/conservation analysis
• Decomposition of structure into ”sectors”
• Sectors: subdomain structural/functional organisation of
proteins
Project Plan
Project Start:
October 2015
Public data:
genomes
(NCBI)
Public data:
sequences
(CAZy)
Public data:
structures
(RCSB)
Identify set of
candidate diverse
enzyme families:
literature
sequence analysis
dN/dS
Determine
additional
structures
Candidate
enzyme set
Determine
assays
Directed
evolution/gene
shuffling
Saturating
single-site
mutagenesis
Screen
specificity/
activity
Library of
diverse
specificity
Sectors/
epistatic
pathways
Novel
synthetic
pathways
New waste
processing
applications
Structure-
function
relationships
Rational
engineering
of specificity
Engineering	of	plant	cell	wall	degrading	enzymes	for	enhanced	biocatalysis	in	biofuel	produc8on
REV	0.1 Project	flowchart 20/3/2016 LP
Anticipated Outputs
• Libraries of carbohydrate-processing enzymes for SynBio
• Survey of natural PCWDE diversity
• Novel specificity variants from gene shuffling
• Saturated site-specific mutagenesis libraries for screening
against novel substrates
• IP?
• Structure-function insight
• New PCWDE enzyme structures
• Sector and epistasis maps for PCWDEs
• Reverse-engineering of carbohydrate-processing enzymes
• Empirically-improved enzymes
• Gene-shuffling targeted to novel specificity
• Forward-engineering of carbohydrate-processing enzymes
• IP?
Table of Contents
Challenge: Food or Fuel, or Both?
Food or Fuel?
Microbial Energy Production
Insight: Dickeya
Why Dickeya?
Action: Compiling a Library
Natural Diversity
Outcome: Exploiting Diversity
Protein Sectors and Epistasis
Project Plan
Acknowledgements
Without Whom. . .
Acknowledgements
Project
Eirini Xemantilotou (UoStA/JHI)
Sean Chapman (JHI)
Tracey Gloster (UoStA)
Judith Huggan (IBioIC)
JHI
Sonia Humphris
Emma Campbell
Ian Toth

Mais conteúdo relacionado

Mais procurados

Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
hemantbreeder
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
Amol Kunde
 
Bioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomicsBioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomics
juancarlosrise
 
DNA Sequencing in Phylogeny
DNA Sequencing in PhylogenyDNA Sequencing in Phylogeny
DNA Sequencing in Phylogeny
Bikash1489
 
[2013.09.27] extracting genomes from metagenomes
[2013.09.27] extracting genomes from metagenomes[2013.09.27] extracting genomes from metagenomes
[2013.09.27] extracting genomes from metagenomes
Mads Albertsen
 
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike SnyderPersonalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
The Hive
 

Mais procurados (20)

Molecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contructionMolecular basis of evolution and softwares used in phylogenetic tree contruction
Molecular basis of evolution and softwares used in phylogenetic tree contruction
 
BITS - Introduction to comparative genomics
BITS - Introduction to comparative genomicsBITS - Introduction to comparative genomics
BITS - Introduction to comparative genomics
 
Comparative genomics 2
Comparative genomics 2Comparative genomics 2
Comparative genomics 2
 
BITS - Comparative genomics on the genome level
BITS - Comparative genomics on the genome levelBITS - Comparative genomics on the genome level
BITS - Comparative genomics on the genome level
 
Comparitive genomics
Comparitive genomicsComparitive genomics
Comparitive genomics
 
Comparative genomics in eukaryotes, organelles
Comparative genomics in eukaryotes, organellesComparative genomics in eukaryotes, organelles
Comparative genomics in eukaryotes, organelles
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Types of genomics ppt
Types of genomics pptTypes of genomics ppt
Types of genomics ppt
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Comparative and functional genomics
Comparative and functional genomicsComparative and functional genomics
Comparative and functional genomics
 
Microbial Phylogenomics (EVE161) Class 17: Genomes from Uncultured
Microbial Phylogenomics (EVE161) Class 17: Genomes from UnculturedMicrobial Phylogenomics (EVE161) Class 17: Genomes from Uncultured
Microbial Phylogenomics (EVE161) Class 17: Genomes from Uncultured
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
What is comparative genomics
What is comparative genomicsWhat is comparative genomics
What is comparative genomics
 
A Systems Biology Approach to Natural Products Research
A Systems Biology Approach to Natural Products ResearchA Systems Biology Approach to Natural Products Research
A Systems Biology Approach to Natural Products Research
 
Molecular evolution
Molecular evolutionMolecular evolution
Molecular evolution
 
Bioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomicsBioinformatics, comparative genemics and proteomics
Bioinformatics, comparative genemics and proteomics
 
DNA Sequencing in Phylogeny
DNA Sequencing in PhylogenyDNA Sequencing in Phylogeny
DNA Sequencing in Phylogeny
 
Genomics and proteomics ppt
Genomics and proteomics pptGenomics and proteomics ppt
Genomics and proteomics ppt
 
[2013.09.27] extracting genomes from metagenomes
[2013.09.27] extracting genomes from metagenomes[2013.09.27] extracting genomes from metagenomes
[2013.09.27] extracting genomes from metagenomes
 
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike SnyderPersonalized Medicine and the Omics Revolution by Professor Mike Snyder
Personalized Medicine and the Omics Revolution by Professor Mike Snyder
 

Destaque

04 Immobilisation of Enzymes
04 Immobilisation of Enzymes04 Immobilisation of Enzymes
04 Immobilisation of Enzymes
Jaya Kumar
 
Enzymes and digestion
Enzymes and digestionEnzymes and digestion
Enzymes and digestion
clairebloom
 
Effect of pH on enzymes
Effect of pH on enzymesEffect of pH on enzymes
Effect of pH on enzymes
ivanmosley
 
Chap 10 enzyme
Chap 10 enzymeChap 10 enzyme
Chap 10 enzyme
erelina
 
Software Reengineering
Software ReengineeringSoftware Reengineering
Software Reengineering
Abdul Wahid
 
Reengineering including reverse & forward Engineering
Reengineering including reverse & forward EngineeringReengineering including reverse & forward Engineering
Reengineering including reverse & forward Engineering
Muhammad Chaudhry
 
Chapter 3 immobilized enzymes
Chapter 3 immobilized enzymesChapter 3 immobilized enzymes
Chapter 3 immobilized enzymes
Genevia Vincent
 
Effect of Temperature and pH on enzyme activity
Effect of Temperature and pH on enzyme activityEffect of Temperature and pH on enzyme activity
Effect of Temperature and pH on enzyme activity
clairebloom
 
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to EnzymesChapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
j3di79
 
Reverse engineering
Reverse engineeringReverse engineering
Reverse engineering
Saswat Padhi
 

Destaque (20)

Software re engineering
Software re engineeringSoftware re engineering
Software re engineering
 
Reverse engineering
Reverse engineeringReverse engineering
Reverse engineering
 
04 Immobilisation of Enzymes
04 Immobilisation of Enzymes04 Immobilisation of Enzymes
04 Immobilisation of Enzymes
 
chemistry of enzymes, ES complex theories, co factors and coenzymes
chemistry of enzymes, ES complex theories, co factors and coenzymeschemistry of enzymes, ES complex theories, co factors and coenzymes
chemistry of enzymes, ES complex theories, co factors and coenzymes
 
Enzymes and digestion
Enzymes and digestionEnzymes and digestion
Enzymes and digestion
 
Effect of pH on enzymes
Effect of pH on enzymesEffect of pH on enzymes
Effect of pH on enzymes
 
A Presentation on Enzymes & Co-Enzymes
A Presentation on Enzymes & Co-EnzymesA Presentation on Enzymes & Co-Enzymes
A Presentation on Enzymes & Co-Enzymes
 
Chap 10 enzyme
Chap 10 enzymeChap 10 enzyme
Chap 10 enzyme
 
Presentation on Amylase enzyme
Presentation on Amylase enzyme Presentation on Amylase enzyme
Presentation on Amylase enzyme
 
Software Reengineering
Software ReengineeringSoftware Reengineering
Software Reengineering
 
Digestion, Absorption and Enzymes
Digestion, Absorption and EnzymesDigestion, Absorption and Enzymes
Digestion, Absorption and Enzymes
 
Reengineering including reverse & forward Engineering
Reengineering including reverse & forward EngineeringReengineering including reverse & forward Engineering
Reengineering including reverse & forward Engineering
 
Biochemical principles of enzyme action
Biochemical principles of enzyme actionBiochemical principles of enzyme action
Biochemical principles of enzyme action
 
Software Reengineering
Software ReengineeringSoftware Reengineering
Software Reengineering
 
Chapter 3 immobilized enzymes
Chapter 3 immobilized enzymesChapter 3 immobilized enzymes
Chapter 3 immobilized enzymes
 
Factors affecting enzymes
Factors affecting enzymesFactors affecting enzymes
Factors affecting enzymes
 
Effect of Temperature and pH on enzyme activity
Effect of Temperature and pH on enzyme activityEffect of Temperature and pH on enzyme activity
Effect of Temperature and pH on enzyme activity
 
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to EnzymesChapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
 
Reverse engineering
Reverse engineeringReverse engineering
Reverse engineering
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 

Semelhante a Reverse-and forward-engineering specificity of carbohydrate-processing enzymes

JulieKlein_Bosc2012
JulieKlein_Bosc2012JulieKlein_Bosc2012
JulieKlein_Bosc2012
KUPKB_Team
 
57.insilico studies of cellulase from Aspergillus terreus
57.insilico studies of cellulase from Aspergillus terreus57.insilico studies of cellulase from Aspergillus terreus
57.insilico studies of cellulase from Aspergillus terreus
Annadurai B
 
Web Apollo at Genome Informatics 2014
Web Apollo at Genome Informatics 2014Web Apollo at Genome Informatics 2014
Web Apollo at Genome Informatics 2014
Monica Munoz-Torres
 
Apollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
Apollo and i5K: Collaborative Curation and Interactive Analysis of GenomesApollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
Apollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
Monica Munoz-Torres
 

Semelhante a Reverse-and forward-engineering specificity of carbohydrate-processing enzymes (20)

Web Apollo: Lessons learned from community-based biocuration efforts.
Web Apollo: Lessons learned from community-based biocuration efforts.Web Apollo: Lessons learned from community-based biocuration efforts.
Web Apollo: Lessons learned from community-based biocuration efforts.
 
The Emerging Global Community of Microbial Metagenomics Researchers
The Emerging Global Community of Microbial Metagenomics ResearchersThe Emerging Global Community of Microbial Metagenomics Researchers
The Emerging Global Community of Microbial Metagenomics Researchers
 
JBEI Highlights - August 2014
JBEI Highlights - August 2014JBEI Highlights - August 2014
JBEI Highlights - August 2014
 
J Klein - KUPKB: sharing, connecting and exposing kidney and urinary knowledg...
J Klein - KUPKB: sharing, connecting and exposing kidney and urinary knowledg...J Klein - KUPKB: sharing, connecting and exposing kidney and urinary knowledg...
J Klein - KUPKB: sharing, connecting and exposing kidney and urinary knowledg...
 
JulieKlein_Bosc2012
JulieKlein_Bosc2012JulieKlein_Bosc2012
JulieKlein_Bosc2012
 
57.insilico studies of cellulase from Aspergillus terreus
57.insilico studies of cellulase from Aspergillus terreus57.insilico studies of cellulase from Aspergillus terreus
57.insilico studies of cellulase from Aspergillus terreus
 
JBEI Publications November 2020
JBEI Publications November 2020JBEI Publications November 2020
JBEI Publications November 2020
 
Collaboratively Creating the Knowledge Graph of Life
Collaboratively Creating the Knowledge Graph of LifeCollaboratively Creating the Knowledge Graph of Life
Collaboratively Creating the Knowledge Graph of Life
 
Connecting life sciences data at the European Bioinformatics Institute
Connecting life sciences data at the European Bioinformatics InstituteConnecting life sciences data at the European Bioinformatics Institute
Connecting life sciences data at the European Bioinformatics Institute
 
JBEI Research Highlight Slides - April 2023
JBEI Research Highlight Slides - April 2023JBEI Research Highlight Slides - April 2023
JBEI Research Highlight Slides - April 2023
 
eScience-School-Oct2012-Campinas-Brazil
eScience-School-Oct2012-Campinas-BrazileScience-School-Oct2012-Campinas-Brazil
eScience-School-Oct2012-Campinas-Brazil
 
JBEI Highlights June 2016
JBEI Highlights June 2016JBEI Highlights June 2016
JBEI Highlights June 2016
 
Web Apollo at Genome Informatics 2014
Web Apollo at Genome Informatics 2014Web Apollo at Genome Informatics 2014
Web Apollo at Genome Informatics 2014
 
JBEI Highlights March 2015
JBEI Highlights March 2015JBEI Highlights March 2015
JBEI Highlights March 2015
 
Advanced Bioinformatics for Genomics and BioData Driven Research
Advanced Bioinformatics for Genomics and BioData Driven ResearchAdvanced Bioinformatics for Genomics and BioData Driven Research
Advanced Bioinformatics for Genomics and BioData Driven Research
 
Supporting researchers in the molecular life sciences Jeff Christiansen
Supporting researchers in the molecular life sciences Jeff Christiansen Supporting researchers in the molecular life sciences Jeff Christiansen
Supporting researchers in the molecular life sciences Jeff Christiansen
 
Introduction to bioinformatics
Introduction to bioinformaticsIntroduction to bioinformatics
Introduction to bioinformatics
 
Apollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
Apollo and i5K: Collaborative Curation and Interactive Analysis of GenomesApollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
Apollo and i5K: Collaborative Curation and Interactive Analysis of Genomes
 
Biodiversity Virtual e-Laboratory (BioVeL)
Biodiversity Virtual e-Laboratory (BioVeL)Biodiversity Virtual e-Laboratory (BioVeL)
Biodiversity Virtual e-Laboratory (BioVeL)
 
What should Bioinformatics do for EvoDevo?
What should Bioinformatics do for EvoDevo?What should Bioinformatics do for EvoDevo?
What should Bioinformatics do for EvoDevo?
 

Mais de Leighton Pritchard

Mais de Leighton Pritchard (20)

In a Different Class?
In a Different Class?In a Different Class?
In a Different Class?
 
RDVW Hands-on session: Python
RDVW Hands-on session: PythonRDVW Hands-on session: Python
RDVW Hands-on session: Python
 
Little Rotters: Adventures With Plant-Pathogenic Bacteria
Little Rotters: Adventures With Plant-Pathogenic BacteriaLittle Rotters: Adventures With Plant-Pathogenic Bacteria
Little Rotters: Adventures With Plant-Pathogenic Bacteria
 
Pathogen Genome Data
Pathogen Genome DataPathogen Genome Data
Pathogen Genome Data
 
Whole genome taxonomic classi cation for prokaryotic plant pathogens
Whole genome taxonomic classication for prokaryotic plant pathogensWhole genome taxonomic classication for prokaryotic plant pathogens
Whole genome taxonomic classi cation for prokaryotic plant pathogens
 
Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Genomics and Bioinformatics: BM405 (2015)Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Genomics and Bioinformatics: BM405 (2015)
 
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
Microbial Agrogenomics 4/2/2015, UK-MX WorkshopMicrobial Agrogenomics 4/2/2015, UK-MX Workshop
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
 
BM405 Lecture Slides 21/11/2014 University of Strathclyde
BM405 Lecture Slides 21/11/2014 University of StrathclydeBM405 Lecture Slides 21/11/2014 University of Strathclyde
BM405 Lecture Slides 21/11/2014 University of Strathclyde
 
Sequencing and Beyond?
Sequencing and Beyond?Sequencing and Beyond?
Sequencing and Beyond?
 
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
Highly Discriminatory Diagnostic Primer Design From Whole Genome DataHighly Discriminatory Diagnostic Primer Design From Whole Genome Data
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
 
ICSB 2013 - Visits Abroad Report
ICSB 2013 - Visits Abroad ReportICSB 2013 - Visits Abroad Report
ICSB 2013 - Visits Abroad Report
 
Adventures in Bioinformatics (2012)
Adventures in Bioinformatics (2012)Adventures in Bioinformatics (2012)
Adventures in Bioinformatics (2012)
 
Golden Rules of Bioinformatics
Golden Rules of BioinformaticsGolden Rules of Bioinformatics
Golden Rules of Bioinformatics
 
Plant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In SequencesPlant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In Sequences
 
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
Repeatable plant pathology bioinformatic analysis: Not everything is NGS dataRepeatable plant pathology bioinformatic analysis: Not everything is NGS data
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
 
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
 
Rapid generation of E.coli O104:H4 PCR diagnostics
Rapid generation of E.coli O104:H4 PCR diagnosticsRapid generation of E.coli O104:H4 PCR diagnostics
Rapid generation of E.coli O104:H4 PCR diagnostics
 
Introduction to Bioinformatics
Introduction to BioinformaticsIntroduction to Bioinformatics
Introduction to Bioinformatics
 
Mining Plant Pathogen Genomes for Effectors
Mining Plant Pathogen Genomes for EffectorsMining Plant Pathogen Genomes for Effectors
Mining Plant Pathogen Genomes for Effectors
 
A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin
A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, TurinA Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin
A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin
 

Último

Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
ANSARKHAN96
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 

Último (20)

Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 

Reverse-and forward-engineering specificity of carbohydrate-processing enzymes

  • 1. Reverse- and Forward- Engineering Specificity of Carbohydrate Processing Enzymes The James Hutton Institute 23rd March 2016 Leighton Pritchard, Sean Chapman, Tracey Gloster, Eirini Xemantilotou Information and Computational Sciences The James Hutton Institute
  • 2. Acceptable Use Policy Recording of this talk, taking photos, discussing the content using email, Twitter, blogs, etc. is permitted (and encouraged), providing distraction to others during the presentation is minimised. These slides will be made available on SlideShare.
  • 3. Project Plan Project Start: October 2015 Public data: genomes (NCBI) Public data: sequences (CAZy) Public data: structures (RCSB) Identify set of candidate diverse enzyme families: literature sequence analysis dN/dS Determine additional structures Candidate enzyme set Determine assays Directed evolution/gene shuffling Saturating single-site mutagenesis Screen specificity/ activity Library of diverse specificity Sectors/ epistatic pathways Novel synthetic pathways New waste processing applications Structure- function relationships Rational engineering of specificity Engineering of plant cell wall degrading enzymes for enhanced biocatalysis in biofuel produc8on REV 0.1 Project flowchart 20/3/2016 LP
  • 4. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 5. Food or Fuel? a a Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033 • Biofuels: ”Riches to Rags” • 1st generation: fuel from food crops • 2nd generation: fuel from cellulosic crops, e.g. miscanthus, willow • Stealing food, or stealing land/water?
  • 6. Food and Fuel? a a Mohr & Rahman et al. (2013) Energy Policy doi:10.1016/j.enpol.2013.08.033 • Waste material = carbon-neutral feedstock • Agricultural waste as feedstock? • 2nd generation fuel from food crops? • Maize stover, straw, sugarcane bagasse, etc.
  • 7. What’s in waste? a a Miedes et al. (2014) Front. Plant Sci. doi:10.3389/fpls.2014.00358 • Plant primary cell walls: largely carbohydrate • cellulose, hemicellulose, pectin, O-glycoprotein • Plant secondary cell walls: lignocellulosic • cellulose, xylan, lignin • lignocellulosic biomass: only feasible renewable resource for fuel/feedstock
  • 8. Microbial Energy Research a a Torto-Alalibo et al. (2014) Front. Microbiol. doi:10.3389/fpls.2014.00358 • Engineered multi-enzyme processes • Production of advanced biofuels/chemical precursors • alcohols (butanol, isopropanol, etc.) • processing of isoprenoids, terpenes, fatty acids, etc. • Supplements/substitute for gasoline, diesel, jet fuel • Manufactured/stored/distributed by existing infrastructure
  • 9. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 10. Why Dickeya a b a Ma et al. (2007) Phytopath. doi:10.1094/PHYTO-97-9-1150 b Toth et al. (2011) Plant Path. doi:10.1111/j.1365-3059.2011.02427.x • Dickeya spp.: group of significant Soft Rot Enterobacterial pathogens • Attacks ornamental and crop plants • Blackleg and stem rot • Diverse genus, wide host range • Diverse set of Plant Cell Wall Degrading Enzymes (PCWDEs)
  • 11. Processing Waste a b c a Beall & Ingram (1993) J. Indust. Micro. 11:151-155 b Zhou et al. (1999) Appl. Environ. Microbiol. 65:2439-2445 c Edwards et al. (2011) Appl. Environ. Microbiol. doi:10.1128/AEM.05700-11 • Soft rot pathogens • Plant Cell Wall Degrading Enzymes (PCWDEs): hydrolases and lyases • Engineer pathogens for ethanol production? • Beall & Ingram, 1993 • Express PCWDEs in ethanologenic E. coli? • Zhou et al. 1999, Edwards et al. 2011 • PCWDE libraries for synthetic biology? • SynBio is a platform technology • automated platforms for engineered microbial pathways (e.g. Cellulect, UoEdinburgh) • understanding enzyme structure-function relationships
  • 12. Function Space Functional space theoretically available to enzyme family structure/ sequence Functional space explored in nature
  • 13. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 14. CAZy a a Lombard et al. (2014) Nucl. Acids Res. doi:10.1093/nar/gkt1178 • CAZy: Carbohydrate-Active Enzymes database (http://www.cazy.org/) • 5 Dickeya, 14 Erwinia, 9 Pectobacterium genomes • 63 Dickeya, 66 Erwinia, 74 Pectobacterium families • Survey/mine natural diversity of CAZymes
  • 15. Pathogen Diversity a a Pritchard et al. (2016) Anal. Methods doi:10.1039/C5AY02550H • 48 Dickeya, 38 Erwinia, 57 Pectobacteria genomes • Survey/mine natural diversity of PCWDEs Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533 Pectobacterium_atrosepticum_SCRI1043_uid57957Pectobacterium_atrosepticum_NCPPB8549Pectobacterium_atrosepticum_NCPPB3404Pectobacterium_atrosepticum_21APectobacterium_atrosepticum_JG10-08Pectobacterium_carotovorum_PC1_uid59295Pectobacterium_carotovorum_subsp_carotovorum_NCPPB312Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3841Pectobacterium_carotovorum_subsp_oderiferum_NCPPB3839Pectobacterium_carotovorum_subsp_carotovorum_NCPPB3395Pectobacterium_carotovorum_PCC21_uid174335Pectobacterium_carotovorum_subsp_brasiliensis_B5Pectobacterium_carotovorum_subsp_brasiliensis_B4Pectobacterium_betavasculorum_NCPPB2293Pectobacterium_betavasculorum_NCPPB2795Pectobacterium_wasabiae_NCPPB3702Pectobacterium_wasabiae_NCPPB3701Pectobacterium_wasabiae_WPP163_uid41297Pectobacterium_SCC3193_uid193707Dickeya_solani_AMYI01Dickeya_solani_AMWE01Dickeya_solani_GBBC2040Dickeya_solani_IPO2222Dickeya_solani_MK16Dickeya_solani_MK10Dickeya_dianthicola_NCPPB_3534Dickeya_dianthicola_GBBC2039Dickeya_dianthicola_NCPPB_453Dickeya_dianthicola_IPO980Dickeya_spp_NCPPB_3274Dickeya_spp_MK7Dickeya_dadantii_NCPPB_2976Dickeya_dadantii_NCPPB_898Dickeya_dadantii_NCPPB_3537Dickeya_dadantii_3937_uid52537Pantoea_ananatis_AJ13355_uid162073Pantoea_ananatis_LMG_20103_uid46807Pantoea_ananatis_PA13_uid162181Pantoea_ananatis_uid86861Erwinia_amylovora_CFBP1430_uid46839Erwinia_amylovora_ATCC_49946_uid46943Erwinia_Ejp617_uid159955Erwinia_pyrifoliae_Ep1_96_uid40659Erwinia_pyrifoliae_DSM_12163_uid159693Dickeya_dadantii_Ech703_uid59363Dickeya_paradisiaca_NCPPB_2511Dickeya_aquatica_DW_0440Dickeya_aquatica_CSL_RW240Erwinia_tasmaniensis_Et1_99_uid59029Pantoea_At_9b_uid55845Pantoea_vagans_C9_1_uid49871Erwinia_billingiae_Eb661_uid50547Dickeya_zeae_APMV01Dickeya_zeae_AJVN01Dickeya_zeae_CSL_RW192Dickeya_zeae_NCPPB_3531Dickeya_dadantii_Ech586_uid42519Dickeya_zeae_APWM01Dickeya_zeae_NCPPB_2538Dickeya_zeae_MK19Dickeya_zeae_NCPPB_3532Dickeya_spp_NCPPB_569Dickeya_chrysanthami_NCPPB_402Dickeya_chrysanthami_NCPPB_516Dickeya_zeae_Ech1591_uid59297Dickeya_chrysanthami_NCPPB_3533 0.00 0.25 0.50 0.75 1.00 ANIm_percentage_identity
  • 16. Protein Structures a b a Chapon et al. (2001) J. Mol. Biol. doi:10.1006/jmbi.2001.4787 b Larson et al. (2003) Biochem. doi:10.1021/bi034144c • Several landmark enzyme structures from Dickeya • First GH5 xylanase structure (1NOF) • Cel5 (1EGZ) • Obtain novel structures for Dickeya CAZymes
  • 17. Project Plan Project Start: October 2015 Public data: genomes (NCBI) Public data: sequences (CAZy) Public data: structures (RCSB) Identify set of candidate diverse enzyme families: literature sequence analysis dN/dS Determine additional structures Candidate enzyme set Determine assays Directed evolution/gene shuffling Saturating single-site mutagenesis Screen specificity/ activity Library of diverse specificity Sectors/ epistatic pathways Novel synthetic pathways New waste processing applications Structure- function relationships Rational engineering of specificity Engineering of plant cell wall degrading enzymes for enhanced biocatalysis in biofuel produc8on REV 0.1 Project flowchart 20/3/2016 LP
  • 18. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 19. Generate Diversity • Gene shuffling/directed evolution • Saturating site-directed mutagenesis Functional space theoretically available to enzyme family structure/sequence Functional space explored in nature
  • 20. Gene Shuffling a a Crameri et al. (1998) Nature doi:10.1038/34663 • Generate novel diversity and select for substrate specificity
  • 21. Positional epistasis a a McLaughlin et al. (2012) Nature doi:10.1038/nature11500 • Context-dependence of mutation and function: epistasis • “hotspots”/pathways for control of substrate specificity • Saturated single substitutions, with substrate assay screens
  • 22. Protein Sectors a b a Pritchard & Dufton (2000) J. Theor. Biol. doi:10.1006/jtbi.1999.1043 b Halabi et al. (2009) Cell doi:10.1016/j.cell.2009.07.038 • Sequence diversity and protein structure enables: • Correlated mutation/conservation analysis • Decomposition of structure into ”sectors” • Sectors: subdomain structural/functional organisation of proteins
  • 23. Project Plan Project Start: October 2015 Public data: genomes (NCBI) Public data: sequences (CAZy) Public data: structures (RCSB) Identify set of candidate diverse enzyme families: literature sequence analysis dN/dS Determine additional structures Candidate enzyme set Determine assays Directed evolution/gene shuffling Saturating single-site mutagenesis Screen specificity/ activity Library of diverse specificity Sectors/ epistatic pathways Novel synthetic pathways New waste processing applications Structure- function relationships Rational engineering of specificity Engineering of plant cell wall degrading enzymes for enhanced biocatalysis in biofuel produc8on REV 0.1 Project flowchart 20/3/2016 LP
  • 24. Anticipated Outputs • Libraries of carbohydrate-processing enzymes for SynBio • Survey of natural PCWDE diversity • Novel specificity variants from gene shuffling • Saturated site-specific mutagenesis libraries for screening against novel substrates • IP? • Structure-function insight • New PCWDE enzyme structures • Sector and epistasis maps for PCWDEs • Reverse-engineering of carbohydrate-processing enzymes • Empirically-improved enzymes • Gene-shuffling targeted to novel specificity • Forward-engineering of carbohydrate-processing enzymes • IP?
  • 25. Table of Contents Challenge: Food or Fuel, or Both? Food or Fuel? Microbial Energy Production Insight: Dickeya Why Dickeya? Action: Compiling a Library Natural Diversity Outcome: Exploiting Diversity Protein Sectors and Epistasis Project Plan Acknowledgements Without Whom. . .
  • 26. Acknowledgements Project Eirini Xemantilotou (UoStA/JHI) Sean Chapman (JHI) Tracey Gloster (UoStA) Judith Huggan (IBioIC) JHI Sonia Humphris Emma Campbell Ian Toth