SlideShare uma empresa Scribd logo
1 de 151
Baixar para ler offline
A	
  Systems	
  Biology	
  Perspec2ve	
  on	
  
Plant-­‐Pathogen	
  Interac2ons	
  
Leighton	
  Pritchard	
  
A	
  Con2nuum	
  
l Pathogenicity	
  is	
  a	
  loaded	
  term:	
  
l  o4en	
  reflects	
  human	
  interest	
  in	
  the	
  system	
  
l  disease	
  on	
  crop	
  plants	
  could	
  be	
  coincidental	
  to	
  ‘wild	
  type’	
  interac<ons	
  
l A	
  con<nuum	
  of	
  interac<on	
  modes,	
  including	
  symbiosis	
  and	
  
pathogenicity	
  
l The	
  loca<on	
  of	
  the	
  system	
  on	
  this	
  con<nuum	
  may	
  depend	
  on	
  context	
  
l  e.g.	
  Pectobacterium	
  atrosep/cum:potato	
  
no	
  impact	
   host	
  death	
  
A	
  basic	
  observa2on	
  
Pathogen	
  Host	
  
Biological	
  cells	
  (and	
  organisms)	
  can	
  be	
  represented	
  	
  
as	
  networks	
  
Biological	
  networks	
  
l Common	
  way	
  to	
  represent	
  structure	
  
l  Several	
  biological	
  subsystems	
  are	
  networks	
  
l Universal	
  representa<on	
  
l  All	
  biological	
  systems	
  have	
  parts	
  that	
  can	
  be	
  represented	
  
as	
  networks	
  
l Networks	
  (a.k.a.	
  graphs)	
  are	
  mathema<cally	
  well-­‐
understood:	
  Graph	
  Theory	
  
l  Many	
  tools	
  exist,	
  relevant	
  to	
  biology	
  
Biological	
  networks	
  
l Common	
  way	
  to	
  represent	
  structure	
  
l  Several	
  biological	
  subsystems	
  are	
  networks	
  
l Universal	
  representa<on	
  
l  All	
  biological	
  systems	
  have	
  parts	
  that	
  can	
  be	
  represented	
  
as	
  networks	
  
l Networks	
  (a.k.a.	
  graphs)	
  are	
  mathema<cally	
  well-­‐
understood:	
  Graph	
  Theory	
  
l  Many	
  tools	
  exist,	
  relevant	
  to	
  biology	
  
Biological	
  networks	
  
l Metabolic	
  networks	
  (e.g.	
  KEGG)	
  
(generic)	
  Michal	
  (Ed.),	
  Biochemical	
  Pathways,	
  John	
  Wiley	
  and	
  Sons,	
  New	
  York,	
  1999.	
  	
  
Biological	
  networks	
  
l Regulatory/signalling	
  networks	
  
(mouse)	
  (Drosophila)	
  
Biological	
  networks	
  
l Protein-­‐protein	
  interac<on	
  networks	
  
(Arabidopsis/H.arabidopsidis/P.syringae)	
  (yeast)	
  
Biological	
  networks	
  
l Common	
  way	
  to	
  represent	
  structure	
  
l  Several	
  biological	
  subsystems	
  are	
  networks	
  
l Universal	
  representa<on	
  
l  All	
  biological	
  systems	
  have	
  parts	
  that	
  can	
  be	
  represented	
  
as	
  networks	
  
l Networks	
  (a.k.a.	
  graphs)	
  are	
  mathema<cally	
  well-­‐
understood:	
  Graph	
  Theory	
  
l  Many	
  tools	
  exist,	
  relevant	
  to	
  biology	
  
What	
  is	
  a	
  network?	
  
l Networks	
  have	
  nodes	
  (a.k.a.	
  ver<ces)	
  
l  Nodes	
  typically	
  represent	
  ‘things’:	
  
„ proteins,	
  chemical	
  compounds,	
  people,	
  towns,	
  junc<ons…	
  
l Nodes	
  are	
  connected	
  by	
  edges	
  (a.k.a.	
  arcs)	
  
l  Edges	
  typically	
  indicate	
  some	
  rela<onship	
  between	
  nodes	
  
„ physical	
  interac<on,	
  substrate:product,	
  friends	
  on	
  Facebook	
  
l  Edges	
  may	
  be	
  directed	
  (from	
  one	
  node	
  to	
  another)	
  or	
  undirected	
  (no	
  or	
  
ambiguous	
  direc<on)	
  
„ chemical	
  conversion:	
  directed;	
  interac<on:	
  undirected	
  
n1	
   n2	
  
What	
  is	
  a	
  network?	
  
l Networks	
  have	
  nodes	
  (a.k.a.	
  ver<ces)	
  
l  Nodes	
  typically	
  represent	
  ‘things’:	
  
„ proteins,	
  chemical	
  compounds,	
  people,	
  towns,	
  junc<ons…	
  
l Nodes	
  are	
  connected	
  by	
  edges	
  (a.k.a.	
  arcs)	
  
l  Edges	
  typically	
  indicate	
  some	
  rela<onship	
  between	
  nodes	
  
„ physical	
  interac<on,	
  substrate:product,	
  friends	
  on	
  Facebook	
  
l  Edges	
  may	
  be	
  directed	
  (from	
  one	
  node	
  to	
  another)	
  or	
  undirected	
  (no	
  or	
  
ambiguous	
  direc<on)	
  
„ chemical	
  conversion:	
  directed;	
  interac<on:	
  undirected	
  
n1	
   n2	
  
What	
  is	
  a	
  network?	
  
l Networks	
  have	
  nodes	
  (a.k.a.	
  ver<ces)	
  
l  Nodes	
  typically	
  represent	
  ‘things’:	
  
„ proteins,	
  chemical	
  compounds,	
  people,	
  towns,	
  junc<ons…	
  
l Nodes	
  are	
  connected	
  by	
  edges	
  (a.k.a.	
  arcs)	
  
l  Edges	
  typically	
  indicate	
  some	
  rela<onship	
  between	
  nodes	
  
„ physical	
  interac<on,	
  substrate:product,	
  friends	
  on	
  Facebook	
  
l  Edges	
  may	
  be	
  directed	
  (from	
  one	
  node	
  to	
  another)	
  or	
  undirected	
  (no	
  or	
  
ambiguous	
  direc<on)	
  
„ chemical	
  conversion:	
  directed;	
  interac<on:	
  undirected	
  
n1	
   n2	
   n1	
   n2	
   n1	
   n2	
  
n1	
   n2	
  
Many	
  things	
  are	
  networks	
  
l My	
  Facebook	
  friends	
  network:	
  
l  Nodes:	
  people	
  
l  Edges:	
  friendships	
  between	
  people	
  
l Useful	
  concepts	
  for	
  biology:	
  
l  ‘friend	
  of	
  a	
  friend’;	
  ‘six	
  degrees	
  of	
  separa<on’;	
  clusters	
  of	
  friends	
  	
  
Solange Mateo Montalcini
Maeve Price
Peter Cock
Catherine Tackley
Gavin Cowie
Steffi Keir
Yvonne McAvoy
Jennifer White
Rachel Clewes
Juan Morales
Karen Faulds
David Ian Ellis
Laura Banasiak
Andrea Semião
Daniel Tackley
Andrew Lipscombe
Bleddyn Hughes
Sue Stovell
Laura Didymus
Hywel Griffiths
Charles Twist
Christian Payne
Helen Johnson
Phil Parsonage
Colin McGill
Allan N. Gunn
Will Allwood
Katherine Hollywood
Judith Robertson
Andrew Murdoch
David Broadhurst
Lydia Castelli
Miles Armstrong
Paul Keir
Fiona White Gagg
Lizzie Wilberforce
Joanne Fitchet
Laura Baxter
Alison Gilhespie
Jorunn Bos
James Gagg
Andy Smith
Clare Baxter
Susan Somerville
Neil Bhaduri
Joanna Jones
Colleen Gagg
Susan Quinn McGhee
Al Macmillan
Norman StewartKevin Knox
Susan BreenMichael Barrow
Phil Dennison
Andrew McKenzie
Matthew Blackburn
Christelle Robert
Tim Arrowsmith
Emma Robertson
Jane Ballany
Chris Thorpe
Andrew Dalke
Sonia Humphris
Juan Morales
Eleanor Gilroy
Chris McDonald
Natalie Homer
Anna Åsman
Ruth Polwart
Tim Morley
Kenny Duncan
Iddo Friedberg
Remco Stam
Ramesh Vetukuri
Louise Matheson
Simon Easterman
Philip Law
Craig Shaddy Shadbolt
Simon Garrett
Agata Kaczmarek
Simon Pendlebury
Rays Jiang
Christiane AusJena
Pedro Mendes
Iris Stone
Ingo Hein
Adriana Ravagnani
Eduard Venter
Charles Gordon
David Cooke
Jonathan Gagg
Roger Jarvis
Ross McMahon
Stefan Engelhardt
Edgar Huitema
Thomas Pritchard
Tracy Canham
Sophien Kamoun
Florietta Jupe
Ambreen Owen
Hazel McLellan
Many	
  things	
  are	
  networks	
  
l My	
  Facebook	
  friends	
  network:	
  
l  Nodes:	
  people	
  
l  Edges:	
  friendships	
  between	
  people	
  
l Useful	
  concepts	
  for	
  biology:	
  
l  ‘friend	
  of	
  a	
  friend’;	
  ‘six	
  degrees	
  of	
  separa<on’;	
  clusters	
  of	
  friends	
  	
  
Solange Mateo Montalcini
Maeve Price
Peter Cock
Catherine Tackley
Gavin Cowie
Steffi Keir
Yvonne McAvoy
Jennifer White
Rachel Clewes
Juan Morales
Karen Faulds
David Ian Ellis
Laura Banasiak
Andrea Semião
Daniel Tackley
Andrew Lipscombe
Bleddyn Hughes
Sue Stovell
Laura Didymus
Hywel Griffiths
Charles Twist
Christian Payne
Helen Johnson
Phil Parsonage
Colin McGill
Allan N. Gunn
Will Allwood
Katherine Hollywood
Judith Robertson
Andrew Murdoch
David Broadhurst
Lydia Castelli
Miles Armstrong
Paul Keir
Fiona White Gagg
Lizzie Wilberforce
Joanne Fitchet
Laura Baxter
Alison Gilhespie
Jorunn Bos
James Gagg
Andy Smith
Clare Baxter
Susan Somerville
Neil Bhaduri
Joanna Jones
Colleen Gagg
Susan Quinn McGhee
Al Macmillan
Norman StewartKevin Knox
Susan BreenMichael Barrow
Phil Dennison
Andrew McKenzie
Matthew Blackburn
Christelle Robert
Tim Arrowsmith
Emma Robertson
Jane Ballany
Chris Thorpe
Andrew Dalke
Sonia Humphris
Juan Morales
Eleanor Gilroy
Chris McDonald
Natalie Homer
Anna Åsman
Ruth Polwart
Tim Morley
Kenny Duncan
Iddo Friedberg
Remco Stam
Ramesh Vetukuri
Louise Matheson
Simon Easterman
Philip Law
Craig Shaddy Shadbolt
Simon Garrett
Agata Kaczmarek
Simon Pendlebury
Rays Jiang
Christiane AusJena
Pedro Mendes
Iris Stone
Ingo Hein
Adriana Ravagnani
Eduard Venter
Charles Gordon
David Cooke
Jonathan Gagg
Roger Jarvis
Ross McMahon
Stefan Engelhardt
Edgar Huitema
Thomas Pritchard
Tracy Canham
Sophien Kamoun
Florietta Jupe
Ambreen Owen
Hazel McLellan
Many	
  things	
  are	
  networks	
  
l  Google	
  Maps	
  
l  Nodes:	
  road	
  junc<ons	
  (and	
  end	
  points	
  in	
  culs	
  de	
  sacs)	
  
l  Edges:	
  roads	
  
l  Structure	
  view	
  
l  Flow/traffic	
  view	
  
	
  
l  Useful	
  concepts	
  for	
  biology:	
  
l  Network	
  ‘flow’	
  or	
  ‘flux’;	
  distance	
  on	
  a	
  network;	
  shortest	
  path	
  
Many	
  things	
  are	
  networks	
  
l  Google	
  Maps	
  
l  Nodes:	
  road	
  junc<ons	
  (and	
  end	
  points	
  in	
  culs	
  de	
  sacs)	
  
l  Edges:	
  roads	
  
l  Structure	
  view	
  
l  Flow/traffic	
  view	
  
	
  
l  Useful	
  concepts	
  for	
  biology:	
  
l  Network	
  ‘flow’	
  or	
  ‘flux’;	
  distance	
  on	
  a	
  network;	
  shortest	
  path	
  
Many	
  things	
  are	
  networks	
  
l  Google	
  Maps	
  
l  Nodes:	
  road	
  junc<ons	
  (and	
  end	
  points	
  in	
  culs	
  de	
  sacs)	
  
l  Edges:	
  roads	
  
l  Structure	
  view	
  
l  Flow/traffic	
  view	
  
	
  
l  Useful	
  concepts	
  for	
  biology:	
  
l  Network	
  ‘flow’	
  or	
  ‘flux’;	
  distance	
  on	
  a	
  network;	
  shortest	
  path	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
l Abstract	
  truths	
  about	
  networks	
  can	
  be	
  true	
  about	
  biology	
  
l  If	
  a	
  network	
  of	
  type	
  X	
  is	
  robust	
  to	
  random	
  damage,	
  and	
  a	
  biological	
  
network	
  is	
  of	
  type	
  X,	
  we	
  can	
  say	
  that	
  the	
  biological	
  network	
  is	
  robust	
  to	
  
random	
  damage.	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
l Abstract	
  truths	
  about	
  networks	
  can	
  be	
  true	
  about	
  biology	
  
l  If	
  a	
  network	
  of	
  type	
  X	
  is	
  robust	
  to	
  random	
  damage,	
  and	
  a	
  biological	
  
network	
  is	
  of	
  type	
  X,	
  we	
  can	
  say	
  that	
  the	
  biological	
  network	
  is	
  robust	
  to	
  
random	
  damage.	
  
Networks	
  are	
  abstract	
  
Networks	
  are	
  abstract	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
l Abstract	
  truths	
  about	
  networks	
  can	
  be	
  true	
  about	
  biology	
  
l  If	
  a	
  network	
  of	
  type	
  X	
  is	
  robust	
  to	
  random	
  damage,	
  and	
  a	
  biological	
  
network	
  is	
  of	
  type	
  X,	
  we	
  can	
  say	
  that	
  the	
  biological	
  network	
  is	
  robust	
  to	
  
random	
  damage.	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
l Any	
  network	
  with	
  this	
  structure	
  has	
  the	
  same	
  	
  
behaviour	
  
l  Behaviour	
  of	
  specific	
  regulatory	
  network	
  is	
  dictated	
  
by	
  its	
  structure:	
  
l  Behaviour	
  dependent	
  on	
  structure	
  of	
  system	
  as	
  a	
  	
  
whole:	
  need	
  to	
  understand	
  this	
  at	
  a	
  systems	
  level	
  
MacLean	
  and	
  Studholme.	
  A	
  Boolean	
  model	
  of	
  the	
  Pseudomonas	
  syringae	
  hrp	
  regulon	
  predicts	
  a	
  <ghtly	
  regulated	
  system.	
  PLoS	
  ONE	
  (2010)	
  vol.	
  5	
  (2)	
  pp.	
  e9101	
  
doi:10.1371/journal.pone.0009101	
  
Networks	
  are	
  abstract	
  
l Networks	
  are	
  collec<ons	
  of	
  nodes	
  and	
  edges	
  
l Proper<es	
  of	
  the	
  network	
  are	
  the	
  proper<es	
  of	
  that	
  collec<on	
  
l  What	
  a	
  node	
  or	
  edge	
  represents	
  is	
  not	
  important	
  
l If	
  a	
  network	
  describes	
  biology	
  well…	
  
l  …what	
  is	
  true	
  about	
  the	
  network	
  will	
  be	
  true	
  about	
  the	
  biology	
  
l  (some	
  networks	
  describe	
  biology	
  be`er	
  than	
  others)	
  
l Abstract	
  truths	
  about	
  networks	
  can	
  be	
  true	
  about	
  the	
  biology	
  they	
  
represent	
  
l  If	
  a	
  network	
  of	
  type	
  X	
  is	
  robust	
  to	
  random	
  damage,	
  and	
  a	
  biological	
  
network	
  is	
  of	
  type	
  X,	
  we	
  can	
  say	
  that	
  the	
  biological	
  network	
  is	
  robust	
  to	
  
random	
  damage.	
  
Choosing	
  a	
  representa2on	
  
l Network	
  should	
  be	
  an	
  adequate	
  representa<on	
  of	
  biology	
  
l  Choice	
  of	
  representa<on	
  should	
  suit	
  biological	
  ques<on	
  
l  e.g.	
  do	
  we	
  represent	
  chemical	
  compounds,	
  or	
  moie<es?	
  
Choosing	
  a	
  representa2on	
  
l Network	
  should	
  be	
  an	
  adequate	
  representa<on	
  of	
  biology	
  
l  Choice	
  of	
  representa<on	
  should	
  suit	
  biological	
  ques<on	
  
l  e.g.	
  do	
  we	
  represent	
  chemical	
  compounds,	
  or	
  moie<es?	
  
Choosing	
  a	
  representa2on	
  
l Network	
  should	
  be	
  an	
  adequate	
  representa<on	
  of	
  biology	
  
l  Choice	
  of	
  representa<on	
  should	
  suit	
  biological	
  ques<on	
  
l  e.g.	
  do	
  we	
  represent	
  chemical	
  compounds,	
  or	
  moie<es?	
  
Choosing	
  a	
  representa2on	
  
l What	
  does	
  this	
  diagram	
  mean?	
  
l  Are	
  all	
  enzymes	
  
expressed	
  at	
  same	
  <me?	
  
l  Are	
  all	
  enzymes	
  
expressed	
  in	
  all	
  <ssues?	
  
l  Are	
  all	
  metabolites	
  
always	
  available?	
  
l  30-­‐40%	
  of	
  metabolic	
  
ac<vity	
  has	
  no	
  known	
  
gene	
  associated	
  with	
  it	
  
(Chen	
  and	
  Vitkup.	
  Distribu<on	
  of	
  orphan	
  
metabolic	
  ac<vi<es.	
  Trends	
  Biotechnol	
  
(2007)	
  vol.	
  25	
  (8)	
  pp.	
  343-­‐348	
  doi:
10.1016/j.<btech.2007.06.001)	
  
Michal	
  (Ed.),	
  Biochemical	
  Pathways,	
  John	
  Wiley	
  and	
  Sons,	
  New	
  York,	
  1999.	
  	
  
Choosing	
  a	
  representa2on	
  
l What	
  does	
  this	
  diagram	
  mean?	
  
l  Are	
  all	
  enzymes	
  
expressed	
  at	
  same	
  <me?	
  
l  Are	
  all	
  enzymes	
  
expressed	
  in	
  all	
  <ssues?	
  
l  Are	
  all	
  metabolites	
  
always	
  available?	
  
l  30-­‐40%	
  of	
  metabolic	
  
ac<vity	
  has	
  no	
  known	
  
gene	
  associated	
  with	
  it	
  
(Chen	
  and	
  Vitkup.	
  Distribu<on	
  of	
  orphan	
  
metabolic	
  ac<vi<es.	
  Trends	
  Biotechnol	
  
(2007)	
  vol.	
  25	
  (8)	
  pp.	
  343-­‐348	
  doi:
10.1016/j.<btech.2007.06.001)	
  
Michal	
  (Ed.),	
  Biochemical	
  Pathways,	
  John	
  Wiley	
  and	
  Sons,	
  New	
  York,	
  1999.	
  	
  
Choosing	
  a	
  representa2on	
  
l Biological	
  networks	
  are	
  dynamic	
  
l  There	
  may	
  be	
  homeostasis,	
  but	
  it’s	
  dynamic	
  homeostasis	
  
l  “The	
  only	
  steady-­‐state	
  is	
  death”	
  
l What	
  kind	
  of	
  dynamics?	
  
l  Kine<c	
  equa<ons	
  
l  ODE/Stochas<c	
  representa<on	
  of	
  processes	
  
„ e.g.	
  enzyme	
  kine<cs	
  
E + S ⌦ ES ⌦ EP ! E + P
v =
[S]Vmax
[S] + [Km]
Choosing	
  a	
  representa2on	
  
l Biological	
  networks	
  are	
  dynamic	
  
l  There	
  may	
  be	
  homeostasis,	
  but	
  it’s	
  dynamic	
  homeostasis	
  
l  “The	
  only	
  steady-­‐state	
  is	
  death”	
  
l What	
  kind	
  of	
  dynamics?	
  
l  Kine<c	
  equa<ons	
  
l  ODE/Stochas<c	
  representa<on	
  of	
  processes	
  
„ e.g.	
  enzyme	
  kine<cs	
  
E + S ⌦ ES ⌦ EP ! E + P
v =
[S]Vmax
[S] + [Km]
Choosing	
  a	
  representa2on	
  
l Biological	
  networks	
  are	
  dynamic	
  
l  There	
  may	
  be	
  homeostasis,	
  but	
  it’s	
  dynamic	
  homeostasis	
  
l  “The	
  only	
  steady-­‐state	
  is	
  death”	
  
l What	
  kind	
  of	
  dynamics?	
  
l  Boolean	
  (on/off,	
  0/1)	
  
„ e.g.	
  regula<on/signalling	
  
nodes	
  
<me	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
A	
  representa<on	
  of	
  host	
  and	
  pathogen	
  as	
  two	
  networks	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
PAMP/MAMP	
  detec<on:	
  host	
  immune	
  receptor	
  detects	
  (interacts	
  
with)	
  non-­‐self	
  chemical	
  species	
  derived	
  from	
  microbe/pathogen	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
Effector	
  ac<on	
  I:	
  pathogen-­‐derived	
  species	
  (probably	
  protein)	
  
interacts	
  with	
  host	
  network	
  component	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
Effector	
  ac<on	
  II:	
  pathogen-­‐derived	
  species	
  (probably	
  protein)	
  
manipulates	
  (interacts	
  with)	
  host	
  network	
  process	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
Effector-­‐triggered	
  resistance	
  I:	
  host	
  immune	
  receptor	
  interacts	
  with	
  
pathogen-­‐derived	
  effector	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
Effector-­‐triggered	
  resistance	
  II:	
  host	
  immune	
  receptor	
  detects	
  self-­‐	
  
modifica<on	
  (induced	
  by	
  pathogen	
  effector)	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
Host-­‐pathogen	
  interac2on	
  is	
  the	
  coming	
  together	
  of	
  two	
  networks	
  into	
  a	
  single	
  
network:	
  different	
  proper2es	
  than	
  either	
  network	
  alone	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  Host	
  
How	
  does	
  this	
  affect	
  culturability?	
  	
  
Tight	
  connec2on	
  correlates	
  with	
  obligate	
  biotrophy,	
  hence	
  difficult	
  to	
  culture?	
  
Host-­‐pathogen	
  interac2on	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  
Host	
  
l How	
  does	
  host/pathogen	
  network	
  respond	
  to	
  interac<on?	
  
l What	
  is	
  best	
  way	
  to	
  a`ack	
  a	
  network?	
  
l What	
  is	
  best	
  way	
  to	
  defend	
  against	
  mul<ple	
  a`ack	
  strategies?	
  
l Are	
  some	
  parts	
  of	
  a	
  network	
  predictably	
  more	
  influen<al	
  than	
  others?	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  
Host	
  
l How	
  does	
  host/pathogen	
  network	
  respond	
  to	
  interac<on?	
  
l What	
  is	
  best	
  way	
  to	
  a`ack	
  a	
  network?	
  
l What	
  is	
  best	
  way	
  to	
  defend	
  against	
  mul<ple	
  a`ack	
  strategies?	
  
l Are	
  some	
  parts	
  of	
  a	
  network	
  predictably	
  more	
  influen<al	
  than	
  others?	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  
Host	
  
l How	
  does	
  host/pathogen	
  network	
  respond	
  to	
  interac<on?	
  
l What	
  is	
  best	
  way	
  to	
  a`ack	
  a	
  network?	
  
l What	
  is	
  best	
  way	
  to	
  defend	
  against	
  mul<ple	
  a`ack	
  strategies?	
  
l Are	
  some	
  parts	
  of	
  a	
  network	
  predictably	
  more	
  influen<al	
  than	
  others?	
  
Host-­‐pathogen	
  interac2on	
  
Pathogen	
  
Host	
  
l How	
  does	
  host/pathogen	
  network	
  respond	
  to	
  interac<on?	
  
l What	
  is	
  best	
  way	
  to	
  a`ack	
  a	
  network?	
  
l What	
  is	
  best	
  way	
  to	
  defend	
  against	
  mul<ple	
  a`ack	
  strategies?	
  
l Are	
  some	
  parts	
  of	
  a	
  network	
  predictably	
  more	
  influen<al	
  than	
  others?	
  
Influence	
  in	
  networks	
  
l Efficient	
  a`ackers:	
  	
  
l  cause	
  greatest	
  favourable	
  host	
  disrup<on	
  for	
  least	
  effort	
  	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Efficient	
  defenders:	
  
l  protect	
  against	
  greatest	
  amount	
  of	
  poten<al	
  change	
  for	
  least	
  effort	
  
l  protect	
  against	
  most	
  commonly-­‐targeted	
  points	
  in	
  network	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Greatest	
  benefit	
  for	
  least	
  cost	
  
l What	
  are	
  the	
  most	
  influen<al	
  points	
  in	
  a	
  network?	
  
Influence	
  in	
  networks	
  
l Efficient	
  a`ackers:	
  	
  
l  cause	
  greatest	
  favourable	
  host	
  disrup<on	
  for	
  least	
  effort	
  	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Efficient	
  defenders:	
  
l  protect	
  against	
  greatest	
  amount	
  of	
  poten<al	
  change	
  for	
  least	
  effort	
  
l  protect	
  against	
  most	
  commonly-­‐targeted	
  points	
  in	
  network	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Greatest	
  benefit	
  for	
  least	
  cost	
  
l What	
  are	
  the	
  most	
  influen<al	
  points	
  in	
  a	
  network?	
  
Influence	
  in	
  networks	
  
l Efficient	
  a`ackers:	
  	
  
l  cause	
  greatest	
  favourable	
  host	
  disrup<on	
  for	
  least	
  effort	
  	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Efficient	
  defenders:	
  
l  protect	
  against	
  greatest	
  amount	
  of	
  poten<al	
  change	
  for	
  least	
  effort	
  
l  protect	
  against	
  most	
  commonly-­‐targeted	
  points	
  in	
  network	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Greatest	
  benefit	
  for	
  least	
  cost	
  
l What	
  are	
  the	
  most	
  influen<al	
  points	
  in	
  a	
  network?	
  
Influence	
  in	
  networks	
  
l Efficient	
  a`ackers:	
  	
  
l  cause	
  greatest	
  favourable	
  host	
  disrup<on	
  for	
  least	
  effort	
  	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Efficient	
  defenders:	
  
l  protect	
  against	
  greatest	
  amount	
  of	
  poten<al	
  change	
  for	
  least	
  effort	
  
l  protect	
  against	
  most	
  commonly-­‐targeted	
  points	
  in	
  network	
  
l  should	
  target	
  influen<al	
  points	
  in	
  host	
  network	
  
l Greatest	
  benefit	
  for	
  least	
  cost	
  
l What	
  are	
  the	
  most	
  influen2al	
  points	
  in	
  a	
  network?	
  
l  can	
  we	
  predict/iden<fy	
  them?	
  
Robustness	
  in	
  biological	
  networks	
  
l Biological	
  networks	
  are	
  typically	
  robust	
  and	
  error-­‐tolerant	
  
l  (necessary	
  for	
  descent	
  with	
  modifica<on)	
  
l  e.g.	
  only	
  17%	
  of	
  yeast	
  genes	
  essen<al	
  to	
  cell	
  viability	
  in	
  rich	
  media	
  
Winzeler	
  et	
  al.	
  Func<onal	
  characteriza<on	
  of	
  the	
  S.	
  cerevisiae	
  genome	
  by	
  gene	
  dele<on	
  
and	
  parallel	
  analysis.	
  Science	
  (1999)	
  vol.	
  285	
  (5429)	
  pp.	
  901-­‐906	
  
Robustness	
  in	
  biological	
  networks	
  
l Biological	
  networks	
  are	
  typically	
  robust	
  and	
  error-­‐tolerant	
  
l  (necessary	
  for	
  descent	
  with	
  modifica<on)	
  
l  e.g.	
  only	
  17%	
  of	
  yeast	
  genes	
  essen<al	
  to	
  cell	
  viability	
  in	
  rich	
  media	
  
Winzeler	
  et	
  al.	
  Func<onal	
  characteriza<on	
  of	
  the	
  S.	
  cerevisiae	
  genome	
  by	
  gene	
  dele<on	
  
and	
  parallel	
  analysis.	
  Science	
  (1999)	
  vol.	
  285	
  (5429)	
  pp.	
  901-­‐906	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Some	
  network	
  structures	
  enhance	
  robustness	
  
l  Many	
  biological	
  networks	
  have	
  converged	
  to	
  same	
  network	
  structures	
  
Barabási	
  and	
  Oltvai.	
  Network	
  biology:	
  understanding	
  the	
  cell's	
  func<onal	
  organiza<on.	
  Nat	
  Rev	
  Genet	
  (2004)	
  vol.	
  5	
  (2)	
  pp.	
  101-­‐13	
  doi:
10.1038/nrg1272	
  
Kitano.	
  Biological	
  robustness.	
  Nat	
  Rev	
  Genet	
  (2004)	
  vol.	
  5	
  (11)	
  pp.	
  826-­‐37	
  doi:10.1038/nrg1471	
  
•  Aa:	
  random	
  Erdös-­‐Renyi	
  graph:	
  not	
  robust	
  to	
  random	
  a`ack	
  (not	
  common	
  in	
  biology)	
  
•  Ba:	
  random	
  ‘scale-­‐free’	
  network:	
  robust	
  to	
  random	
  a`ack	
  (most	
  biological	
  networks)	
  
•  Ca:	
  hierarchical	
  network:	
  robust	
  to	
  random	
  a`ack	
  (many	
  signalling	
  networks)	
  
l Some	
  network	
  structures	
  enhance	
  robustness	
  
l  Many	
  biological	
  networks	
  have	
  converged	
  to	
  same	
  network	
  structures	
  
Barabási	
  and	
  Oltvai.	
  Network	
  biology:	
  understanding	
  the	
  cell's	
  func<onal	
  organiza<on.	
  Nat	
  Rev	
  Genet	
  (2004)	
  vol.	
  5	
  (2)	
  pp.	
  101-­‐13	
  doi:
10.1038/nrg1272	
  
Kitano.	
  Biological	
  robustness.	
  Nat	
  Rev	
  Genet	
  (2004)	
  vol.	
  5	
  (11)	
  pp.	
  826-­‐37	
  doi:10.1038/nrg1471	
  
•  Aa:	
  random	
  Erdös-­‐Renyi	
  graph:	
  not	
  robust	
  to	
  random	
  a`ack	
  (not	
  common	
  in	
  biology)	
  
•  Ba:	
  random	
  ‘scale-­‐free’	
  network:	
  robust	
  to	
  random	
  a`ack	
  (most	
  biological	
  networks)	
  
•  Ca:	
  hierarchical	
  network:	
  robust	
  to	
  random	
  a`ack	
  (many	
  signalling	
  networks)	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Network	
  bridges/bo`lenecks	
  
l  essen<al	
  intermediate	
  nodes	
  in	
  a	
  network	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
•  Pathways	
  from	
  detec<on	
  (e.g.	
  immune	
  
recep<on)	
  to	
  host	
  response	
  
•  Signalling	
  pathways	
  
•  E.g.	
  Cladosporum	
  fulvum	
  Avr4	
  suppresses	
  
produc<on	
  of	
  chi<n,	
  a	
  ‘bridge’	
  
l Network	
  bridges/bo`lenecks	
  
l  essen<al	
  intermediate	
  nodes	
  in	
  a	
  network	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
MAMP	
  
detec2on	
  
•  Pathways	
  from	
  detec<on	
  (e.g.	
  immune	
  
recep<on)	
  to	
  host	
  response	
  
•  Signalling	
  pathways	
  
•  e.g.	
  Cladosporum	
  fulvum	
  Avr4	
  suppresses	
  
produc<on	
  of	
  chi<n,	
  a	
  ‘bridge’	
  
l Network	
  bridges/bo`lenecks	
  
l  essen<al	
  intermediate	
  nodes	
  in	
  a	
  network	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
MAMP	
  
detec2on	
  
•  Pathways	
  from	
  detec<on	
  (e.g.	
  immune	
  
recep<on)	
  to	
  host	
  response	
  
•  Signalling	
  pathways	
  
•  E.g.	
  Cladosporum	
  fulvum	
  Avr4	
  suppresses	
  
produc<on	
  of	
  chi<n,	
  a	
  ‘bridge’	
  
chi<n	
  
chi<nase	
  
l Network	
  bridges/bo`lenecks	
  
l  essen<al	
  intermediate	
  nodes	
  in	
  a	
  network	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
MAMP	
  
detec2on	
  
•  Pathways	
  from	
  detec<on	
  (e.g.	
  immune	
  
recep<on)	
  to	
  host	
  response	
  
•  Signalling	
  pathways	
  
•  E.g.	
  Cladosporum	
  fulvum	
  Avr4	
  suppresses	
  
produc<on	
  of	
  chi<n,	
  a	
  ‘bridge’	
  
chi<n	
  
chi<nase	
  
Avr4	
  
l Network	
  bridges/bo`lenecks	
  
l  essen<al	
  intermediate	
  nodes	
  in	
  a	
  network	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
MAMP	
  
detec2on	
  
•  Redundancy	
  and	
  cross-­‐talk	
  in	
  signalling	
  
pathways	
  protects	
  against	
  this	
  fragility	
  
•  e.g.	
  PTI/ETI	
  cross-­‐talk	
  
l Network	
  hubs	
  
l  highly-­‐connected	
  nodes	
  
l  characteris<c	
  of	
  ‘scale-­‐free’	
  (and	
  similar)	
  networks	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
•  Why	
  do	
  hubs	
  occur?	
  
•  How	
  many	
  hubs	
  do	
  we	
  expect?	
  
•  How	
  are	
  they	
  related	
  to	
  biology?	
  
l Network	
  hubs	
  
l  highly-­‐connected	
  nodes	
  
l  characteris<c	
  of	
  ‘scale-­‐free’	
  (and	
  similar)	
  networks	
  
l  dele<on	
  or	
  disrup<on	
  dissociates	
  (breaks)	
  the	
  network	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
•  Why	
  do	
  hubs	
  occur?	
  
•  How	
  many	
  hubs	
  do	
  we	
  expect?	
  
•  How	
  are	
  they	
  related	
  to	
  biology?	
  
l Power-­‐law	
  (a.k.a.	
  ‘scale-­‐free’)	
  networks	
  
l  Robust	
  because	
  of	
  node	
  degree	
  distribu<on	
  
l  Very	
  few	
  ‘hubs’;	
  most	
  nodes	
  make	
  few	
  connec<ons	
  
l  Random	
  dele<on	
  more	
  likely	
  to	
  remove	
  node	
  with	
  few	
  connec<ons	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
Albert	
  et	
  al.	
  Error	
  and	
  a`ack	
  tolerance	
  of	
  complex	
  networks.	
  Nature	
  (2000)	
  vol.	
  406	
  (6794)	
  pp.	
  378-­‐82	
  doi:
10.1038/35019019	
  
l Power-­‐law	
  (a.k.a.	
  ‘scale-­‐free’)	
  networks	
  
l  Robust	
  because	
  of	
  node	
  degree	
  distribu<on	
  
l  Very	
  few	
  ‘hubs’;	
  most	
  nodes	
  make	
  few	
  connec<ons	
  
l  Random	
  dele<on	
  more	
  likely	
  to	
  remove	
  node	
  with	
  few	
  connec<ons	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
Albert	
  et	
  al.	
  Error	
  and	
  a`ack	
  tolerance	
  of	
  complex	
  networks.	
  Nature	
  (2000)	
  vol.	
  406	
  (6794)	
  pp.	
  378-­‐82	
  doi:
10.1038/35019019	
  
l Power-­‐law	
  (a.k.a.	
  ‘scale-­‐free’)	
  networks	
  
l  Diagnos<c	
  ‘degree	
  distribu<on’	
  (count	
  of	
  connec<ons	
  to	
  each	
  node)	
  
l  Yeast	
  protein	
  interac<on	
  network	
  has	
  power-­‐law	
  distribu<on	
  
l  Essen<al	
  17%	
  of	
  genes	
  correlated	
  with	
  highly-­‐connected	
  nodes	
  (hubs)	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Power-­‐law	
  (a.k.a.	
  ‘scale-­‐free’)	
  networks	
  
l  Diagnos<c	
  ‘degree	
  distribu<on’	
  (count	
  of	
  connec<ons	
  to	
  each	
  node)	
  
l  Yeast	
  protein	
  interac<on	
  network	
  has	
  power-­‐law	
  distribu<on	
  
l  Essen<al	
  17%	
  of	
  genes	
  correlated	
  with	
  highly-­‐connected	
  nodes	
  (hubs)	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Power-­‐law	
  (a.k.a.	
  ‘scale-­‐free’)	
  networks	
  
l  Most	
  studied	
  biological	
  networks	
  are	
  ‘scale-­‐free’	
  
l  ‘Scale-­‐free’	
  property	
  proposed	
  to	
  arise	
  from	
  network	
  evolu<on	
  
l  ‘older’	
  nodes	
  more	
  likely	
  to	
  be	
  hubs	
  
l  ‘older’	
  nodes	
  more	
  likely	
  to	
  be	
  func<onally-­‐conserved,	
  sequence	
  
constrained?	
  
l  Hubs	
  are	
  good	
  targets	
  for	
  network	
  disrup<on:	
  what	
  role	
  do	
  they	
  play	
  in	
  
pathogen/host	
  evolu<on?	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Power-­‐law	
  (a.k.a.	
  ‘scale-­‐free’)	
  networks	
  
l  Most	
  studied	
  biological	
  networks	
  are	
  ‘scale-­‐free’	
  
l  ‘Scale-­‐free’	
  property	
  proposed	
  to	
  arise	
  from	
  network	
  evolu<on	
  
l  ‘older’	
  nodes	
  more	
  likely	
  to	
  be	
  hubs	
  
l  ‘older’	
  nodes	
  more	
  likely	
  to	
  be	
  func<onally-­‐conserved,	
  sequence	
  
constrained?	
  
l  Hubs	
  are	
  good	
  targets	
  for	
  network	
  disrup<on:	
  what	
  role	
  do	
  they	
  play	
  in	
  
pathogen/host	
  evolu<on?	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Bacterial	
  Type	
  III	
  effectors	
  engage	
  a	
  limited	
  set	
  of	
  host	
  processes	
  
across	
  host	
  kingdoms	
  e.g.:	
  
l  turnover	
  by	
  modula<on	
  of	
  ubiqui<na<on	
  	
  
l  altera<on	
  of	
  transcrip<on	
  
l  altera<on	
  of	
  phosphoryla<on	
  	
  
l Strategies	
  such	
  as	
  the	
  targe<ng	
  of	
  ubiqui<na<on	
  are	
  used	
  by	
  bacterial	
  
fungal	
  and	
  oomycete	
  pathogens	
  across	
  a	
  range	
  of	
  hosts	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
l Bacterial	
  Type	
  III	
  effectors	
  engage	
  a	
  limited	
  set	
  of	
  host	
  processes	
  
across	
  host	
  kingdoms	
  e.g.:	
  
l  turnover	
  by	
  modula<on	
  of	
  ubiqui<na<on	
  	
  
l  altera<on	
  of	
  transcrip<on	
  
l  altera<on	
  of	
  phosphoryla<on	
  	
  
l Strategies	
  such	
  as	
  the	
  targe<ng	
  of	
  ubiqui<na<on	
  are	
  used	
  by	
  bacterial	
  
fungal	
  and	
  oomycete	
  pathogens	
  across	
  a	
  range	
  of	
  hosts	
  
Structural	
  robustness	
  in	
  biological	
  networks	
  
The	
  Guard	
  Hypothesis	
  
l The	
  Guard	
  Hypothesis	
  describes	
  indirect	
  R	
  gene:effector	
  interac<on	
  
l  Direct	
  R	
  gene:effector	
  interac<on	
  could	
  lead	
  to	
  overwhelming	
  R	
  gene	
  load	
  
l  A.	
  thaliana	
  has	
  ≈200	
  R	
  genes	
  (1%	
  of	
  gene	
  complement)	
  
l If	
  ‘hubs’	
  are	
  common	
  targets	
  for	
  pathogens…	
  
l  …guarding	
  the	
  hub	
  with	
  one	
  R	
  gene	
  is	
  	
  
more	
  efficient	
  than	
  gene-­‐for-­‐gene	
  	
  
interac<ons	
  
l  …network	
  topology	
  implies	
  the	
  Guard	
  	
  
Hypothesis	
  
l If	
  ‘hubs’	
  are	
  universal	
  targets…	
  
l  …network	
  topology	
  determines	
  which	
  	
  
nodes	
  are	
  likely	
  to	
  be	
  involved	
  in	
  	
  
host-­‐pathogen	
  interac<on	
  
Dangl	
  and	
  Jones.	
  Plant	
  pathogens	
  and	
  integrated	
  	
  
defence	
  responses	
  to	
  infec<on.	
  Nature	
  (2001)	
  	
  
vol.	
  411	
  (6839)	
  pp.	
  826-­‐33	
  doi:10.1038/35081161	
  
The	
  Guard	
  Hypothesis	
  
l The	
  Guard	
  Hypothesis	
  describes	
  indirect	
  R	
  gene:effector	
  interac<on	
  
l  Direct	
  R	
  gene:effector	
  interac<on	
  could	
  lead	
  to	
  overwhelming	
  R	
  gene	
  load	
  
l  A.	
  thaliana	
  has	
  ≈200	
  R	
  genes	
  (1%	
  of	
  gene	
  complement)	
  
l If	
  ‘hubs’	
  are	
  common	
  targets	
  for	
  pathogens…	
  
l  …guarding	
  the	
  hub	
  with	
  one	
  R	
  gene	
  is	
  	
  
more	
  efficient	
  than	
  gene-­‐for-­‐gene	
  	
  
interac<ons	
  
l  …network	
  topology	
  implies	
  the	
  Guard	
  	
  
Hypothesis	
  
l If	
  ‘hubs’	
  are	
  universal	
  targets…	
  
l  …network	
  topology	
  determines	
  which	
  	
  
nodes	
  are	
  likely	
  to	
  be	
  involved	
  in	
  	
  
host-­‐pathogen	
  interac<on	
  
Dangl	
  and	
  Jones.	
  Plant	
  pathogens	
  and	
  integrated	
  	
  
defence	
  responses	
  to	
  infec<on.	
  Nature	
  (2001)	
  	
  
vol.	
  411	
  (6839)	
  pp.	
  826-­‐33	
  doi:10.1038/35081161	
  
Dangl	
  and	
  Jones.	
  Plant	
  pathogens	
  and	
  integrated	
  	
  
defence	
  responses	
  to	
  infec<on.	
  Nature	
  (2001)	
  	
  
vol.	
  411	
  (6839)	
  pp.	
  826-­‐33	
  doi:10.1038/35081161	
  
The	
  Guard	
  Hypothesis	
  
l The	
  Guard	
  Hypothesis	
  describes	
  indirect	
  R	
  gene:effector	
  interac<on	
  
l  Direct	
  R	
  gene:effector	
  interac<on	
  could	
  lead	
  to	
  overwhelming	
  R	
  gene	
  load	
  
l  A.	
  thaliana	
  has	
  ≈200	
  R	
  genes	
  (1%	
  of	
  gene	
  complement)	
  
l If	
  ‘hubs’	
  are	
  common	
  targets	
  for	
  pathogens…	
  
l  …guarding	
  the	
  hub	
  with	
  one	
  R	
  gene	
  is	
  	
  
more	
  efficient	
  than	
  gene-­‐for-­‐gene	
  	
  
interac<ons	
  
l  …network	
  topology	
  implies	
  the	
  Guard	
  	
  
Hypothesis	
  
l If	
  ‘hubs’	
  are	
  universal	
  targets…	
  
l  …network	
  topology	
  determines	
  which	
  	
  
nodes	
  are	
  likely	
  to	
  be	
  involved	
  in	
  	
  
host-­‐pathogen	
  interac<on	
  
Interac2ons	
  with	
  hubs	
  
l Host:	
  Arabidopsis	
  thaliana	
  
l Pathogens:	
  Pseudomonas	
  syringae,	
  Hyaloperonospora	
  arabidopsidis	
  
l  Independent	
  effector	
  evolu<on	
  
l  Matrix-­‐2-­‐hybrid	
  (yeast-­‐2-­‐hybrid)	
  
l  Pathogen	
  effectors	
  share	
  more	
  common	
  
targets	
  than	
  expected	
  (if	
  random)	
  
l  Common	
  targets	
  more	
  highly	
  connected	
  
(i.e.	
  are	
  ‘hubs’)	
  than	
  expected	
  (if	
  random)	
  
Mukhtar	
  MS,	
  et	
  al.	
  (2011)	
  Independently	
  evolved	
  virulence	
  effectors	
  converge	
  onto	
  hubs	
  in	
  a	
  plant	
  immune	
  
system	
  network.	
  Science	
  333:	
  596–601.	
  doi:10.1126/science.1203659.	
  
Interac2ons	
  with	
  hubs	
  
l Host:	
  Arabidopsis	
  thaliana	
  
l Pathogens:	
  Pseudomonas	
  syringae,	
  Hyaloperonospora	
  arabidopsidis	
  
l  Independent	
  effector	
  evolu<on	
  
l  Matrix-­‐2-­‐hybrid	
  (yeast-­‐2-­‐hybrid)	
  
l  Pathogen	
  effectors	
  share	
  more	
  common	
  
targets	
  than	
  expected	
  (if	
  random)	
  
l  Common	
  targets	
  more	
  highly	
  connected	
  
(i.e.	
  are	
  ‘hubs’)	
  than	
  expected	
  (if	
  random)	
  
Mukhtar	
  MS,	
  et	
  al.	
  (2011)	
  Independently	
  evolved	
  virulence	
  effectors	
  converge	
  onto	
  hubs	
  in	
  a	
  plant	
  immune	
  
system	
  network.	
  Science	
  333:	
  596–601.	
  doi:10.1126/science.1203659.	
  
Interac2ons	
  with	
  hubs	
  
l Host:	
  Arabidopsis	
  thaliana	
  
l Pathogens:	
  Pseudomonas	
  syringae,	
  Hyaloperonospora	
  arabidopsidis	
  
l  Independent	
  effector	
  evolu<on	
  
l  Matrix-­‐2-­‐hybrid	
  (yeast-­‐2-­‐hybrid)	
  
l  Pathogen	
  effectors	
  share	
  more	
  common	
  
targets	
  than	
  expected	
  (if	
  random)	
  
l  Common	
  targets	
  more	
  highly	
  connected	
  
(i.e.	
  are	
  ‘hubs’)	
  than	
  expected	
  (if	
  random)	
  
Mukhtar	
  MS,	
  et	
  al.	
  (2011)	
  Independently	
  evolved	
  virulence	
  effectors	
  converge	
  onto	
  hubs	
  in	
  a	
  plant	
  immune	
  
system	
  network.	
  Science	
  333:	
  596–601.	
  doi:10.1126/science.1203659.	
  
Modules	
  in	
  networks	
  
l Mo<fs	
  are	
  small	
  subnetworks	
  
l  Many	
  have	
  specific	
  dynamic	
  and	
  logic	
  
behaviour:	
  
„ Accelerate/slow	
  response	
  
„ Enforce	
  sequen<al	
  responses	
  
„ Lock	
  signal	
  on	
  or	
  off	
  
„ Filter	
  out	
  noise	
  in	
  signals	
  
„ Generate	
  pulse	
  in	
  response	
  to	
  	
  
signal	
  
„ Generate	
  oscilla<ons	
  
„ Integrate	
  and	
  process	
  mul<ple	
  	
  
signals	
  
Shoval	
  and	
  Alon.	
  SnapShot:	
  network	
  mo<fs.	
  Cell	
  (2010)	
  vol.	
  143	
  (2)	
  pp.	
  326-­‐e1	
  doi:10.1016/j.cell.2010.09.050	
  
Modules	
  in	
  networks	
  
l Mo<fs	
  are	
  small	
  subnetworks	
  
l  Many	
  have	
  specific	
  dynamic	
  and	
  logic	
  
behaviour:	
  
„ Accelerate/slow	
  response	
  
„ Enforce	
  sequen<al	
  responses	
  
„ Lock	
  signal	
  on	
  or	
  off	
  
„ Filter	
  out	
  noise	
  in	
  signals	
  
„ Generate	
  pulse	
  in	
  response	
  to	
  	
  
signal	
  
„ Generate	
  oscilla<ons	
  
„ Integrate	
  and	
  process	
  mul<ple	
  	
  
signals	
  
Shoval	
  and	
  Alon.	
  SnapShot:	
  network	
  mo<fs.	
  Cell	
  (2010)	
  vol.	
  143	
  (2)	
  pp.	
  326-­‐e1	
  doi:10.1016/j.cell.2010.09.050	
  
Modules	
  in	
  networks	
  
l Mo<fs	
  are	
  small	
  subnetworks	
  
l  Many	
  have	
  specific	
  dynamic	
  and	
  logic	
  
behaviour:	
  
„ Generate	
  pulse	
  in	
  response	
  to	
  	
  
signal	
  
„ Generate	
  oscilla<ons	
  
Shoval	
  and	
  Alon.	
  SnapShot:	
  network	
  mo<fs.	
  Cell	
  (2010)	
  vol.	
  143	
  (2)	
  pp.	
  326-­‐e1	
  doi:10.1016/j.cell.2010.09.050	
  
Modules	
  in	
  networks	
  
l Bow-­‐<e	
  structure	
  
l Many	
  inputs	
  →	
  restricted	
  set	
  of	
  intermediates	
  →	
  many	
  outputs	
  
Modules	
  in	
  networks	
  
l Bow-­‐<e	
  structure	
  
l Many	
  inputs	
  →	
  restricted	
  set	
  of	
  intermediates	
  →	
  many	
  outputs	
  
l  e.g.	
  complex	
  nutrients	
  →	
  metabolic	
  intermediates	
  →	
  complex	
  compounds	
  
Modules	
  in	
  networks	
  
l Open	
  ques<ons:	
  
l  Do	
  a`ackers	
  preferen<ally	
  target	
  (or	
  introduce)	
  par<cular	
  mo<fs?	
  
l  Do	
  a`ackers	
  preferen<ally	
  target	
  the	
  ‘knots’	
  of	
  bow-­‐<e	
  structures?	
  
Influence	
  in	
  networks	
  
l Network	
  structure	
  (topology)	
  is	
  not	
  everything	
  
l Network	
  topology	
  is	
  determined	
  by	
  dynamic	
  processes	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Idealised	
  topology	
  	
   Expression	
  pa`ern	
  1	
   Expression	
  pa`ern	
  2	
  
Influence	
  in	
  networks	
  
l Network	
  structure	
  (topology)	
  is	
  not	
  everything	
  
l Dynamic	
  processes	
  are	
  overlaid	
  on	
  topology	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Idealised	
  topology	
  	
   Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Some	
  processes	
  more	
  influen<al	
  because	
  of	
  dynamic	
  (kine<c)	
  
considera<ons	
  
l  ODE	
  representa<on	
  of	
  biochemical	
  
network	
  
l  Used	
  to	
  understand	
  biochemical	
  	
  
pathways	
  
l  Used	
  in	
  ra<onal	
  drug	
  design:	
  
target/priori<se	
  elements	
  with	
  
large	
  control	
  coefficients	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Kacser	
  and	
  Burns.	
  The	
  molecular	
  basis	
  of	
  dominance.	
  Gene/cs	
  (1981)	
  vol.	
  97	
  (3-­‐4)	
  pp.	
  639-­‐66	
  
Kacser	
  and	
  Burns.	
  The	
  control	
  of	
  flux.	
  Biochem	
  Soc	
  Trans	
  (1995)	
  vol.	
  23	
  (2)	
  pp.	
  341-­‐66	
  
Westerhoff	
  and	
  Kell.	
  What	
  biotechnologists	
  knew	
  all	
  along	
  ...?.	
  J	
  Theor	
  Biol	
  (1996)	
  vol.	
  182	
  (3)	
  
pp.	
  411-­‐420	
  
Sato	
  et	
  al.	
  Network	
  Modeling	
  Reveals	
  Prevalent	
  Nega<ve	
  Regulatory	
  Rela<onships	
  between	
  
Signaling	
  Sectors	
  in	
  Arabidopsis	
  Immune	
  Signaling.	
  PLoS	
  Pathog	
  (2010)	
  vol.	
  6	
  (7)	
  pp.	
  E1001011	
  
doi:10.1371/journal.ppat.1001011	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Some	
  processes	
  more	
  influen<al	
  because	
  of	
  dynamic	
  (kine<c)	
  
considera<ons	
  
l  ODE	
  representa<on	
  of	
  biochemical	
  
network	
  
l  Used	
  to	
  understand	
  biochemical	
  	
  
pathways	
  
l  Used	
  in	
  ra<onal	
  drug	
  design:	
  
target/priori<se	
  elements	
  with	
  
large	
  control	
  coefficients	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Kacser	
  and	
  Burns.	
  The	
  molecular	
  basis	
  of	
  dominance.	
  Gene/cs	
  (1981)	
  vol.	
  97	
  (3-­‐4)	
  pp.	
  639-­‐66	
  
Kacser	
  and	
  Burns.	
  The	
  control	
  of	
  flux.	
  Biochem	
  Soc	
  Trans	
  (1995)	
  vol.	
  23	
  (2)	
  pp.	
  341-­‐66	
  
Westerhoff	
  and	
  Kell.	
  What	
  biotechnologists	
  knew	
  all	
  along	
  ...?.	
  J	
  Theor	
  Biol	
  (1996)	
  vol.	
  182	
  (3)	
  
pp.	
  411-­‐420	
  
Sato	
  et	
  al.	
  Network	
  Modeling	
  Reveals	
  Prevalent	
  Nega<ve	
  Regulatory	
  Rela<onships	
  between	
  
Signaling	
  Sectors	
  in	
  Arabidopsis	
  Immune	
  Signaling.	
  PLoS	
  Pathog	
  (2010)	
  vol.	
  6	
  (7)	
  pp.	
  E1001011	
  
doi:10.1371/journal.ppat.1001011	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Key	
  points:	
  
l  Rela<ve	
  change	
  in	
  pathway	
  flux	
  in	
  response	
  to	
  a	
  change	
  
in	
  [enzyme]	
  is	
  the	
  flux	
  control	
  coefficient	
  
l  Rela<ve	
  change	
  in	
  [metabolite]	
  in	
  response	
  to	
  a	
  change	
  
in	
  [enzyme]	
  is	
  the	
  concentra2on	
  control	
  coefficient	
  
l  Control	
  coefficient	
  =	
  0	
  ⇒	
  no	
  influence	
  
l  Control	
  coefficient	
  =	
  1	
  ⇒	
  strong	
  posi<ve	
  
influence	
  
l  Control	
  coefficient	
  =	
  -­‐1	
  ⇒	
  strong	
  nega<ve	
  
influence	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Key	
  points:	
  
l  Rela<ve	
  change	
  in	
  pathway	
  flux	
  in	
  response	
  to	
  a	
  change	
  
in	
  [enzyme]	
  is	
  the	
  flux	
  control	
  coefficient	
  
l  Rela<ve	
  change	
  in	
  [metabolite]	
  in	
  response	
  to	
  a	
  change	
  
in	
  [enzyme]	
  is	
  the	
  concentra2on	
  control	
  coefficient	
  
l  Control	
  coefficient	
  =	
  0	
  ⇒	
  no	
  influence	
  
l  Control	
  coefficient	
  =	
  1	
  ⇒	
  strong	
  posi<ve	
  
influence	
  
l  Control	
  coefficient	
  =	
  -­‐1	
  ⇒	
  strong	
  nega<ve	
  
influence	
  
l We	
  	
  might	
  expect	
  aWackers	
  to	
  target	
  network	
  	
  
elements	
  with	
  large	
  control	
  coefficients	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Key	
  points:	
  
l  Control	
  coefficients	
  dependent	
  on	
  rest	
  of	
  network:	
  
calculated	
  at	
  same	
  <me	
  
l  Control	
  coefficients	
  are	
  a	
  system-­‐level	
  property	
  
(can’t	
  be	
  determined	
  in	
  isola<on)	
  
l  It	
  is	
  unusual	
  for	
  any	
  single	
  element	
  to	
  have	
  
complete	
  control	
  over	
  any	
  part	
  of	
  the	
  network	
  
l  (Nearly)	
  no	
  rate-­‐limi<ng	
  steps	
  
l  Any	
  part	
  of	
  the	
  network	
  is	
  typically	
  under	
  
control	
  of	
  mul<ple	
  other	
  network	
  elements	
  
l  Distributed/democra<c	
  control	
  is	
  the	
  norm	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  
pp.	
  3894-­‐904	
  
D.	
  Fell,	
  Understanding	
  the	
  Control	
  of	
  Metabolism,	
  first	
  ed.,	
  Portland	
  Press,	
  1997.	
  	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Key	
  points:	
  
l  Control	
  coefficients	
  dependent	
  on	
  rest	
  of	
  network:	
  
calculated	
  at	
  same	
  <me	
  
l  Control	
  coefficients	
  are	
  a	
  system-­‐level	
  property	
  
(can’t	
  be	
  determined	
  in	
  isola<on)	
  
l  It	
  is	
  unusual	
  for	
  any	
  single	
  element	
  to	
  have	
  
complete	
  control	
  over	
  any	
  part	
  of	
  the	
  network	
  
l  (Nearly)	
  no	
  rate-­‐limi<ng	
  steps	
  
l  Any	
  part	
  of	
  the	
  network	
  is	
  typically	
  under	
  
control	
  of	
  mul<ple	
  other	
  network	
  elements	
  
l  Distributed/democra<c	
  control	
  is	
  the	
  norm	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  
pp.	
  3894-­‐904	
  
D.	
  Fell,	
  Understanding	
  the	
  Control	
  of	
  Metabolism,	
  first	
  ed.,	
  Portland	
  Press,	
  1997.	
  	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Key	
  points:	
  
l  Control	
  coefficients	
  dependent	
  on	
  rest	
  of	
  network:	
  
calculated	
  at	
  same	
  <me	
  
l  Control	
  coefficients	
  are	
  a	
  system-­‐level	
  property	
  
(can’t	
  be	
  determined	
  in	
  isola<on)	
  
l  It	
  is	
  unusual	
  for	
  any	
  single	
  element	
  to	
  have	
  
complete	
  control	
  over	
  any	
  part	
  of	
  the	
  network	
  
l  (Nearly)	
  no	
  rate-­‐limi<ng	
  steps	
  
l  Any	
  part	
  of	
  the	
  network	
  is	
  typically	
  under	
  
control	
  of	
  mul<ple	
  other	
  network	
  elements	
  
l  Distributed/democra2c	
  control	
  is	
  the	
  norm	
  
n1	
  
n2	
  
n3	
   n4	
  
n5	
  
Reac<on	
  kine<cs	
  dictate	
  
rela<ve	
  flux	
  
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
v =
[S]Vmax
[S] + [Km]
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  
pp.	
  3894-­‐904	
  
D.	
  Fell,	
  Understanding	
  the	
  Control	
  of	
  Metabolism,	
  first	
  ed.,	
  Portland	
  Press,	
  1997.	
  	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Yeast	
  glycolysis	
  
l Most	
  enzyme	
  kine<c	
  parameters	
  known	
  
l Fit	
  to	
  known	
  fluxes,	
  then	
  parameter-­‐scan	
  (>8000	
  
dis<nct	
  simula<ons)	
  
l Three	
  regimes	
  of	
  control	
  found:	
  
l  Main	
  regime:	
  only	
  significant	
  control	
  by	
  
hexose	
  transport	
  (HXT)	
  and	
  hexokinase	
  (HK)	
  
l  Minor	
  regime:	
  HXT,	
  HK	
  and	
  alcohol	
  dehydrogenase	
  
(ADH)	
  
l  Biologically	
  inaccessible	
  regime:	
  [GLCi]	
  ≈	
  300mM	
  	
  
phosphofructokinase	
  (PFK)	
  control	
  
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  
glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  pp.	
  3894-­‐904	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Yeast	
  glycolysis	
  
l Most	
  enzyme	
  kine<c	
  parameters	
  known	
  
l Fit	
  to	
  known	
  fluxes,	
  then	
  parameter-­‐scan	
  (>8000	
  
dis<nct	
  simula<ons)	
  
l Three	
  regimes	
  of	
  control	
  found:	
  
l  Main	
  regime:	
  only	
  significant	
  control	
  by	
  
hexose	
  transport	
  (HXT)	
  and	
  hexokinase	
  (HK)	
  
l  Minor	
  regime:	
  HXT,	
  HK	
  and	
  alcohol	
  dehydrogenase	
  
(ADH)	
  
l  Biologically	
  inaccessible	
  regime:	
  [GLCi]	
  ≈	
  300mM	
  	
  
phosphofructokinase	
  (PFK)	
  control	
  
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  
glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  pp.	
  3894-­‐904	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Yeast	
  glycolysis	
  
l Most	
  enzyme	
  kine<c	
  parameters	
  known	
  
l Fit	
  to	
  known	
  fluxes,	
  then	
  parameter-­‐scan	
  (>8000	
  
dis<nct	
  simula<ons)	
  
l Three	
  regimes	
  of	
  control	
  found:	
  
l  Main	
  regime:	
  only	
  significant	
  control	
  by	
  
hexose	
  transport	
  (HXT)	
  and	
  hexokinase	
  (HK)	
  
l  Minor	
  regime:	
  HXT,	
  HK	
  and	
  alcohol	
  dehydrogenase	
  
(ADH)	
  
l  Biologically	
  inaccessible	
  regime:	
  [GLCi]	
  ≈	
  300mM	
  	
  
under	
  phosphofructokinase	
  (PFK)	
  control	
  
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  
glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  pp.	
  3894-­‐904	
  
Metabolic	
  Control	
  Analysis	
  (MCA)	
  
l Yeast	
  glycolysis	
  
l HXT	
  dominates	
  pathway	
  control	
  
l External	
  [hexose]	
  is	
  a	
  signal,	
  as	
  HXT	
  
is	
  sensi<ve	
  to	
  it.	
  	
  
Pritchard	
  and	
  Kell.	
  Schemes	
  of	
  flux	
  control	
  in	
  a	
  model	
  of	
  Saccharomyces	
  cerevisiae	
  
glycolysis.	
  Eur	
  J	
  Biochem	
  (2002)	
  vol.	
  269	
  (16)	
  pp.	
  3894-­‐904	
  
Distributed	
  Control	
  
l MCA	
  implies	
  distributed	
  control	
  of	
  networks	
  
l Network	
  topology	
  also	
  implies	
  distributed	
  control	
  
	
  (minimal	
  interven<on	
  sets:	
  MIS)	
  
l What	
  does	
  this	
  imply	
  for	
  host-­‐pathogen	
  
interac<ons?	
  
l  Several	
  points	
  in	
  network	
  are	
  influen<al	
  
„ Can	
  be	
  predicted	
  with	
  sufficient	
  informa<on	
  
about	
  system	
  
l  A	
  pathway/network	
  element	
  may	
  be	
  under	
  	
  
distributed	
  control	
  
„ May	
  need	
  to	
  hit	
  several	
  parts	
  of	
  the	
  
network	
  to	
  produce	
  change	
  
„ Single	
  effectors	
  unlikely	
  to	
  be	
  sufficient	
  
Distributed	
  Control	
  
l MCA	
  implies	
  distributed	
  control	
  of	
  networks	
  
l Network	
  topology	
  also	
  implies	
  distributed	
  control	
  
	
  (minimal	
  interven<on	
  sets:	
  MIS)	
  
l What	
  does	
  this	
  imply	
  for	
  host-­‐pathogen	
  
interac<ons?	
  
l  Several	
  points	
  in	
  network	
  are	
  influen<al	
  
„ Can	
  be	
  predicted	
  with	
  sufficient	
  informa<on	
  
about	
  system	
  
l  A	
  pathway/network	
  element	
  may	
  be	
  under	
  	
  
distributed	
  control	
  
„ May	
  need	
  to	
  hit	
  several	
  parts	
  of	
  the	
  
network	
  to	
  produce	
  change	
  
„ Single	
  effectors	
  unlikely	
  to	
  be	
  sufficient	
  
Distributed	
  Control	
  
l MCA	
  implies	
  distributed	
  control	
  of	
  networks	
  
l Network	
  topology	
  also	
  implies	
  distributed	
  control	
  
	
  (minimal	
  interven<on	
  sets:	
  MIS)	
  
l What	
  does	
  this	
  imply	
  for	
  host-­‐pathogen	
  
interac<ons?	
  
l  Several	
  points	
  in	
  network	
  are	
  influen<al	
  
„ Can	
  be	
  predicted	
  with	
  sufficient	
  informa<on	
  
about	
  system	
  
l  A	
  pathway/network	
  element	
  may	
  be	
  under	
  	
  
distributed	
  control	
  
„ May	
  need	
  to	
  hit	
  several	
  parts	
  of	
  the	
  
network	
  to	
  produce	
  change	
  
„ Single	
  effectors	
  unlikely	
  to	
  be	
  sufficient	
  
Distributed	
  Control	
  
l MCA	
  implies	
  distributed	
  control	
  of	
  networks	
  
l Network	
  topology	
  also	
  implies	
  distributed	
  control	
  
l What	
  does	
  this	
  imply	
  for	
  host-­‐pathogen	
  
interac<ons?	
  
l  Several	
  points	
  in	
  network	
  are	
  influen<al	
  
l  A	
  pathway/network	
  element	
  may	
  be	
  under	
  	
  
distributed	
  control	
  
„ Pathogens	
  may	
  require	
  ‘sets’	
  of	
  effectors	
  
„ Implies	
  ‘Redundant	
  Effector	
  Groups’	
  and	
  	
  
func2onal	
  redundancy?	
  
Kvitko	
  et	
  al.	
  Dele<ons	
  in	
  the	
  repertoire	
  of	
  Pseudomonas	
  syringae	
  pv.	
  tomato	
  DC3000	
  type	
  III	
  secre<on	
  effector	
  genes	
  reveal	
  
func<onal	
  overlap	
  among	
  effectors.	
  PLoS	
  Pathog	
  (2009)	
  vol.	
  5	
  (4)	
  pp.	
  E1000388	
  doi:10.1371/journal.ppat.1000388	
  
Distributed	
  Control	
  
l MCA	
  implies	
  distributed	
  control	
  of	
  networks	
  
l Network	
  topology	
  also	
  implies	
  distributed	
  control	
  
l What	
  does	
  this	
  imply	
  for	
  host-­‐pathogen	
  
interac<ons?	
  
l  Context-­‐dependence	
  of	
  effector	
  func<on:	
  
„ H.arabidopsidis	
  ATR13	
  suppresses	
  callose	
  deposi<on	
  
„ P.	
  syringae	
  HopM1	
  suppresses	
  callose	
  deposi<on	
  
„ ATR13	
  complements	
  callose	
  deposi<on,	
  but	
  does	
  not	
  fully	
  restore	
  
virulence	
  in	
  HopM1	
  mutant	
  (EDV)	
  
K.H.	
  Sohn,	
  R.	
  Lei,	
  A.	
  Nemri,	
  J.D.G.	
  Jones,	
  The	
  downy	
  mildew	
  effector	
  proteins	
  ATR1	
  and	
  ATR13	
  promote	
  disease	
  
suscep<bility	
  in	
  Arabidopsis	
  thaliana,	
  Plant	
  Cell	
  19	
  (2007)	
  4077–4090.	
  
Distributed	
  Control	
  
l We	
  can	
  consider	
  ‘system’	
  as	
  defining	
  a	
  landscape,	
  
permi~ng	
  types	
  of	
  control	
  
l Autocra<c	
  control:	
  
l  Flat	
  landscape	
  
l  Can	
  move	
  any	
  network	
  element	
  to	
  any	
  ‘state’	
  
l Democra<c	
  control:	
  
l  Rugged	
  landscape	
  (constrained	
  by	
  rest	
  of	
  network)	
  
l  Network	
  elements	
  restricted	
  to	
  ‘valleys’	
  in	
  the	
  
landscape	
  
Bar-­‐Yam	
  et	
  al.	
  Systems	
  biology.	
  A`ractors	
  and	
  democra<c	
  dynamics.	
  Science	
  (2009)	
  
vol.	
  323	
  (5917)	
  pp.	
  1016-­‐7	
  doi:10.1126/science.1163225	
  
Distributed	
  Control	
  
l We	
  can	
  consider	
  ‘system’	
  as	
  defining	
  a	
  landscape,	
  
permi~ng	
  types	
  of	
  control	
  
l Autocra<c	
  control:	
  
l  Flat	
  landscape	
  
l  Can	
  move	
  any	
  network	
  element	
  to	
  any	
  ‘state’	
  
l Democra<c	
  control:	
  
l  Rugged	
  landscape	
  (constrained	
  by	
  rest	
  of	
  network)	
  
l  Network	
  elements	
  restricted	
  to	
  ‘valleys’	
  in	
  the	
  
landscape	
  
Bar-­‐Yam	
  et	
  al.	
  Systems	
  biology.	
  A`ractors	
  and	
  democra<c	
  dynamics.	
  Science	
  (2009)	
  
vol.	
  323	
  (5917)	
  pp.	
  1016-­‐7	
  doi:10.1126/science.1163225	
  
Distributed	
  Control	
  
l We	
  can	
  consider	
  ‘system’	
  as	
  defining	
  a	
  landscape,	
  
permi~ng	
  types	
  of	
  control	
  
l Autocra<c	
  control:	
  
l  Flat	
  landscape	
  
l  Can	
  move	
  any	
  network	
  element	
  to	
  any	
  ‘state’	
  
l Democra<c	
  control:	
  
l  Rugged	
  landscape	
  (constrained	
  by	
  rest	
  of	
  network)	
  
l  Network	
  elements	
  restricted	
  to	
  ‘valleys’	
  in	
  the	
  
landscape	
  
Bar-­‐Yam	
  et	
  al.	
  Systems	
  biology.	
  A`ractors	
  and	
  democra<c	
  dynamics.	
  Science	
  (2009)	
  
vol.	
  323	
  (5917)	
  pp.	
  1016-­‐7	
  doi:10.1126/science.1163225	
  
Distributed	
  Control	
  
l We	
  can	
  consider	
  ‘system’	
  as	
  defining	
  a	
  landscape,	
  
permi~ng	
  types	
  of	
  control	
  
l Autocra<c	
  control:	
  
l  Flat	
  landscape	
  
l  Can	
  move	
  any	
  network	
  element	
  to	
  any	
  ‘state’	
  
l Democra<c	
  control:	
  
l  Rugged	
  landscape	
  (constrained	
  by	
  rest	
  of	
  network)	
  
l  Network	
  elements	
  restricted	
  to	
  ‘valleys’	
  in	
  the	
  
landscape	
  
l Pathogens	
  introduce	
  new	
  elements	
  that	
  change	
  
the	
  landscape:	
  effectors	
  
Bar-­‐Yam	
  et	
  al.	
  Systems	
  biology.	
  A`ractors	
  and	
  democra<c	
  dynamics.	
  Science	
  (2009)	
  
vol.	
  323	
  (5917)	
  pp.	
  1016-­‐7	
  doi:10.1126/science.1163225	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
Hein	
  et	
  al.	
  The	
  zig-­‐zag-­‐zig	
  in	
  oomycete-­‐plant	
  interac<ons.	
  Mol	
  Plant	
  Pathol	
  (2009)	
  vol.	
  10	
  (4)	
  pp.	
  547-­‐62	
  doi:10.1111/j.
1364-­‐3703.2009.00547.x	
  
Jones	
  and	
  Dangl.	
  The	
  plant	
  immune	
  system.	
  Nature	
  (2006)	
  vol.	
  444	
  (7117)	
  pp.	
  323-­‐9	
  doi:10.1038/nature05286	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
l Has	
  some	
  problems:	
  
l  scope	
  (only	
  host	
  immune	
  system,	
  not	
  rest	
  
of	
  interac<on	
  with	
  pathogen)	
  
l  ordering	
  of	
  events	
  (are	
  PTI/ETI	
  etc.	
  dis<nct	
  
and	
  well-­‐ordered?)	
  
l  <mescale	
  (evolu<onary,	
  or	
  during	
  interac<on?)	
  
l  size	
  scale	
  (organism	
  or	
  cell	
  level)	
  
l  Quan<ta<ve	
  or	
  qualita<ve	
  (what	
  is	
  the	
  ‘amplitude’	
  of	
  defence?)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
l Has	
  some	
  problems:	
  
l  scope	
  (only	
  host	
  immune	
  system,	
  not	
  rest	
  
of	
  interac<on	
  with	
  pathogen)	
  
l  ordering	
  of	
  events	
  (are	
  PTI/ETI	
  etc.	
  dis<nct	
  
and	
  well-­‐ordered?)	
  
l  <mescale	
  (evolu<onary,	
  or	
  during	
  interac<on?)	
  
l  size	
  scale	
  (organism	
  or	
  cell	
  level)	
  
l  Quan<ta<ve	
  or	
  qualita<ve	
  (what	
  is	
  the	
  ‘amplitude’	
  of	
  defence?)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
l Has	
  some	
  problems:	
  
l  scope	
  (only	
  host	
  immune	
  system,	
  not	
  rest	
  
of	
  interac<on	
  with	
  pathogen)	
  
l  ordering	
  of	
  events	
  (are	
  PTI/ETI	
  etc.	
  dis<nct	
  
and	
  well-­‐ordered?)	
  
l  <mescale	
  (evolu<onary,	
  or	
  during	
  interac<on?)	
  
l  size	
  scale	
  (organism	
  or	
  cell	
  level)	
  
l  Quan<ta<ve	
  or	
  qualita<ve	
  (what	
  is	
  the	
  ‘amplitude’	
  of	
  defence?)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
l Has	
  some	
  problems:	
  
l  scope	
  (only	
  host	
  immune	
  system,	
  not	
  rest	
  
of	
  interac<on	
  with	
  pathogen)	
  
l  ordering	
  of	
  events	
  (are	
  PTI/ETI	
  etc.	
  dis<nct	
  
and	
  well-­‐ordered?)	
  
l  <mescale	
  (evolu<onary,	
  or	
  during	
  interac<on?)	
  
l  size	
  scale	
  (organism	
  or	
  cell	
  level)	
  
l  Quan<ta<ve	
  or	
  qualita<ve	
  (what	
  is	
  the	
  ‘amplitude’	
  of	
  defence?)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
l Has	
  some	
  problems:	
  
l  scope	
  (only	
  host	
  immune	
  system,	
  not	
  rest	
  
of	
  interac<on	
  with	
  pathogen)	
  
l  ordering	
  of	
  events	
  (are	
  PTI/ETI	
  etc.	
  dis<nct	
  
and	
  well-­‐ordered?)	
  
l  <mescale	
  (evolu<onary,	
  or	
  during	
  interac<on?)	
  
l  size	
  scale	
  (organism	
  or	
  cell	
  level)	
  
l  Quan<ta<ve	
  or	
  qualita<ve	
  (what	
  is	
  the	
  ‘amplitude’	
  of	
  defence?)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Prevailing	
  model:	
  zig-­‐zag(-­‐zig…)	
  
l Has	
  some	
  problems:	
  
l  scope	
  (only	
  host	
  immune	
  system,	
  not	
  rest	
  
of	
  interac<on	
  with	
  pathogen)	
  
l  ordering	
  of	
  events	
  (are	
  PTI/ETI	
  etc.	
  dis<nct	
  
and	
  well-­‐ordered?)	
  
l  <mescale	
  (evolu<onary,	
  or	
  during	
  interac<on?)	
  
l  size	
  scale	
  (organism	
  or	
  cell	
  level)	
  
l  Quan<ta<ve	
  or	
  qualita<ve	
  (what	
  is	
  the	
  ‘amplitude’	
  of	
  defence?)	
  
l Is	
  there	
  a	
  more	
  general	
  framework	
  for	
  host-­‐pathogen	
  interac2ons?	
  
Pritchard	
  L,	
  Birch	
  P	
  (2011)	
  A	
  systems	
  biology	
  perspec<ve	
  on	
  plant-­‐microbe	
  interac<ons:	
  Biochemical	
  and	
  
structural	
  targets	
  of	
  pathogen	
  effectors.	
  Plant	
  Science	
  180:	
  584–603.	
  doi:10.1016/j.plantsci.2010.12.008.	
  	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Biological	
  cells	
  can	
  be	
  represented	
  as	
  networks	
  
l Each	
  element	
  in	
  the	
  network	
  can	
  be	
  quan<fied:	
  
l  enzyme	
  concentra<on	
  (or	
  expression	
  level)	
  
l  metabolite	
  concentra<on	
  
l  phosphoryla<on/ubiqui<na<on/charge	
  states	
  as	
  dis<nct	
  
en<<es	
  
l  etc.	
  
l We	
  represent	
  lists	
  of	
  values	
  as	
  vectors	
  
[v1, v2, v3, . . . , vk]
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Biological	
  cells	
  can	
  be	
  represented	
  as	
  networks	
  
l Each	
  element	
  in	
  the	
  network	
  can	
  be	
  quan<fied:	
  
l  enzyme	
  concentra<on	
  (or	
  expression	
  level)	
  
l  metabolite	
  concentra<on	
  
l  phosphoryla<on/ubiqui<na<on/charge	
  states	
  as	
  dis<nct	
  
en<<es	
  
l  etc.	
  
l We	
  represent	
  ordered	
  lists	
  of	
  values	
  as	
  vectors	
  
[v1, v2, v3, . . . , vk]
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Biological	
  cells	
  can	
  be	
  represented	
  as	
  networks	
  
l Each	
  element	
  in	
  the	
  network	
  can	
  be	
  quan<fied:	
  
l  enzyme	
  concentra<on	
  (or	
  expression	
  level)	
  
l  metabolite	
  concentra<on	
  
l  phosphoryla<on/ubiqui<na<on/charge	
  states	
  as	
  dis<nct	
  
en<<es	
  
l  etc.	
  
l We	
  represent	
  ordered	
  lists	
  of	
  values	
  as	
  vectors	
  
[v1, v2, v3, . . . , vk]
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Vectors	
  are	
  co-­‐ordinates	
  in	
  space	
  
l  vectors	
  of	
  length	
  two:	
  points	
  on	
  a	
  surface	
  (2D	
  space)	
  
l  vectors	
  of	
  length	
  three:	
  points	
  in	
  3D	
  space	
  
l  vectors	
  of	
  length	
  k:	
  points	
  in	
  k-­‐dimensional	
  space	
  
l Points	
  that	
  are	
  close	
  together	
  are	
  ‘similar’	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Vectors	
  are	
  co-­‐ordinates	
  in	
  space	
  
l  vectors	
  of	
  length	
  two:	
  points	
  on	
  a	
  surface	
  (2D	
  space)	
  
l  vectors	
  of	
  length	
  three:	
  points	
  in	
  3D	
  space	
  
l  vectors	
  of	
  length	
  k:	
  points	
  in	
  k-­‐dimensional	
  space	
  
l Points	
  that	
  are	
  close	
  together	
  are	
  ‘similar’	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Let	
  our	
  vector	
  represent	
  the	
  measured	
  state	
  of	
  the	
  cell	
  
(e.g.	
  host-­‐pathogen)	
  system	
  
l  enzyme/metabolite	
  concentra<ons,	
  etc.	
  
l Each	
  point	
  in	
  k-­‐space	
  represents	
  a	
  different	
  state	
  of	
  the	
  
system	
  
l  similar	
  states	
  are	
  close	
  together	
  in	
  k-­‐space	
  
[v1, v2, v3, . . . , vk]
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Let	
  our	
  vector	
  represent	
  the	
  measured	
  state	
  of	
  the	
  cell	
  
(e.g.	
  host-­‐pathogen)	
  system	
  
l  enzyme/metabolite	
  concentra<ons,	
  etc.	
  
l Each	
  point	
  in	
  k-­‐space	
  represents	
  a	
  different	
  state	
  of	
  the	
  
system	
  
l  similar	
  states	
  are	
  close	
  together	
  in	
  k-­‐space	
  
[v1, v2, v3, . . . , vk]
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l States	
  that	
  lead	
  to	
  similar	
  phenotypes	
  can	
  be	
  grouped	
  in	
  
phases:	
  
l  regions	
  of	
  space	
  where	
  cell	
  
state	
  corresponds	
  to	
  named	
  
behaviour	
  
l Temporal	
  evolu<on	
  of	
  a	
  cell	
  can	
  
be	
  viewed	
  as	
  a	
  transi<on	
  	
  
through	
  states	
  
v1	
  
v2	
  
apoptosis	
  
ROS	
  produc<on	
  
seed	
  
leaf	
  
root	
  
HR	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l States	
  that	
  lead	
  to	
  similar	
  phenotypes	
  can	
  be	
  grouped	
  in	
  
phases:	
  
l  regions	
  of	
  space	
  where	
  cell	
  
state	
  corresponds	
  to	
  named	
  
behaviour	
  
l Temporal	
  evolu<on	
  of	
  a	
  cell	
  can	
  
be	
  viewed	
  as	
  a	
  transi<on	
  	
  
through	
  states	
  
v1	
  
v2	
  
apoptosis	
  
ROS	
  produc<on	
  
seed	
  
leaf	
  
root	
  
HR	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Complex	
  systems	
  can	
  behave	
  in	
  complex	
  ways	
  
l A	
  common	
  feature	
  of	
  complex	
  systems	
  is	
  aJractors	
  
l  A`ractors	
  are	
  ‘endpoints’:	
  states,	
  or	
  sets	
  
of	
  states,	
  to	
  which	
  the	
  system	
  is	
  
‘a`racted’	
  
l  Analogous	
  to	
  stable	
  equilibria:	
  	
  
when	
  the	
  system	
  is	
  perturbed,	
  	
  
it	
  returns	
  to	
  its	
  a`ractor.	
  
l  Do	
  cell	
  phenotypes	
  
correspond	
  to	
  a`ractors?	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Complex	
  systems	
  can	
  behave	
  in	
  complex	
  ways	
  
l A	
  common	
  feature	
  of	
  complex	
  systems	
  is	
  aJractors	
  
l  A`ractors	
  are	
  ‘endpoints’:	
  states,	
  or	
  sets	
  
of	
  states,	
  to	
  which	
  the	
  system	
  is	
  
‘a`racted’	
  
l  Analogous	
  to	
  stable	
  equilibria:	
  	
  
when	
  the	
  system	
  is	
  perturbed,	
  	
  
it	
  returns	
  to	
  its	
  a`ractor.	
  
l  Do	
  cell	
  phenotypes	
  
correspond	
  to	
  a`ractors?	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Complex	
  systems	
  can	
  behave	
  in	
  complex	
  ways	
  
l A	
  common	
  feature	
  of	
  complex	
  systems	
  is	
  aJractors	
  
l  A`ractors	
  are	
  ‘endpoints’:	
  states,	
  or	
  sets	
  
of	
  states,	
  to	
  which	
  the	
  system	
  is	
  
‘a`racted’	
  
l  Analogous	
  to	
  stable	
  equilibria:	
  	
  
when	
  the	
  system	
  is	
  perturbed,	
  	
  
it	
  returns	
  to	
  its	
  a`ractor.	
  
l  Do	
  cell	
  phenotypes	
  
correspond	
  to	
  a`ractors?	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Complex	
  systems	
  can	
  behave	
  in	
  complex	
  ways	
  
l A	
  common	
  feature	
  of	
  complex	
  systems	
  is	
  aJractors	
  
l  A`ractors	
  are	
  ‘endpoints’:	
  states,	
  or	
  sets	
  
of	
  states,	
  to	
  which	
  the	
  system	
  is	
  
‘a`racted’	
  
l  Analogous	
  to	
  stable	
  equilibria:	
  	
  
when	
  the	
  system	
  is	
  perturbed,	
  	
  
it	
  returns	
  to	
  its	
  a`ractor.	
  
l  Do	
  cell	
  phenotypes	
  
correspond	
  to	
  a`ractors?	
  
apoptosis	
  
ROS	
  produc<on	
  
seed	
  
leaf	
  
root	
  
HR	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l A`ractors	
  are	
  associated	
  with	
  
the	
  regions	
  of	
  space	
  that	
  lead	
  
to	
  them:	
  ‘basins’	
  
l A`ractors	
  can	
  be:	
  
l  Single	
  points	
  
l  Cycles	
  
l  Complex	
  ‘regions’	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l A`ractors	
  are	
  associated	
  with	
  
the	
  regions	
  of	
  space	
  that	
  lead	
  
to	
  them:	
  ‘basins’	
  
l A`ractors	
  can	
  be:	
  
l  Single	
  points	
  
l  Cycles	
  
l  Complex	
  ‘regions’	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Interac<on	
  of	
  a	
  pathogen	
  with	
  the	
  host	
  
can	
  push	
  the	
  system	
  from	
  one	
  basin	
  of	
  
aJrac/on	
  to	
  another	
  
l There	
  may	
  be	
  mul<ple	
  routes	
  between	
  
basins	
  of	
  a`rac<on,	
  depending	
  on	
  the	
  
direc<on	
  or	
  <ming	
  of	
  perturba<on	
  
l  There	
  may	
  be	
  more	
  than	
  one	
  way	
  to	
  
provoke	
  a	
  specific	
  outcome	
  from	
  the	
  
host	
  (or	
  from	
  the	
  pathogen)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Interac<on	
  of	
  a	
  pathogen	
  with	
  the	
  host	
  
can	
  push	
  the	
  system	
  from	
  one	
  basin	
  of	
  
aJrac/on	
  to	
  another	
  
l There	
  may	
  be	
  mul<ple	
  routes	
  between	
  
basins	
  of	
  a`rac<on,	
  depending	
  on	
  the	
  
direc<on	
  or	
  <ming	
  of	
  perturba<on	
  
l  There	
  may	
  be	
  more	
  than	
  one	
  way	
  to	
  
provoke	
  a	
  specific	
  outcome	
  from	
  the	
  
host	
  (or	
  from	
  the	
  pathogen)	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l Effectors	
  may	
  divert	
  the	
  expected	
  WT	
  system	
  trajectory:	
  
l ‘Pushing’	
  the	
  host	
  cell	
  state	
  	
  
towards	
  a	
  different	
  	
  
aJractor/state	
  
l ‘State’	
  may	
  be	
  a	
  developmental	
  
checkpoint	
  
l Diversion	
  of	
  the	
  trajectory	
  may	
  	
  
also	
  be	
  beneficial	
  to	
  the	
  host	
  
l The	
  pathogen	
  may	
  detect	
  the	
  host	
  
state	
  and	
  respond	
  accordingly	
  (e.g.	
  <ssue-­‐specific	
  effector	
  produc<on	
  
in	
  Us/lago	
  maydis;	
  stage-­‐	
  and	
  <ssue-­‐specific	
  oomycete	
  effectors)	
  
v1	
  
v2	
  
nutrient	
  	
  
produc<on	
  
PTI	
  
seed	
  
Epidermal	
  cell	
  
root	
  
HR	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  Jones-­‐Dangl	
  Zig-­‐Zag(-­‐Zig)	
  model	
  is	
  
encapsulated	
  within	
  a	
  state-­‐based	
  model	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  Jones-­‐Dangl	
  Zig-­‐Zag(-­‐Zig)	
  model	
  is	
  
encapsulated	
  within	
  a	
  state-­‐based	
  model	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  Jones-­‐Dangl	
  Zig-­‐Zag(-­‐Zig)	
  model	
  is	
  
encapsulated	
  within	
  a	
  state-­‐based	
  model	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  Jones-­‐Dangl	
  Zig-­‐Zag(-­‐Zig)	
  model	
  is	
  
encapsulated	
  within	
  a	
  state-­‐based	
  model	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  Jones-­‐Dangl	
  Zig-­‐Zag(-­‐Zig)	
  model	
  is	
  
encapsulated	
  within	
  a	
  state-­‐based	
  model	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  Jones-­‐Dangl	
  Zig-­‐Zag(-­‐Zig)	
  model	
  is	
  
encapsulated	
  within	
  a	
  state-­‐based	
  model	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  state-­‐based	
  model	
  has	
  advantages:	
  
l  Scope:	
  can	
  include	
  host	
  and	
  pathogen,	
  
and	
  extend	
  beyond	
  host	
  immunity	
  
l  Ordering:	
  explicit	
  ordering	
  of	
  events	
  
represented	
  by	
  paths	
  in	
  the	
  model	
  
(determined	
  by	
  model)	
  
l  Timescale:	
  explicit	
  (determined	
  by	
  
model)	
  
l  Size	
  scale:	
  can	
  include	
  mul<cellular	
  
systems	
  
l  Quan2ta2ve	
  or	
  qualita2ve:	
  explicit	
  
(dependent	
  on	
  model)	
  
	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  state-­‐based	
  model	
  has	
  advantages:	
  
l  Scope:	
  can	
  include	
  host	
  and	
  pathogen,	
  
and	
  extend	
  beyond	
  host	
  immunity	
  
l  Ordering:	
  explicit	
  ordering	
  of	
  events	
  
represented	
  by	
  paths	
  in	
  the	
  model	
  
(determined	
  by	
  model)	
  
l  Timescale:	
  explicit	
  (determined	
  by	
  
model)	
  
l  Size	
  scale:	
  can	
  include	
  mul<cellular	
  
systems	
  
l  Quan2ta2ve	
  or	
  qualita2ve:	
  explicit	
  
(dependent	
  on	
  model)	
  
	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  state-­‐based	
  model	
  has	
  advantages:	
  
l  Scope:	
  can	
  include	
  host	
  and	
  pathogen,	
  
and	
  extend	
  beyond	
  host	
  immunity	
  
l  Ordering:	
  explicit	
  ordering	
  of	
  events	
  
represented	
  by	
  paths	
  in	
  the	
  model	
  
(determined	
  by	
  model)	
  
l  Timescale:	
  explicit	
  (determined	
  by	
  
model)	
  
l  Size	
  scale:	
  can	
  include	
  mul<cellular	
  
systems	
  
l  Quan2ta2ve	
  or	
  qualita2ve:	
  explicit	
  
(dependent	
  on	
  model)	
  
	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  state-­‐based	
  model	
  has	
  advantages:	
  
l  Scope:	
  can	
  include	
  host	
  and	
  pathogen,	
  
and	
  extend	
  beyond	
  host	
  immunity	
  
l  Ordering:	
  explicit	
  ordering	
  of	
  events	
  
represented	
  by	
  paths	
  in	
  the	
  model	
  
(determined	
  by	
  model)	
  
l  Timescale:	
  explicit	
  (determined	
  by	
  
model)	
  
l  Size	
  scale:	
  can	
  include	
  mul<cellular	
  
systems	
  
l  Quan2ta2ve	
  or	
  qualita2ve:	
  explicit	
  
(dependent	
  on	
  model)	
  
	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
A	
  state-­‐based	
  model	
  of	
  interac2on	
  
l The	
  state-­‐based	
  model	
  has	
  advantages:	
  
l  Scope:	
  can	
  include	
  host	
  and	
  pathogen,	
  
and	
  extend	
  beyond	
  host	
  immunity	
  
l  Ordering:	
  explicit	
  ordering	
  of	
  events	
  
represented	
  by	
  paths	
  in	
  the	
  model	
  
(determined	
  by	
  model)	
  
l  Timescale:	
  explicit	
  (determined	
  by	
  
model)	
  
l  Size	
  scale:	
  can	
  include	
  mul<cellular	
  
systems	
  
l  Quan2ta2ve	
  or	
  qualita2ve:	
  explicit	
  
(dependent	
  on	
  model)	
  
	
  
PTI	
  
No	
  
challenge	
  
ETI	
  
ETS	
  
Summary	
  
l Biological	
  systems	
  have	
  natural	
  network	
  representa<ons	
  
l  But	
  representa<on	
  must	
  be	
  reasonable	
  and	
  suit	
  the	
  ques<on	
  being	
  asked	
  
l Interac<on	
  of	
  host	
  and	
  pathogen	
  makes	
  a	
  new	
  single	
  network	
  from	
  two	
  
ini<al	
  networks	
  
l Network	
  topology	
  affects	
  
l  Network	
  behaviour	
  
l  Suscep<bility	
  to	
  a`ack	
  (hubs,	
  bridges)	
  
l Network	
  dynamics	
  affect	
  
l  Network	
  behaviour	
  
l  Suscep<bility	
  to	
  a`ack	
  (distributed	
  control)	
  
l A	
  state-­‐based	
  framework	
  may	
  be	
  useful	
  for	
  understanding	
  host-­‐
pathogen	
  interac<ons	
  
Acknowledgements	
  
l Systems	
  Biology	
  at	
  Aberystwyth/Manchester	
  
l  Doug	
  Kell,	
  David	
  Broadhurst,	
  Pedro	
  Mendes,	
  Roy	
  Goodacre,	
  Andy	
  
Woodward,	
  Simon	
  Garre`,	
  	
  
l Computa<onal	
  biology	
  at	
  JHI	
  
l  Peter	
  Cock	
  
l Phytophthora	
  research	
  at	
  JHI	
  
l  Paul	
  Birch,	
  Steve	
  Whisson,	
  Miles	
  Armstrong	
  
l Bacteriology	
  research	
  at	
  JHI	
  
l  Ian	
  Toth,	
  Sonia	
  Humphris,	
  Nicola	
  Holden	
  
l Many,	
  many	
  discussions	
  with	
  colleagues	
  
Danger	
  Theory	
  
l Proposed	
  by	
  computer	
  scien<sts	
  in	
  machine	
  learning:	
  avoids	
  
detec<on	
  ‘bloat’	
  of	
  one	
  ‘recogni<on	
  gene’	
  per	
  threat.	
  
l Popular	
  in	
  (animal)	
  immunology;	
  Analogous	
  to	
  Guard	
  Hypothesis	
  and	
  
Dense	
  Overlapping	
  Regions	
  (DORs)	
  
l Integra<on	
  of	
  mul<ple	
  signals	
  and	
  contextual	
  cues	
  
Aickelin	
  et	
  al.	
  Danger	
  theory:	
  The	
  link	
  between	
  AIS	
  and	
  IDS?.	
  Lect	
  Notes	
  Comput	
  Sc	
  (2003)	
  vol.	
  2787	
  pp.	
  147-­‐155	
  
Danger	
  Theory	
  
l Some	
  signals	
  ‘cri<cal’	
  and	
  require	
  immediate	
  response	
  (e.g.	
  	
  
avirulence	
  gene	
  products?)	
  
l Other	
  signals	
  contextual	
  –	
  require	
  ‘processing’	
  (e.g.	
  MAMPs)	
  
Boller	
  and	
  Felix.	
  A	
  renaissance	
  of	
  elicitors:	
  percep<on	
  of	
  microbe-­‐associated	
  molecular	
  pa`erns	
  and	
  danger	
  signals	
  
by	
  pa`ern-­‐recogni<on	
  receptors.	
  Annu.	
  Rev.	
  Plant.	
  Biol.	
  (2009)	
  vol.	
  60	
  pp.	
  379-­‐406	
  doi:10.1146/annurev.arplant.
57.032905.105346	
  
Danger	
  Theory	
  
l Context	
  dependence	
  and	
  non-­‐linear	
  signal	
  may	
  lead	
  to	
  problems	
  
of	
  interpreta<on	
  in	
  experiments.	
  
l Danger	
  R	
  when	
  signal	
  ≥	
  5	
  
l  a+b+c+d	
  =	
  6	
  ⇒	
  R	
  
l  a+b+c	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+b+d	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+c+d	
  =	
  5	
  ⇒	
  R	
  
l  b+c+d	
  =	
  5	
  ⇒	
  R	
  
l  a+b	
  =	
  3	
  ⇒	
  no	
  R	
  
l {c	
  and	
  d}	
  required	
  for	
  R?	
  
Danger	
  Theory	
  
l Context	
  dependence	
  and	
  non-­‐linear	
  signal	
  may	
  lead	
  to	
  problems	
  
of	
  interpreta<on	
  in	
  experiments.	
  
l Danger	
  R	
  when	
  signal	
  ≥	
  5	
  
l  a+b+c+d	
  =	
  6	
  ⇒	
  R	
  
l  a+b+c	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+b+d	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+c+d	
  =	
  5	
  ⇒	
  R	
  
l  b+c+d	
  =	
  5	
  ⇒	
  R	
  
l  a+b	
  =	
  3	
  ⇒	
  no	
  R	
  
l {c	
  and	
  d}	
  required	
  for	
  R?	
  
Danger	
  Theory	
  
l Context	
  dependence	
  and	
  non-­‐linear	
  signal	
  may	
  lead	
  to	
  problems	
  
of	
  interpreta<on	
  in	
  experiments.	
  
l Danger	
  R	
  when	
  signal	
  ≥	
  5	
  
l  a+b+c+d	
  =	
  6	
  ⇒	
  R	
  
l  a+b+c	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+b+d	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+c+d	
  =	
  5	
  ⇒	
  R	
  
l  b+c+d	
  =	
  5	
  ⇒	
  R	
  
l  a+b	
  =	
  3	
  ⇒	
  no	
  R	
  
l {c	
  and	
  d}	
  required	
  for	
  R?	
  
Danger	
  Theory	
  
l Context	
  dependence	
  and	
  non-­‐linear	
  signal	
  may	
  lead	
  to	
  problems	
  
of	
  interpreta<on	
  in	
  experiments.	
  
l Danger	
  R	
  when	
  signal	
  ≥	
  5	
  
l  a+b+c+d	
  =	
  6	
  ⇒	
  R	
  
l  a+b+c	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+b+d	
  =	
  4	
  ⇒	
  no	
  R	
  
l  a+c+d	
  =	
  5	
  ⇒	
  R	
  
l  b+c+d	
  =	
  5	
  ⇒	
  R	
  
l  a+b	
  =	
  3	
  ⇒	
  no	
  R	
  
l {c	
  and	
  d}	
  required	
  for	
  R?	
  
l No:	
  a+b+c+e,	
  a+b+d+e	
  ⇒	
  R	
  
A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Mais conteúdo relacionado

Semelhante a A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Socialnetworkanalysis (Tin180 Com)
Socialnetworkanalysis (Tin180 Com)Socialnetworkanalysis (Tin180 Com)
Socialnetworkanalysis (Tin180 Com)Tin180 VietNam
 
Mathematics and Social Networks
Mathematics and Social NetworksMathematics and Social Networks
Mathematics and Social NetworksMason Porter
 
Applications of Knot Theory in Bioinformatics - A Quick Reader
Applications of Knot Theory in Bioinformatics - A Quick ReaderApplications of Knot Theory in Bioinformatics - A Quick Reader
Applications of Knot Theory in Bioinformatics - A Quick ReaderGokul Alex
 
Change Over Time Essay Example Ap World History
Change Over Time Essay Example Ap World HistoryChange Over Time Essay Example Ap World History
Change Over Time Essay Example Ap World HistoryJessica Phillips
 
Metodologia cualitativa para analisis de datos Uwe Flick
Metodologia cualitativa para analisis de datos Uwe FlickMetodologia cualitativa para analisis de datos Uwe Flick
Metodologia cualitativa para analisis de datos Uwe FlickLidiceJimenez2
 
A BeginnerS Guide To Write My Article Critique
A BeginnerS Guide To Write My Article CritiqueA BeginnerS Guide To Write My Article Critique
A BeginnerS Guide To Write My Article CritiqueJody Sullivan
 
4.0 social network analysis
4.0 social network analysis4.0 social network analysis
4.0 social network analysisjilung hsieh
 
UC Davis Plant Science Symposium: Topological Data Analysis
UC Davis Plant Science Symposium: Topological Data AnalysisUC Davis Plant Science Symposium: Topological Data Analysis
UC Davis Plant Science Symposium: Topological Data AnalysisDanChitwood
 
Intro to Networks for LUCID
Intro to Networks for LUCIDIntro to Networks for LUCID
Intro to Networks for LUCIDAlbert
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and OverviewDuke Network Analysis Center
 
Mining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network ResearchMining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network ResearchMarko Rodriguez
 
Mind the Graph! A Discussion on the Design of the Network
Mind the Graph! A Discussion on the Design of the NetworkMind the Graph! A Discussion on the Design of the Network
Mind the Graph! A Discussion on the Design of the NetworkPaolo Ciuccarelli
 
Polarization and consensus in citation networks
Polarization and consensus in citation networksPolarization and consensus in citation networks
Polarization and consensus in citation networksVincent Traag
 
Why Life is Difficult, and What We MIght Do About It
Why Life is Difficult, and What We MIght Do About ItWhy Life is Difficult, and What We MIght Do About It
Why Life is Difficult, and What We MIght Do About ItAnita de Waard
 
Higher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modelingHigher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modelingAustin Benson
 
Making the invisible visible through SNA
Making the invisible visible through SNAMaking the invisible visible through SNA
Making the invisible visible through SNAMYRA School of Business
 

Semelhante a A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin (20)

Socialnetworkanalysis (Tin180 Com)
Socialnetworkanalysis (Tin180 Com)Socialnetworkanalysis (Tin180 Com)
Socialnetworkanalysis (Tin180 Com)
 
SN- Lecture 8
SN- Lecture 8SN- Lecture 8
SN- Lecture 8
 
Mathematics and Social Networks
Mathematics and Social NetworksMathematics and Social Networks
Mathematics and Social Networks
 
Applications of Knot Theory in Bioinformatics - A Quick Reader
Applications of Knot Theory in Bioinformatics - A Quick ReaderApplications of Knot Theory in Bioinformatics - A Quick Reader
Applications of Knot Theory in Bioinformatics - A Quick Reader
 
SN- Lecture 9
SN- Lecture 9SN- Lecture 9
SN- Lecture 9
 
Change Over Time Essay Example Ap World History
Change Over Time Essay Example Ap World HistoryChange Over Time Essay Example Ap World History
Change Over Time Essay Example Ap World History
 
Metodologia cualitativa para analisis de datos Uwe Flick
Metodologia cualitativa para analisis de datos Uwe FlickMetodologia cualitativa para analisis de datos Uwe Flick
Metodologia cualitativa para analisis de datos Uwe Flick
 
A BeginnerS Guide To Write My Article Critique
A BeginnerS Guide To Write My Article CritiqueA BeginnerS Guide To Write My Article Critique
A BeginnerS Guide To Write My Article Critique
 
4.0 social network analysis
4.0 social network analysis4.0 social network analysis
4.0 social network analysis
 
Academic Course: 02 Self-organization and emergence in networked systems
Academic Course: 02 Self-organization and emergence in networked systemsAcademic Course: 02 Self-organization and emergence in networked systems
Academic Course: 02 Self-organization and emergence in networked systems
 
UC Davis Plant Science Symposium: Topological Data Analysis
UC Davis Plant Science Symposium: Topological Data AnalysisUC Davis Plant Science Symposium: Topological Data Analysis
UC Davis Plant Science Symposium: Topological Data Analysis
 
Intro to Networks for LUCID
Intro to Networks for LUCIDIntro to Networks for LUCID
Intro to Networks for LUCID
 
Dna structure
Dna structureDna structure
Dna structure
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview
 
Mining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network ResearchMining and Supporting Community Structures in Sensor Network Research
Mining and Supporting Community Structures in Sensor Network Research
 
Mind the Graph! A Discussion on the Design of the Network
Mind the Graph! A Discussion on the Design of the NetworkMind the Graph! A Discussion on the Design of the Network
Mind the Graph! A Discussion on the Design of the Network
 
Polarization and consensus in citation networks
Polarization and consensus in citation networksPolarization and consensus in citation networks
Polarization and consensus in citation networks
 
Why Life is Difficult, and What We MIght Do About It
Why Life is Difficult, and What We MIght Do About ItWhy Life is Difficult, and What We MIght Do About It
Why Life is Difficult, and What We MIght Do About It
 
Higher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modelingHigher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modeling
 
Making the invisible visible through SNA
Making the invisible visible through SNAMaking the invisible visible through SNA
Making the invisible visible through SNA
 

Mais de Leighton Pritchard

Little Rotters: Adventures With Plant-Pathogenic Bacteria
Little Rotters: Adventures With Plant-Pathogenic BacteriaLittle Rotters: Adventures With Plant-Pathogenic Bacteria
Little Rotters: Adventures With Plant-Pathogenic BacteriaLeighton Pritchard
 
Reverse-and forward-engineering specificity of carbohydrate-processing enzymes
Reverse-and forward-engineering specificity of carbohydrate-processing enzymesReverse-and forward-engineering specificity of carbohydrate-processing enzymes
Reverse-and forward-engineering specificity of carbohydrate-processing enzymesLeighton Pritchard
 
Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010Leighton Pritchard
 
Whole genome taxonomic classi cation for prokaryotic plant pathogens
Whole genome taxonomic classication for prokaryotic plant pathogensWhole genome taxonomic classication for prokaryotic plant pathogens
Whole genome taxonomic classi cation for prokaryotic plant pathogensLeighton Pritchard
 
Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Genomics and Bioinformatics: BM405 (2015)Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Genomics and Bioinformatics: BM405 (2015)Leighton Pritchard
 
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
Microbial Agrogenomics 4/2/2015, UK-MX WorkshopMicrobial Agrogenomics 4/2/2015, UK-MX Workshop
Microbial Agrogenomics 4/2/2015, UK-MX WorkshopLeighton Pritchard
 
BM405 Lecture Slides 21/11/2014 University of Strathclyde
BM405 Lecture Slides 21/11/2014 University of StrathclydeBM405 Lecture Slides 21/11/2014 University of Strathclyde
BM405 Lecture Slides 21/11/2014 University of StrathclydeLeighton Pritchard
 
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
Highly Discriminatory Diagnostic Primer Design From Whole Genome DataHighly Discriminatory Diagnostic Primer Design From Whole Genome Data
Highly Discriminatory Diagnostic Primer Design From Whole Genome DataLeighton Pritchard
 
ICSB 2013 - Visits Abroad Report
ICSB 2013 - Visits Abroad ReportICSB 2013 - Visits Abroad Report
ICSB 2013 - Visits Abroad ReportLeighton Pritchard
 
Adventures in Bioinformatics (2012)
Adventures in Bioinformatics (2012)Adventures in Bioinformatics (2012)
Adventures in Bioinformatics (2012)Leighton Pritchard
 
Golden Rules of Bioinformatics
Golden Rules of BioinformaticsGolden Rules of Bioinformatics
Golden Rules of BioinformaticsLeighton Pritchard
 
Plant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In SequencesPlant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In SequencesLeighton Pritchard
 
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
Repeatable plant pathology bioinformatic analysis: Not everything is NGS dataRepeatable plant pathology bioinformatic analysis: Not everything is NGS data
Repeatable plant pathology bioinformatic analysis: Not everything is NGS dataLeighton Pritchard
 
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...Leighton Pritchard
 
Rapid generation of E.coli O104:H4 PCR diagnostics
Rapid generation of E.coli O104:H4 PCR diagnosticsRapid generation of E.coli O104:H4 PCR diagnostics
Rapid generation of E.coli O104:H4 PCR diagnosticsLeighton Pritchard
 
Introduction to Bioinformatics
Introduction to BioinformaticsIntroduction to Bioinformatics
Introduction to BioinformaticsLeighton Pritchard
 
Mining Plant Pathogen Genomes for Effectors
Mining Plant Pathogen Genomes for EffectorsMining Plant Pathogen Genomes for Effectors
Mining Plant Pathogen Genomes for EffectorsLeighton Pritchard
 

Mais de Leighton Pritchard (20)

RDVW Hands-on session: Python
RDVW Hands-on session: PythonRDVW Hands-on session: Python
RDVW Hands-on session: Python
 
Little Rotters: Adventures With Plant-Pathogenic Bacteria
Little Rotters: Adventures With Plant-Pathogenic BacteriaLittle Rotters: Adventures With Plant-Pathogenic Bacteria
Little Rotters: Adventures With Plant-Pathogenic Bacteria
 
Pathogen Genome Data
Pathogen Genome DataPathogen Genome Data
Pathogen Genome Data
 
Reverse-and forward-engineering specificity of carbohydrate-processing enzymes
Reverse-and forward-engineering specificity of carbohydrate-processing enzymesReverse-and forward-engineering specificity of carbohydrate-processing enzymes
Reverse-and forward-engineering specificity of carbohydrate-processing enzymes
 
Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010Comparative Genomics and Visualisation BS32010
Comparative Genomics and Visualisation BS32010
 
Whole genome taxonomic classi cation for prokaryotic plant pathogens
Whole genome taxonomic classication for prokaryotic plant pathogensWhole genome taxonomic classication for prokaryotic plant pathogens
Whole genome taxonomic classi cation for prokaryotic plant pathogens
 
Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Genomics and Bioinformatics: BM405 (2015)Microbial Genomics and Bioinformatics: BM405 (2015)
Microbial Genomics and Bioinformatics: BM405 (2015)
 
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
Microbial Agrogenomics 4/2/2015, UK-MX WorkshopMicrobial Agrogenomics 4/2/2015, UK-MX Workshop
Microbial Agrogenomics 4/2/2015, UK-MX Workshop
 
BM405 Lecture Slides 21/11/2014 University of Strathclyde
BM405 Lecture Slides 21/11/2014 University of StrathclydeBM405 Lecture Slides 21/11/2014 University of Strathclyde
BM405 Lecture Slides 21/11/2014 University of Strathclyde
 
Sequencing and Beyond?
Sequencing and Beyond?Sequencing and Beyond?
Sequencing and Beyond?
 
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
Highly Discriminatory Diagnostic Primer Design From Whole Genome DataHighly Discriminatory Diagnostic Primer Design From Whole Genome Data
Highly Discriminatory Diagnostic Primer Design From Whole Genome Data
 
ICSB 2013 - Visits Abroad Report
ICSB 2013 - Visits Abroad ReportICSB 2013 - Visits Abroad Report
ICSB 2013 - Visits Abroad Report
 
Adventures in Bioinformatics (2012)
Adventures in Bioinformatics (2012)Adventures in Bioinformatics (2012)
Adventures in Bioinformatics (2012)
 
Golden Rules of Bioinformatics
Golden Rules of BioinformaticsGolden Rules of Bioinformatics
Golden Rules of Bioinformatics
 
Plant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In SequencesPlant Pathogen Genome Data: My Life In Sequences
Plant Pathogen Genome Data: My Life In Sequences
 
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
Repeatable plant pathology bioinformatic analysis: Not everything is NGS dataRepeatable plant pathology bioinformatic analysis: Not everything is NGS data
Repeatable plant pathology bioinformatic analysis: Not everything is NGS data
 
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
What makes the enterobacterial plant pathogen Pectobacterium atrosepticum dif...
 
Rapid generation of E.coli O104:H4 PCR diagnostics
Rapid generation of E.coli O104:H4 PCR diagnosticsRapid generation of E.coli O104:H4 PCR diagnostics
Rapid generation of E.coli O104:H4 PCR diagnostics
 
Introduction to Bioinformatics
Introduction to BioinformaticsIntroduction to Bioinformatics
Introduction to Bioinformatics
 
Mining Plant Pathogen Genomes for Effectors
Mining Plant Pathogen Genomes for EffectorsMining Plant Pathogen Genomes for Effectors
Mining Plant Pathogen Genomes for Effectors
 

Último

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 

Último (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 

A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

  • 1.
  • 2.
  • 3. A  Systems  Biology  Perspec2ve  on   Plant-­‐Pathogen  Interac2ons   Leighton  Pritchard  
  • 4. A  Con2nuum   l Pathogenicity  is  a  loaded  term:   l  o4en  reflects  human  interest  in  the  system   l  disease  on  crop  plants  could  be  coincidental  to  ‘wild  type’  interac<ons   l A  con<nuum  of  interac<on  modes,  including  symbiosis  and   pathogenicity   l The  loca<on  of  the  system  on  this  con<nuum  may  depend  on  context   l  e.g.  Pectobacterium  atrosep/cum:potato   no  impact   host  death  
  • 5. A  basic  observa2on   Pathogen  Host   Biological  cells  (and  organisms)  can  be  represented     as  networks  
  • 6. Biological  networks   l Common  way  to  represent  structure   l  Several  biological  subsystems  are  networks   l Universal  representa<on   l  All  biological  systems  have  parts  that  can  be  represented   as  networks   l Networks  (a.k.a.  graphs)  are  mathema<cally  well-­‐ understood:  Graph  Theory   l  Many  tools  exist,  relevant  to  biology  
  • 7. Biological  networks   l Common  way  to  represent  structure   l  Several  biological  subsystems  are  networks   l Universal  representa<on   l  All  biological  systems  have  parts  that  can  be  represented   as  networks   l Networks  (a.k.a.  graphs)  are  mathema<cally  well-­‐ understood:  Graph  Theory   l  Many  tools  exist,  relevant  to  biology  
  • 8. Biological  networks   l Metabolic  networks  (e.g.  KEGG)   (generic)  Michal  (Ed.),  Biochemical  Pathways,  John  Wiley  and  Sons,  New  York,  1999.    
  • 9. Biological  networks   l Regulatory/signalling  networks   (mouse)  (Drosophila)  
  • 10. Biological  networks   l Protein-­‐protein  interac<on  networks   (Arabidopsis/H.arabidopsidis/P.syringae)  (yeast)  
  • 11. Biological  networks   l Common  way  to  represent  structure   l  Several  biological  subsystems  are  networks   l Universal  representa<on   l  All  biological  systems  have  parts  that  can  be  represented   as  networks   l Networks  (a.k.a.  graphs)  are  mathema<cally  well-­‐ understood:  Graph  Theory   l  Many  tools  exist,  relevant  to  biology  
  • 12. What  is  a  network?   l Networks  have  nodes  (a.k.a.  ver<ces)   l  Nodes  typically  represent  ‘things’:   „ proteins,  chemical  compounds,  people,  towns,  junc<ons…   l Nodes  are  connected  by  edges  (a.k.a.  arcs)   l  Edges  typically  indicate  some  rela<onship  between  nodes   „ physical  interac<on,  substrate:product,  friends  on  Facebook   l  Edges  may  be  directed  (from  one  node  to  another)  or  undirected  (no  or   ambiguous  direc<on)   „ chemical  conversion:  directed;  interac<on:  undirected   n1   n2  
  • 13. What  is  a  network?   l Networks  have  nodes  (a.k.a.  ver<ces)   l  Nodes  typically  represent  ‘things’:   „ proteins,  chemical  compounds,  people,  towns,  junc<ons…   l Nodes  are  connected  by  edges  (a.k.a.  arcs)   l  Edges  typically  indicate  some  rela<onship  between  nodes   „ physical  interac<on,  substrate:product,  friends  on  Facebook   l  Edges  may  be  directed  (from  one  node  to  another)  or  undirected  (no  or   ambiguous  direc<on)   „ chemical  conversion:  directed;  interac<on:  undirected   n1   n2  
  • 14. What  is  a  network?   l Networks  have  nodes  (a.k.a.  ver<ces)   l  Nodes  typically  represent  ‘things’:   „ proteins,  chemical  compounds,  people,  towns,  junc<ons…   l Nodes  are  connected  by  edges  (a.k.a.  arcs)   l  Edges  typically  indicate  some  rela<onship  between  nodes   „ physical  interac<on,  substrate:product,  friends  on  Facebook   l  Edges  may  be  directed  (from  one  node  to  another)  or  undirected  (no  or   ambiguous  direc<on)   „ chemical  conversion:  directed;  interac<on:  undirected   n1   n2   n1   n2   n1   n2   n1   n2  
  • 15. Many  things  are  networks   l My  Facebook  friends  network:   l  Nodes:  people   l  Edges:  friendships  between  people   l Useful  concepts  for  biology:   l  ‘friend  of  a  friend’;  ‘six  degrees  of  separa<on’;  clusters  of  friends     Solange Mateo Montalcini Maeve Price Peter Cock Catherine Tackley Gavin Cowie Steffi Keir Yvonne McAvoy Jennifer White Rachel Clewes Juan Morales Karen Faulds David Ian Ellis Laura Banasiak Andrea Semião Daniel Tackley Andrew Lipscombe Bleddyn Hughes Sue Stovell Laura Didymus Hywel Griffiths Charles Twist Christian Payne Helen Johnson Phil Parsonage Colin McGill Allan N. Gunn Will Allwood Katherine Hollywood Judith Robertson Andrew Murdoch David Broadhurst Lydia Castelli Miles Armstrong Paul Keir Fiona White Gagg Lizzie Wilberforce Joanne Fitchet Laura Baxter Alison Gilhespie Jorunn Bos James Gagg Andy Smith Clare Baxter Susan Somerville Neil Bhaduri Joanna Jones Colleen Gagg Susan Quinn McGhee Al Macmillan Norman StewartKevin Knox Susan BreenMichael Barrow Phil Dennison Andrew McKenzie Matthew Blackburn Christelle Robert Tim Arrowsmith Emma Robertson Jane Ballany Chris Thorpe Andrew Dalke Sonia Humphris Juan Morales Eleanor Gilroy Chris McDonald Natalie Homer Anna Åsman Ruth Polwart Tim Morley Kenny Duncan Iddo Friedberg Remco Stam Ramesh Vetukuri Louise Matheson Simon Easterman Philip Law Craig Shaddy Shadbolt Simon Garrett Agata Kaczmarek Simon Pendlebury Rays Jiang Christiane AusJena Pedro Mendes Iris Stone Ingo Hein Adriana Ravagnani Eduard Venter Charles Gordon David Cooke Jonathan Gagg Roger Jarvis Ross McMahon Stefan Engelhardt Edgar Huitema Thomas Pritchard Tracy Canham Sophien Kamoun Florietta Jupe Ambreen Owen Hazel McLellan
  • 16. Many  things  are  networks   l My  Facebook  friends  network:   l  Nodes:  people   l  Edges:  friendships  between  people   l Useful  concepts  for  biology:   l  ‘friend  of  a  friend’;  ‘six  degrees  of  separa<on’;  clusters  of  friends     Solange Mateo Montalcini Maeve Price Peter Cock Catherine Tackley Gavin Cowie Steffi Keir Yvonne McAvoy Jennifer White Rachel Clewes Juan Morales Karen Faulds David Ian Ellis Laura Banasiak Andrea Semião Daniel Tackley Andrew Lipscombe Bleddyn Hughes Sue Stovell Laura Didymus Hywel Griffiths Charles Twist Christian Payne Helen Johnson Phil Parsonage Colin McGill Allan N. Gunn Will Allwood Katherine Hollywood Judith Robertson Andrew Murdoch David Broadhurst Lydia Castelli Miles Armstrong Paul Keir Fiona White Gagg Lizzie Wilberforce Joanne Fitchet Laura Baxter Alison Gilhespie Jorunn Bos James Gagg Andy Smith Clare Baxter Susan Somerville Neil Bhaduri Joanna Jones Colleen Gagg Susan Quinn McGhee Al Macmillan Norman StewartKevin Knox Susan BreenMichael Barrow Phil Dennison Andrew McKenzie Matthew Blackburn Christelle Robert Tim Arrowsmith Emma Robertson Jane Ballany Chris Thorpe Andrew Dalke Sonia Humphris Juan Morales Eleanor Gilroy Chris McDonald Natalie Homer Anna Åsman Ruth Polwart Tim Morley Kenny Duncan Iddo Friedberg Remco Stam Ramesh Vetukuri Louise Matheson Simon Easterman Philip Law Craig Shaddy Shadbolt Simon Garrett Agata Kaczmarek Simon Pendlebury Rays Jiang Christiane AusJena Pedro Mendes Iris Stone Ingo Hein Adriana Ravagnani Eduard Venter Charles Gordon David Cooke Jonathan Gagg Roger Jarvis Ross McMahon Stefan Engelhardt Edgar Huitema Thomas Pritchard Tracy Canham Sophien Kamoun Florietta Jupe Ambreen Owen Hazel McLellan
  • 17. Many  things  are  networks   l  Google  Maps   l  Nodes:  road  junc<ons  (and  end  points  in  culs  de  sacs)   l  Edges:  roads   l  Structure  view   l  Flow/traffic  view     l  Useful  concepts  for  biology:   l  Network  ‘flow’  or  ‘flux’;  distance  on  a  network;  shortest  path  
  • 18. Many  things  are  networks   l  Google  Maps   l  Nodes:  road  junc<ons  (and  end  points  in  culs  de  sacs)   l  Edges:  roads   l  Structure  view   l  Flow/traffic  view     l  Useful  concepts  for  biology:   l  Network  ‘flow’  or  ‘flux’;  distance  on  a  network;  shortest  path  
  • 19. Many  things  are  networks   l  Google  Maps   l  Nodes:  road  junc<ons  (and  end  points  in  culs  de  sacs)   l  Edges:  roads   l  Structure  view   l  Flow/traffic  view     l  Useful  concepts  for  biology:   l  Network  ‘flow’  or  ‘flux’;  distance  on  a  network;  shortest  path  
  • 20. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)   l Abstract  truths  about  networks  can  be  true  about  biology   l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological   network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to   random  damage.  
  • 21. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)   l Abstract  truths  about  networks  can  be  true  about  biology   l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological   network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to   random  damage.  
  • 24. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)   l Abstract  truths  about  networks  can  be  true  about  biology   l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological   network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to   random  damage.  
  • 25. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)    
  • 26. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)     n1   n2   n3   n4   n5  
  • 27. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)   l Any  network  with  this  structure  has  the  same     behaviour   l  Behaviour  of  specific  regulatory  network  is  dictated   by  its  structure:   l  Behaviour  dependent  on  structure  of  system  as  a     whole:  need  to  understand  this  at  a  systems  level   MacLean  and  Studholme.  A  Boolean  model  of  the  Pseudomonas  syringae  hrp  regulon  predicts  a  <ghtly  regulated  system.  PLoS  ONE  (2010)  vol.  5  (2)  pp.  e9101   doi:10.1371/journal.pone.0009101  
  • 28. Networks  are  abstract   l Networks  are  collec<ons  of  nodes  and  edges   l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on   l  What  a  node  or  edge  represents  is  not  important   l If  a  network  describes  biology  well…   l  …what  is  true  about  the  network  will  be  true  about  the  biology   l  (some  networks  describe  biology  be`er  than  others)   l Abstract  truths  about  networks  can  be  true  about  the  biology  they   represent   l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological   network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to   random  damage.  
  • 29. Choosing  a  representa2on   l Network  should  be  an  adequate  representa<on  of  biology   l  Choice  of  representa<on  should  suit  biological  ques<on   l  e.g.  do  we  represent  chemical  compounds,  or  moie<es?  
  • 30. Choosing  a  representa2on   l Network  should  be  an  adequate  representa<on  of  biology   l  Choice  of  representa<on  should  suit  biological  ques<on   l  e.g.  do  we  represent  chemical  compounds,  or  moie<es?  
  • 31. Choosing  a  representa2on   l Network  should  be  an  adequate  representa<on  of  biology   l  Choice  of  representa<on  should  suit  biological  ques<on   l  e.g.  do  we  represent  chemical  compounds,  or  moie<es?  
  • 32. Choosing  a  representa2on   l What  does  this  diagram  mean?   l  Are  all  enzymes   expressed  at  same  <me?   l  Are  all  enzymes   expressed  in  all  <ssues?   l  Are  all  metabolites   always  available?   l  30-­‐40%  of  metabolic   ac<vity  has  no  known   gene  associated  with  it   (Chen  and  Vitkup.  Distribu<on  of  orphan   metabolic  ac<vi<es.  Trends  Biotechnol   (2007)  vol.  25  (8)  pp.  343-­‐348  doi: 10.1016/j.<btech.2007.06.001)   Michal  (Ed.),  Biochemical  Pathways,  John  Wiley  and  Sons,  New  York,  1999.    
  • 33. Choosing  a  representa2on   l What  does  this  diagram  mean?   l  Are  all  enzymes   expressed  at  same  <me?   l  Are  all  enzymes   expressed  in  all  <ssues?   l  Are  all  metabolites   always  available?   l  30-­‐40%  of  metabolic   ac<vity  has  no  known   gene  associated  with  it   (Chen  and  Vitkup.  Distribu<on  of  orphan   metabolic  ac<vi<es.  Trends  Biotechnol   (2007)  vol.  25  (8)  pp.  343-­‐348  doi: 10.1016/j.<btech.2007.06.001)   Michal  (Ed.),  Biochemical  Pathways,  John  Wiley  and  Sons,  New  York,  1999.    
  • 34. Choosing  a  representa2on   l Biological  networks  are  dynamic   l  There  may  be  homeostasis,  but  it’s  dynamic  homeostasis   l  “The  only  steady-­‐state  is  death”   l What  kind  of  dynamics?   l  Kine<c  equa<ons   l  ODE/Stochas<c  representa<on  of  processes   „ e.g.  enzyme  kine<cs   E + S ⌦ ES ⌦ EP ! E + P v = [S]Vmax [S] + [Km]
  • 35. Choosing  a  representa2on   l Biological  networks  are  dynamic   l  There  may  be  homeostasis,  but  it’s  dynamic  homeostasis   l  “The  only  steady-­‐state  is  death”   l What  kind  of  dynamics?   l  Kine<c  equa<ons   l  ODE/Stochas<c  representa<on  of  processes   „ e.g.  enzyme  kine<cs   E + S ⌦ ES ⌦ EP ! E + P v = [S]Vmax [S] + [Km]
  • 36. Choosing  a  representa2on   l Biological  networks  are  dynamic   l  There  may  be  homeostasis,  but  it’s  dynamic  homeostasis   l  “The  only  steady-­‐state  is  death”   l What  kind  of  dynamics?   l  Boolean  (on/off,  0/1)   „ e.g.  regula<on/signalling   nodes   <me  
  • 37. Host-­‐pathogen  interac2on   Pathogen  Host   A  representa<on  of  host  and  pathogen  as  two  networks  
  • 38. Host-­‐pathogen  interac2on   Pathogen  Host   PAMP/MAMP  detec<on:  host  immune  receptor  detects  (interacts   with)  non-­‐self  chemical  species  derived  from  microbe/pathogen  
  • 39. Host-­‐pathogen  interac2on   Pathogen  Host   Effector  ac<on  I:  pathogen-­‐derived  species  (probably  protein)   interacts  with  host  network  component  
  • 40. Host-­‐pathogen  interac2on   Pathogen  Host   Effector  ac<on  II:  pathogen-­‐derived  species  (probably  protein)   manipulates  (interacts  with)  host  network  process  
  • 41. Host-­‐pathogen  interac2on   Pathogen  Host   Effector-­‐triggered  resistance  I:  host  immune  receptor  interacts  with   pathogen-­‐derived  effector  
  • 42. Host-­‐pathogen  interac2on   Pathogen  Host   Effector-­‐triggered  resistance  II:  host  immune  receptor  detects  self-­‐   modifica<on  (induced  by  pathogen  effector)  
  • 43. Host-­‐pathogen  interac2on   Pathogen  Host   Host-­‐pathogen  interac2on  is  the  coming  together  of  two  networks  into  a  single   network:  different  proper2es  than  either  network  alone  
  • 44. Host-­‐pathogen  interac2on   Pathogen  Host   How  does  this  affect  culturability?     Tight  connec2on  correlates  with  obligate  biotrophy,  hence  difficult  to  culture?  
  • 46. Host-­‐pathogen  interac2on   Pathogen   Host   l How  does  host/pathogen  network  respond  to  interac<on?   l What  is  best  way  to  a`ack  a  network?   l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?   l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  
  • 47. Host-­‐pathogen  interac2on   Pathogen   Host   l How  does  host/pathogen  network  respond  to  interac<on?   l What  is  best  way  to  a`ack  a  network?   l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?   l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  
  • 48. Host-­‐pathogen  interac2on   Pathogen   Host   l How  does  host/pathogen  network  respond  to  interac<on?   l What  is  best  way  to  a`ack  a  network?   l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?   l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  
  • 49. Host-­‐pathogen  interac2on   Pathogen   Host   l How  does  host/pathogen  network  respond  to  interac<on?   l What  is  best  way  to  a`ack  a  network?   l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?   l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  
  • 50. Influence  in  networks   l Efficient  a`ackers:     l  cause  greatest  favourable  host  disrup<on  for  least  effort     l  should  target  influen<al  points  in  host  network   l Efficient  defenders:   l  protect  against  greatest  amount  of  poten<al  change  for  least  effort   l  protect  against  most  commonly-­‐targeted  points  in  network   l  should  target  influen<al  points  in  host  network   l Greatest  benefit  for  least  cost   l What  are  the  most  influen<al  points  in  a  network?  
  • 51. Influence  in  networks   l Efficient  a`ackers:     l  cause  greatest  favourable  host  disrup<on  for  least  effort     l  should  target  influen<al  points  in  host  network   l Efficient  defenders:   l  protect  against  greatest  amount  of  poten<al  change  for  least  effort   l  protect  against  most  commonly-­‐targeted  points  in  network   l  should  target  influen<al  points  in  host  network   l Greatest  benefit  for  least  cost   l What  are  the  most  influen<al  points  in  a  network?  
  • 52. Influence  in  networks   l Efficient  a`ackers:     l  cause  greatest  favourable  host  disrup<on  for  least  effort     l  should  target  influen<al  points  in  host  network   l Efficient  defenders:   l  protect  against  greatest  amount  of  poten<al  change  for  least  effort   l  protect  against  most  commonly-­‐targeted  points  in  network   l  should  target  influen<al  points  in  host  network   l Greatest  benefit  for  least  cost   l What  are  the  most  influen<al  points  in  a  network?  
  • 53. Influence  in  networks   l Efficient  a`ackers:     l  cause  greatest  favourable  host  disrup<on  for  least  effort     l  should  target  influen<al  points  in  host  network   l Efficient  defenders:   l  protect  against  greatest  amount  of  poten<al  change  for  least  effort   l  protect  against  most  commonly-­‐targeted  points  in  network   l  should  target  influen<al  points  in  host  network   l Greatest  benefit  for  least  cost   l What  are  the  most  influen2al  points  in  a  network?   l  can  we  predict/iden<fy  them?  
  • 54. Robustness  in  biological  networks   l Biological  networks  are  typically  robust  and  error-­‐tolerant   l  (necessary  for  descent  with  modifica<on)   l  e.g.  only  17%  of  yeast  genes  essen<al  to  cell  viability  in  rich  media   Winzeler  et  al.  Func<onal  characteriza<on  of  the  S.  cerevisiae  genome  by  gene  dele<on   and  parallel  analysis.  Science  (1999)  vol.  285  (5429)  pp.  901-­‐906  
  • 55. Robustness  in  biological  networks   l Biological  networks  are  typically  robust  and  error-­‐tolerant   l  (necessary  for  descent  with  modifica<on)   l  e.g.  only  17%  of  yeast  genes  essen<al  to  cell  viability  in  rich  media   Winzeler  et  al.  Func<onal  characteriza<on  of  the  S.  cerevisiae  genome  by  gene  dele<on   and  parallel  analysis.  Science  (1999)  vol.  285  (5429)  pp.  901-­‐906  
  • 56. Structural  robustness  in  biological  networks   l Some  network  structures  enhance  robustness   l  Many  biological  networks  have  converged  to  same  network  structures   Barabási  and  Oltvai.  Network  biology:  understanding  the  cell's  func<onal  organiza<on.  Nat  Rev  Genet  (2004)  vol.  5  (2)  pp.  101-­‐13  doi: 10.1038/nrg1272   Kitano.  Biological  robustness.  Nat  Rev  Genet  (2004)  vol.  5  (11)  pp.  826-­‐37  doi:10.1038/nrg1471   •  Aa:  random  Erdös-­‐Renyi  graph:  not  robust  to  random  a`ack  (not  common  in  biology)   •  Ba:  random  ‘scale-­‐free’  network:  robust  to  random  a`ack  (most  biological  networks)   •  Ca:  hierarchical  network:  robust  to  random  a`ack  (many  signalling  networks)  
  • 57. l Some  network  structures  enhance  robustness   l  Many  biological  networks  have  converged  to  same  network  structures   Barabási  and  Oltvai.  Network  biology:  understanding  the  cell's  func<onal  organiza<on.  Nat  Rev  Genet  (2004)  vol.  5  (2)  pp.  101-­‐13  doi: 10.1038/nrg1272   Kitano.  Biological  robustness.  Nat  Rev  Genet  (2004)  vol.  5  (11)  pp.  826-­‐37  doi:10.1038/nrg1471   •  Aa:  random  Erdös-­‐Renyi  graph:  not  robust  to  random  a`ack  (not  common  in  biology)   •  Ba:  random  ‘scale-­‐free’  network:  robust  to  random  a`ack  (most  biological  networks)   •  Ca:  hierarchical  network:  robust  to  random  a`ack  (many  signalling  networks)   Structural  robustness  in  biological  networks  
  • 58. l Network  bridges/bo`lenecks   l  essen<al  intermediate  nodes  in  a  network   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   •  Pathways  from  detec<on  (e.g.  immune   recep<on)  to  host  response   •  Signalling  pathways   •  E.g.  Cladosporum  fulvum  Avr4  suppresses   produc<on  of  chi<n,  a  ‘bridge’  
  • 59. l Network  bridges/bo`lenecks   l  essen<al  intermediate  nodes  in  a  network   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   MAMP   detec2on   •  Pathways  from  detec<on  (e.g.  immune   recep<on)  to  host  response   •  Signalling  pathways   •  e.g.  Cladosporum  fulvum  Avr4  suppresses   produc<on  of  chi<n,  a  ‘bridge’  
  • 60. l Network  bridges/bo`lenecks   l  essen<al  intermediate  nodes  in  a  network   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   MAMP   detec2on   •  Pathways  from  detec<on  (e.g.  immune   recep<on)  to  host  response   •  Signalling  pathways   •  E.g.  Cladosporum  fulvum  Avr4  suppresses   produc<on  of  chi<n,  a  ‘bridge’   chi<n   chi<nase  
  • 61. l Network  bridges/bo`lenecks   l  essen<al  intermediate  nodes  in  a  network   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   MAMP   detec2on   •  Pathways  from  detec<on  (e.g.  immune   recep<on)  to  host  response   •  Signalling  pathways   •  E.g.  Cladosporum  fulvum  Avr4  suppresses   produc<on  of  chi<n,  a  ‘bridge’   chi<n   chi<nase   Avr4  
  • 62. l Network  bridges/bo`lenecks   l  essen<al  intermediate  nodes  in  a  network   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   MAMP   detec2on   •  Redundancy  and  cross-­‐talk  in  signalling   pathways  protects  against  this  fragility   •  e.g.  PTI/ETI  cross-­‐talk  
  • 63. l Network  hubs   l  highly-­‐connected  nodes   l  characteris<c  of  ‘scale-­‐free’  (and  similar)  networks   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   •  Why  do  hubs  occur?   •  How  many  hubs  do  we  expect?   •  How  are  they  related  to  biology?  
  • 64. l Network  hubs   l  highly-­‐connected  nodes   l  characteris<c  of  ‘scale-­‐free’  (and  similar)  networks   l  dele<on  or  disrup<on  dissociates  (breaks)  the  network   Structural  robustness  in  biological  networks   •  Why  do  hubs  occur?   •  How  many  hubs  do  we  expect?   •  How  are  they  related  to  biology?  
  • 65. l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks   l  Robust  because  of  node  degree  distribu<on   l  Very  few  ‘hubs’;  most  nodes  make  few  connec<ons   l  Random  dele<on  more  likely  to  remove  node  with  few  connec<ons   Structural  robustness  in  biological  networks   Albert  et  al.  Error  and  a`ack  tolerance  of  complex  networks.  Nature  (2000)  vol.  406  (6794)  pp.  378-­‐82  doi: 10.1038/35019019  
  • 66. l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks   l  Robust  because  of  node  degree  distribu<on   l  Very  few  ‘hubs’;  most  nodes  make  few  connec<ons   l  Random  dele<on  more  likely  to  remove  node  with  few  connec<ons   Structural  robustness  in  biological  networks   Albert  et  al.  Error  and  a`ack  tolerance  of  complex  networks.  Nature  (2000)  vol.  406  (6794)  pp.  378-­‐82  doi: 10.1038/35019019  
  • 67. l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks   l  Diagnos<c  ‘degree  distribu<on’  (count  of  connec<ons  to  each  node)   l  Yeast  protein  interac<on  network  has  power-­‐law  distribu<on   l  Essen<al  17%  of  genes  correlated  with  highly-­‐connected  nodes  (hubs)   Structural  robustness  in  biological  networks  
  • 68. l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks   l  Diagnos<c  ‘degree  distribu<on’  (count  of  connec<ons  to  each  node)   l  Yeast  protein  interac<on  network  has  power-­‐law  distribu<on   l  Essen<al  17%  of  genes  correlated  with  highly-­‐connected  nodes  (hubs)   Structural  robustness  in  biological  networks  
  • 69. l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks   l  Most  studied  biological  networks  are  ‘scale-­‐free’   l  ‘Scale-­‐free’  property  proposed  to  arise  from  network  evolu<on   l  ‘older’  nodes  more  likely  to  be  hubs   l  ‘older’  nodes  more  likely  to  be  func<onally-­‐conserved,  sequence   constrained?   l  Hubs  are  good  targets  for  network  disrup<on:  what  role  do  they  play  in   pathogen/host  evolu<on?   Structural  robustness  in  biological  networks  
  • 70. l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks   l  Most  studied  biological  networks  are  ‘scale-­‐free’   l  ‘Scale-­‐free’  property  proposed  to  arise  from  network  evolu<on   l  ‘older’  nodes  more  likely  to  be  hubs   l  ‘older’  nodes  more  likely  to  be  func<onally-­‐conserved,  sequence   constrained?   l  Hubs  are  good  targets  for  network  disrup<on:  what  role  do  they  play  in   pathogen/host  evolu<on?   Structural  robustness  in  biological  networks  
  • 71. l Bacterial  Type  III  effectors  engage  a  limited  set  of  host  processes   across  host  kingdoms  e.g.:   l  turnover  by  modula<on  of  ubiqui<na<on     l  altera<on  of  transcrip<on   l  altera<on  of  phosphoryla<on     l Strategies  such  as  the  targe<ng  of  ubiqui<na<on  are  used  by  bacterial   fungal  and  oomycete  pathogens  across  a  range  of  hosts   Structural  robustness  in  biological  networks  
  • 72. l Bacterial  Type  III  effectors  engage  a  limited  set  of  host  processes   across  host  kingdoms  e.g.:   l  turnover  by  modula<on  of  ubiqui<na<on     l  altera<on  of  transcrip<on   l  altera<on  of  phosphoryla<on     l Strategies  such  as  the  targe<ng  of  ubiqui<na<on  are  used  by  bacterial   fungal  and  oomycete  pathogens  across  a  range  of  hosts   Structural  robustness  in  biological  networks  
  • 73. The  Guard  Hypothesis   l The  Guard  Hypothesis  describes  indirect  R  gene:effector  interac<on   l  Direct  R  gene:effector  interac<on  could  lead  to  overwhelming  R  gene  load   l  A.  thaliana  has  ≈200  R  genes  (1%  of  gene  complement)   l If  ‘hubs’  are  common  targets  for  pathogens…   l  …guarding  the  hub  with  one  R  gene  is     more  efficient  than  gene-­‐for-­‐gene     interac<ons   l  …network  topology  implies  the  Guard     Hypothesis   l If  ‘hubs’  are  universal  targets…   l  …network  topology  determines  which     nodes  are  likely  to  be  involved  in     host-­‐pathogen  interac<on   Dangl  and  Jones.  Plant  pathogens  and  integrated     defence  responses  to  infec<on.  Nature  (2001)     vol.  411  (6839)  pp.  826-­‐33  doi:10.1038/35081161  
  • 74. The  Guard  Hypothesis   l The  Guard  Hypothesis  describes  indirect  R  gene:effector  interac<on   l  Direct  R  gene:effector  interac<on  could  lead  to  overwhelming  R  gene  load   l  A.  thaliana  has  ≈200  R  genes  (1%  of  gene  complement)   l If  ‘hubs’  are  common  targets  for  pathogens…   l  …guarding  the  hub  with  one  R  gene  is     more  efficient  than  gene-­‐for-­‐gene     interac<ons   l  …network  topology  implies  the  Guard     Hypothesis   l If  ‘hubs’  are  universal  targets…   l  …network  topology  determines  which     nodes  are  likely  to  be  involved  in     host-­‐pathogen  interac<on   Dangl  and  Jones.  Plant  pathogens  and  integrated     defence  responses  to  infec<on.  Nature  (2001)     vol.  411  (6839)  pp.  826-­‐33  doi:10.1038/35081161  
  • 75. Dangl  and  Jones.  Plant  pathogens  and  integrated     defence  responses  to  infec<on.  Nature  (2001)     vol.  411  (6839)  pp.  826-­‐33  doi:10.1038/35081161   The  Guard  Hypothesis   l The  Guard  Hypothesis  describes  indirect  R  gene:effector  interac<on   l  Direct  R  gene:effector  interac<on  could  lead  to  overwhelming  R  gene  load   l  A.  thaliana  has  ≈200  R  genes  (1%  of  gene  complement)   l If  ‘hubs’  are  common  targets  for  pathogens…   l  …guarding  the  hub  with  one  R  gene  is     more  efficient  than  gene-­‐for-­‐gene     interac<ons   l  …network  topology  implies  the  Guard     Hypothesis   l If  ‘hubs’  are  universal  targets…   l  …network  topology  determines  which     nodes  are  likely  to  be  involved  in     host-­‐pathogen  interac<on  
  • 76. Interac2ons  with  hubs   l Host:  Arabidopsis  thaliana   l Pathogens:  Pseudomonas  syringae,  Hyaloperonospora  arabidopsidis   l  Independent  effector  evolu<on   l  Matrix-­‐2-­‐hybrid  (yeast-­‐2-­‐hybrid)   l  Pathogen  effectors  share  more  common   targets  than  expected  (if  random)   l  Common  targets  more  highly  connected   (i.e.  are  ‘hubs’)  than  expected  (if  random)   Mukhtar  MS,  et  al.  (2011)  Independently  evolved  virulence  effectors  converge  onto  hubs  in  a  plant  immune   system  network.  Science  333:  596–601.  doi:10.1126/science.1203659.  
  • 77. Interac2ons  with  hubs   l Host:  Arabidopsis  thaliana   l Pathogens:  Pseudomonas  syringae,  Hyaloperonospora  arabidopsidis   l  Independent  effector  evolu<on   l  Matrix-­‐2-­‐hybrid  (yeast-­‐2-­‐hybrid)   l  Pathogen  effectors  share  more  common   targets  than  expected  (if  random)   l  Common  targets  more  highly  connected   (i.e.  are  ‘hubs’)  than  expected  (if  random)   Mukhtar  MS,  et  al.  (2011)  Independently  evolved  virulence  effectors  converge  onto  hubs  in  a  plant  immune   system  network.  Science  333:  596–601.  doi:10.1126/science.1203659.  
  • 78. Interac2ons  with  hubs   l Host:  Arabidopsis  thaliana   l Pathogens:  Pseudomonas  syringae,  Hyaloperonospora  arabidopsidis   l  Independent  effector  evolu<on   l  Matrix-­‐2-­‐hybrid  (yeast-­‐2-­‐hybrid)   l  Pathogen  effectors  share  more  common   targets  than  expected  (if  random)   l  Common  targets  more  highly  connected   (i.e.  are  ‘hubs’)  than  expected  (if  random)   Mukhtar  MS,  et  al.  (2011)  Independently  evolved  virulence  effectors  converge  onto  hubs  in  a  plant  immune   system  network.  Science  333:  596–601.  doi:10.1126/science.1203659.  
  • 79. Modules  in  networks   l Mo<fs  are  small  subnetworks   l  Many  have  specific  dynamic  and  logic   behaviour:   „ Accelerate/slow  response   „ Enforce  sequen<al  responses   „ Lock  signal  on  or  off   „ Filter  out  noise  in  signals   „ Generate  pulse  in  response  to     signal   „ Generate  oscilla<ons   „ Integrate  and  process  mul<ple     signals   Shoval  and  Alon.  SnapShot:  network  mo<fs.  Cell  (2010)  vol.  143  (2)  pp.  326-­‐e1  doi:10.1016/j.cell.2010.09.050  
  • 80. Modules  in  networks   l Mo<fs  are  small  subnetworks   l  Many  have  specific  dynamic  and  logic   behaviour:   „ Accelerate/slow  response   „ Enforce  sequen<al  responses   „ Lock  signal  on  or  off   „ Filter  out  noise  in  signals   „ Generate  pulse  in  response  to     signal   „ Generate  oscilla<ons   „ Integrate  and  process  mul<ple     signals   Shoval  and  Alon.  SnapShot:  network  mo<fs.  Cell  (2010)  vol.  143  (2)  pp.  326-­‐e1  doi:10.1016/j.cell.2010.09.050  
  • 81. Modules  in  networks   l Mo<fs  are  small  subnetworks   l  Many  have  specific  dynamic  and  logic   behaviour:   „ Generate  pulse  in  response  to     signal   „ Generate  oscilla<ons   Shoval  and  Alon.  SnapShot:  network  mo<fs.  Cell  (2010)  vol.  143  (2)  pp.  326-­‐e1  doi:10.1016/j.cell.2010.09.050  
  • 82. Modules  in  networks   l Bow-­‐<e  structure   l Many  inputs  →  restricted  set  of  intermediates  →  many  outputs  
  • 83. Modules  in  networks   l Bow-­‐<e  structure   l Many  inputs  →  restricted  set  of  intermediates  →  many  outputs   l  e.g.  complex  nutrients  →  metabolic  intermediates  →  complex  compounds  
  • 84. Modules  in  networks   l Open  ques<ons:   l  Do  a`ackers  preferen<ally  target  (or  introduce)  par<cular  mo<fs?   l  Do  a`ackers  preferen<ally  target  the  ‘knots’  of  bow-­‐<e  structures?  
  • 85. Influence  in  networks   l Network  structure  (topology)  is  not  everything   l Network  topology  is  determined  by  dynamic  processes   n1   n2   n3   n4   n5   n1   n2   n3   n4   n5   n1   n2   n3   n4   n5   Idealised  topology     Expression  pa`ern  1   Expression  pa`ern  2  
  • 86. Influence  in  networks   l Network  structure  (topology)  is  not  everything   l Dynamic  processes  are  overlaid  on  topology   n1   n2   n3   n4   n5   n1   n2   n3   n4   n5   Idealised  topology     Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km]
  • 87. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Some  processes  more  influen<al  because  of  dynamic  (kine<c)   considera<ons   l  ODE  representa<on  of  biochemical   network   l  Used  to  understand  biochemical     pathways   l  Used  in  ra<onal  drug  design:   target/priori<se  elements  with   large  control  coefficients   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] Kacser  and  Burns.  The  molecular  basis  of  dominance.  Gene/cs  (1981)  vol.  97  (3-­‐4)  pp.  639-­‐66   Kacser  and  Burns.  The  control  of  flux.  Biochem  Soc  Trans  (1995)  vol.  23  (2)  pp.  341-­‐66   Westerhoff  and  Kell.  What  biotechnologists  knew  all  along  ...?.  J  Theor  Biol  (1996)  vol.  182  (3)   pp.  411-­‐420   Sato  et  al.  Network  Modeling  Reveals  Prevalent  Nega<ve  Regulatory  Rela<onships  between   Signaling  Sectors  in  Arabidopsis  Immune  Signaling.  PLoS  Pathog  (2010)  vol.  6  (7)  pp.  E1001011   doi:10.1371/journal.ppat.1001011  
  • 88. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Some  processes  more  influen<al  because  of  dynamic  (kine<c)   considera<ons   l  ODE  representa<on  of  biochemical   network   l  Used  to  understand  biochemical     pathways   l  Used  in  ra<onal  drug  design:   target/priori<se  elements  with   large  control  coefficients   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] Kacser  and  Burns.  The  molecular  basis  of  dominance.  Gene/cs  (1981)  vol.  97  (3-­‐4)  pp.  639-­‐66   Kacser  and  Burns.  The  control  of  flux.  Biochem  Soc  Trans  (1995)  vol.  23  (2)  pp.  341-­‐66   Westerhoff  and  Kell.  What  biotechnologists  knew  all  along  ...?.  J  Theor  Biol  (1996)  vol.  182  (3)   pp.  411-­‐420   Sato  et  al.  Network  Modeling  Reveals  Prevalent  Nega<ve  Regulatory  Rela<onships  between   Signaling  Sectors  in  Arabidopsis  Immune  Signaling.  PLoS  Pathog  (2010)  vol.  6  (7)  pp.  E1001011   doi:10.1371/journal.ppat.1001011  
  • 89. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Key  points:   l  Rela<ve  change  in  pathway  flux  in  response  to  a  change   in  [enzyme]  is  the  flux  control  coefficient   l  Rela<ve  change  in  [metabolite]  in  response  to  a  change   in  [enzyme]  is  the  concentra2on  control  coefficient   l  Control  coefficient  =  0  ⇒  no  influence   l  Control  coefficient  =  1  ⇒  strong  posi<ve   influence   l  Control  coefficient  =  -­‐1  ⇒  strong  nega<ve   influence   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km]
  • 90. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Key  points:   l  Rela<ve  change  in  pathway  flux  in  response  to  a  change   in  [enzyme]  is  the  flux  control  coefficient   l  Rela<ve  change  in  [metabolite]  in  response  to  a  change   in  [enzyme]  is  the  concentra2on  control  coefficient   l  Control  coefficient  =  0  ⇒  no  influence   l  Control  coefficient  =  1  ⇒  strong  posi<ve   influence   l  Control  coefficient  =  -­‐1  ⇒  strong  nega<ve   influence   l We    might  expect  aWackers  to  target  network     elements  with  large  control  coefficients   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km]
  • 91. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Key  points:   l  Control  coefficients  dependent  on  rest  of  network:   calculated  at  same  <me   l  Control  coefficients  are  a  system-­‐level  property   (can’t  be  determined  in  isola<on)   l  It  is  unusual  for  any  single  element  to  have   complete  control  over  any  part  of  the  network   l  (Nearly)  no  rate-­‐limi<ng  steps   l  Any  part  of  the  network  is  typically  under   control  of  mul<ple  other  network  elements   l  Distributed/democra<c  control  is  the  norm   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)   pp.  3894-­‐904   D.  Fell,  Understanding  the  Control  of  Metabolism,  first  ed.,  Portland  Press,  1997.    
  • 92. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Key  points:   l  Control  coefficients  dependent  on  rest  of  network:   calculated  at  same  <me   l  Control  coefficients  are  a  system-­‐level  property   (can’t  be  determined  in  isola<on)   l  It  is  unusual  for  any  single  element  to  have   complete  control  over  any  part  of  the  network   l  (Nearly)  no  rate-­‐limi<ng  steps   l  Any  part  of  the  network  is  typically  under   control  of  mul<ple  other  network  elements   l  Distributed/democra<c  control  is  the  norm   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)   pp.  3894-­‐904   D.  Fell,  Understanding  the  Control  of  Metabolism,  first  ed.,  Portland  Press,  1997.    
  • 93. Metabolic  Control  Analysis  (MCA)   l Metabolic  Control  Analysis  (MCA)   l Key  points:   l  Control  coefficients  dependent  on  rest  of  network:   calculated  at  same  <me   l  Control  coefficients  are  a  system-­‐level  property   (can’t  be  determined  in  isola<on)   l  It  is  unusual  for  any  single  element  to  have   complete  control  over  any  part  of  the  network   l  (Nearly)  no  rate-­‐limi<ng  steps   l  Any  part  of  the  network  is  typically  under   control  of  mul<ple  other  network  elements   l  Distributed/democra2c  control  is  the  norm   n1   n2   n3   n4   n5   Reac<on  kine<cs  dictate   rela<ve  flux   v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] v = [S]Vmax [S] + [Km] Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)   pp.  3894-­‐904   D.  Fell,  Understanding  the  Control  of  Metabolism,  first  ed.,  Portland  Press,  1997.    
  • 94. Metabolic  Control  Analysis  (MCA)   l Yeast  glycolysis   l Most  enzyme  kine<c  parameters  known   l Fit  to  known  fluxes,  then  parameter-­‐scan  (>8000   dis<nct  simula<ons)   l Three  regimes  of  control  found:   l  Main  regime:  only  significant  control  by   hexose  transport  (HXT)  and  hexokinase  (HK)   l  Minor  regime:  HXT,  HK  and  alcohol  dehydrogenase   (ADH)   l  Biologically  inaccessible  regime:  [GLCi]  ≈  300mM     phosphofructokinase  (PFK)  control   Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae   glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  
  • 95. Metabolic  Control  Analysis  (MCA)   l Yeast  glycolysis   l Most  enzyme  kine<c  parameters  known   l Fit  to  known  fluxes,  then  parameter-­‐scan  (>8000   dis<nct  simula<ons)   l Three  regimes  of  control  found:   l  Main  regime:  only  significant  control  by   hexose  transport  (HXT)  and  hexokinase  (HK)   l  Minor  regime:  HXT,  HK  and  alcohol  dehydrogenase   (ADH)   l  Biologically  inaccessible  regime:  [GLCi]  ≈  300mM     phosphofructokinase  (PFK)  control   Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae   glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  
  • 96. Metabolic  Control  Analysis  (MCA)   l Yeast  glycolysis   l Most  enzyme  kine<c  parameters  known   l Fit  to  known  fluxes,  then  parameter-­‐scan  (>8000   dis<nct  simula<ons)   l Three  regimes  of  control  found:   l  Main  regime:  only  significant  control  by   hexose  transport  (HXT)  and  hexokinase  (HK)   l  Minor  regime:  HXT,  HK  and  alcohol  dehydrogenase   (ADH)   l  Biologically  inaccessible  regime:  [GLCi]  ≈  300mM     under  phosphofructokinase  (PFK)  control   Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae   glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  
  • 97. Metabolic  Control  Analysis  (MCA)   l Yeast  glycolysis   l HXT  dominates  pathway  control   l External  [hexose]  is  a  signal,  as  HXT   is  sensi<ve  to  it.     Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae   glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  
  • 98. Distributed  Control   l MCA  implies  distributed  control  of  networks   l Network  topology  also  implies  distributed  control    (minimal  interven<on  sets:  MIS)   l What  does  this  imply  for  host-­‐pathogen   interac<ons?   l  Several  points  in  network  are  influen<al   „ Can  be  predicted  with  sufficient  informa<on   about  system   l  A  pathway/network  element  may  be  under     distributed  control   „ May  need  to  hit  several  parts  of  the   network  to  produce  change   „ Single  effectors  unlikely  to  be  sufficient  
  • 99. Distributed  Control   l MCA  implies  distributed  control  of  networks   l Network  topology  also  implies  distributed  control    (minimal  interven<on  sets:  MIS)   l What  does  this  imply  for  host-­‐pathogen   interac<ons?   l  Several  points  in  network  are  influen<al   „ Can  be  predicted  with  sufficient  informa<on   about  system   l  A  pathway/network  element  may  be  under     distributed  control   „ May  need  to  hit  several  parts  of  the   network  to  produce  change   „ Single  effectors  unlikely  to  be  sufficient  
  • 100. Distributed  Control   l MCA  implies  distributed  control  of  networks   l Network  topology  also  implies  distributed  control    (minimal  interven<on  sets:  MIS)   l What  does  this  imply  for  host-­‐pathogen   interac<ons?   l  Several  points  in  network  are  influen<al   „ Can  be  predicted  with  sufficient  informa<on   about  system   l  A  pathway/network  element  may  be  under     distributed  control   „ May  need  to  hit  several  parts  of  the   network  to  produce  change   „ Single  effectors  unlikely  to  be  sufficient  
  • 101. Distributed  Control   l MCA  implies  distributed  control  of  networks   l Network  topology  also  implies  distributed  control   l What  does  this  imply  for  host-­‐pathogen   interac<ons?   l  Several  points  in  network  are  influen<al   l  A  pathway/network  element  may  be  under     distributed  control   „ Pathogens  may  require  ‘sets’  of  effectors   „ Implies  ‘Redundant  Effector  Groups’  and     func2onal  redundancy?   Kvitko  et  al.  Dele<ons  in  the  repertoire  of  Pseudomonas  syringae  pv.  tomato  DC3000  type  III  secre<on  effector  genes  reveal   func<onal  overlap  among  effectors.  PLoS  Pathog  (2009)  vol.  5  (4)  pp.  E1000388  doi:10.1371/journal.ppat.1000388  
  • 102. Distributed  Control   l MCA  implies  distributed  control  of  networks   l Network  topology  also  implies  distributed  control   l What  does  this  imply  for  host-­‐pathogen   interac<ons?   l  Context-­‐dependence  of  effector  func<on:   „ H.arabidopsidis  ATR13  suppresses  callose  deposi<on   „ P.  syringae  HopM1  suppresses  callose  deposi<on   „ ATR13  complements  callose  deposi<on,  but  does  not  fully  restore   virulence  in  HopM1  mutant  (EDV)   K.H.  Sohn,  R.  Lei,  A.  Nemri,  J.D.G.  Jones,  The  downy  mildew  effector  proteins  ATR1  and  ATR13  promote  disease   suscep<bility  in  Arabidopsis  thaliana,  Plant  Cell  19  (2007)  4077–4090.  
  • 103. Distributed  Control   l We  can  consider  ‘system’  as  defining  a  landscape,   permi~ng  types  of  control   l Autocra<c  control:   l  Flat  landscape   l  Can  move  any  network  element  to  any  ‘state’   l Democra<c  control:   l  Rugged  landscape  (constrained  by  rest  of  network)   l  Network  elements  restricted  to  ‘valleys’  in  the   landscape   Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)   vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  
  • 104. Distributed  Control   l We  can  consider  ‘system’  as  defining  a  landscape,   permi~ng  types  of  control   l Autocra<c  control:   l  Flat  landscape   l  Can  move  any  network  element  to  any  ‘state’   l Democra<c  control:   l  Rugged  landscape  (constrained  by  rest  of  network)   l  Network  elements  restricted  to  ‘valleys’  in  the   landscape   Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)   vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  
  • 105. Distributed  Control   l We  can  consider  ‘system’  as  defining  a  landscape,   permi~ng  types  of  control   l Autocra<c  control:   l  Flat  landscape   l  Can  move  any  network  element  to  any  ‘state’   l Democra<c  control:   l  Rugged  landscape  (constrained  by  rest  of  network)   l  Network  elements  restricted  to  ‘valleys’  in  the   landscape   Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)   vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  
  • 106. Distributed  Control   l We  can  consider  ‘system’  as  defining  a  landscape,   permi~ng  types  of  control   l Autocra<c  control:   l  Flat  landscape   l  Can  move  any  network  element  to  any  ‘state’   l Democra<c  control:   l  Rugged  landscape  (constrained  by  rest  of  network)   l  Network  elements  restricted  to  ‘valleys’  in  the   landscape   l Pathogens  introduce  new  elements  that  change   the  landscape:  effectors   Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)   vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  
  • 107. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   Hein  et  al.  The  zig-­‐zag-­‐zig  in  oomycete-­‐plant  interac<ons.  Mol  Plant  Pathol  (2009)  vol.  10  (4)  pp.  547-­‐62  doi:10.1111/j. 1364-­‐3703.2009.00547.x   Jones  and  Dangl.  The  plant  immune  system.  Nature  (2006)  vol.  444  (7117)  pp.  323-­‐9  doi:10.1038/nature05286  
  • 108. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   l Has  some  problems:   l  scope  (only  host  immune  system,  not  rest   of  interac<on  with  pathogen)   l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct   and  well-­‐ordered?)   l  <mescale  (evolu<onary,  or  during  interac<on?)   l  size  scale  (organism  or  cell  level)   l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  
  • 109. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   l Has  some  problems:   l  scope  (only  host  immune  system,  not  rest   of  interac<on  with  pathogen)   l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct   and  well-­‐ordered?)   l  <mescale  (evolu<onary,  or  during  interac<on?)   l  size  scale  (organism  or  cell  level)   l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  
  • 110. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   l Has  some  problems:   l  scope  (only  host  immune  system,  not  rest   of  interac<on  with  pathogen)   l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct   and  well-­‐ordered?)   l  <mescale  (evolu<onary,  or  during  interac<on?)   l  size  scale  (organism  or  cell  level)   l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  
  • 111. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   l Has  some  problems:   l  scope  (only  host  immune  system,  not  rest   of  interac<on  with  pathogen)   l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct   and  well-­‐ordered?)   l  <mescale  (evolu<onary,  or  during  interac<on?)   l  size  scale  (organism  or  cell  level)   l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  
  • 112. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   l Has  some  problems:   l  scope  (only  host  immune  system,  not  rest   of  interac<on  with  pathogen)   l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct   and  well-­‐ordered?)   l  <mescale  (evolu<onary,  or  during  interac<on?)   l  size  scale  (organism  or  cell  level)   l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  
  • 113. A  state-­‐based  model  of  interac2on   l Prevailing  model:  zig-­‐zag(-­‐zig…)   l Has  some  problems:   l  scope  (only  host  immune  system,  not  rest   of  interac<on  with  pathogen)   l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct   and  well-­‐ordered?)   l  <mescale  (evolu<onary,  or  during  interac<on?)   l  size  scale  (organism  or  cell  level)   l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)   l Is  there  a  more  general  framework  for  host-­‐pathogen  interac2ons?   Pritchard  L,  Birch  P  (2011)  A  systems  biology  perspec<ve  on  plant-­‐microbe  interac<ons:  Biochemical  and   structural  targets  of  pathogen  effectors.  Plant  Science  180:  584–603.  doi:10.1016/j.plantsci.2010.12.008.    
  • 114. A  state-­‐based  model  of  interac2on   l Biological  cells  can  be  represented  as  networks   l Each  element  in  the  network  can  be  quan<fied:   l  enzyme  concentra<on  (or  expression  level)   l  metabolite  concentra<on   l  phosphoryla<on/ubiqui<na<on/charge  states  as  dis<nct   en<<es   l  etc.   l We  represent  lists  of  values  as  vectors   [v1, v2, v3, . . . , vk]
  • 115. A  state-­‐based  model  of  interac2on   l Biological  cells  can  be  represented  as  networks   l Each  element  in  the  network  can  be  quan<fied:   l  enzyme  concentra<on  (or  expression  level)   l  metabolite  concentra<on   l  phosphoryla<on/ubiqui<na<on/charge  states  as  dis<nct   en<<es   l  etc.   l We  represent  ordered  lists  of  values  as  vectors   [v1, v2, v3, . . . , vk]
  • 116. A  state-­‐based  model  of  interac2on   l Biological  cells  can  be  represented  as  networks   l Each  element  in  the  network  can  be  quan<fied:   l  enzyme  concentra<on  (or  expression  level)   l  metabolite  concentra<on   l  phosphoryla<on/ubiqui<na<on/charge  states  as  dis<nct   en<<es   l  etc.   l We  represent  ordered  lists  of  values  as  vectors   [v1, v2, v3, . . . , vk]
  • 117. A  state-­‐based  model  of  interac2on   l Vectors  are  co-­‐ordinates  in  space   l  vectors  of  length  two:  points  on  a  surface  (2D  space)   l  vectors  of  length  three:  points  in  3D  space   l  vectors  of  length  k:  points  in  k-­‐dimensional  space   l Points  that  are  close  together  are  ‘similar’  
  • 118. A  state-­‐based  model  of  interac2on   l Vectors  are  co-­‐ordinates  in  space   l  vectors  of  length  two:  points  on  a  surface  (2D  space)   l  vectors  of  length  three:  points  in  3D  space   l  vectors  of  length  k:  points  in  k-­‐dimensional  space   l Points  that  are  close  together  are  ‘similar’  
  • 119. A  state-­‐based  model  of  interac2on   l Let  our  vector  represent  the  measured  state  of  the  cell   (e.g.  host-­‐pathogen)  system   l  enzyme/metabolite  concentra<ons,  etc.   l Each  point  in  k-­‐space  represents  a  different  state  of  the   system   l  similar  states  are  close  together  in  k-­‐space   [v1, v2, v3, . . . , vk]
  • 120. A  state-­‐based  model  of  interac2on   l Let  our  vector  represent  the  measured  state  of  the  cell   (e.g.  host-­‐pathogen)  system   l  enzyme/metabolite  concentra<ons,  etc.   l Each  point  in  k-­‐space  represents  a  different  state  of  the   system   l  similar  states  are  close  together  in  k-­‐space   [v1, v2, v3, . . . , vk]
  • 121. A  state-­‐based  model  of  interac2on   l States  that  lead  to  similar  phenotypes  can  be  grouped  in   phases:   l  regions  of  space  where  cell   state  corresponds  to  named   behaviour   l Temporal  evolu<on  of  a  cell  can   be  viewed  as  a  transi<on     through  states   v1   v2   apoptosis   ROS  produc<on   seed   leaf   root   HR  
  • 122. A  state-­‐based  model  of  interac2on   l States  that  lead  to  similar  phenotypes  can  be  grouped  in   phases:   l  regions  of  space  where  cell   state  corresponds  to  named   behaviour   l Temporal  evolu<on  of  a  cell  can   be  viewed  as  a  transi<on     through  states   v1   v2   apoptosis   ROS  produc<on   seed   leaf   root   HR  
  • 123. A  state-­‐based  model  of  interac2on   l Complex  systems  can  behave  in  complex  ways   l A  common  feature  of  complex  systems  is  aJractors   l  A`ractors  are  ‘endpoints’:  states,  or  sets   of  states,  to  which  the  system  is   ‘a`racted’   l  Analogous  to  stable  equilibria:     when  the  system  is  perturbed,     it  returns  to  its  a`ractor.   l  Do  cell  phenotypes   correspond  to  a`ractors?  
  • 124. A  state-­‐based  model  of  interac2on   l Complex  systems  can  behave  in  complex  ways   l A  common  feature  of  complex  systems  is  aJractors   l  A`ractors  are  ‘endpoints’:  states,  or  sets   of  states,  to  which  the  system  is   ‘a`racted’   l  Analogous  to  stable  equilibria:     when  the  system  is  perturbed,     it  returns  to  its  a`ractor.   l  Do  cell  phenotypes   correspond  to  a`ractors?  
  • 125. A  state-­‐based  model  of  interac2on   l Complex  systems  can  behave  in  complex  ways   l A  common  feature  of  complex  systems  is  aJractors   l  A`ractors  are  ‘endpoints’:  states,  or  sets   of  states,  to  which  the  system  is   ‘a`racted’   l  Analogous  to  stable  equilibria:     when  the  system  is  perturbed,     it  returns  to  its  a`ractor.   l  Do  cell  phenotypes   correspond  to  a`ractors?  
  • 126. A  state-­‐based  model  of  interac2on   l Complex  systems  can  behave  in  complex  ways   l A  common  feature  of  complex  systems  is  aJractors   l  A`ractors  are  ‘endpoints’:  states,  or  sets   of  states,  to  which  the  system  is   ‘a`racted’   l  Analogous  to  stable  equilibria:     when  the  system  is  perturbed,     it  returns  to  its  a`ractor.   l  Do  cell  phenotypes   correspond  to  a`ractors?   apoptosis   ROS  produc<on   seed   leaf   root   HR  
  • 127. A  state-­‐based  model  of  interac2on   l A`ractors  are  associated  with   the  regions  of  space  that  lead   to  them:  ‘basins’   l A`ractors  can  be:   l  Single  points   l  Cycles   l  Complex  ‘regions’  
  • 128. A  state-­‐based  model  of  interac2on   l A`ractors  are  associated  with   the  regions  of  space  that  lead   to  them:  ‘basins’   l A`ractors  can  be:   l  Single  points   l  Cycles   l  Complex  ‘regions’  
  • 129. A  state-­‐based  model  of  interac2on   l Interac<on  of  a  pathogen  with  the  host   can  push  the  system  from  one  basin  of   aJrac/on  to  another   l There  may  be  mul<ple  routes  between   basins  of  a`rac<on,  depending  on  the   direc<on  or  <ming  of  perturba<on   l  There  may  be  more  than  one  way  to   provoke  a  specific  outcome  from  the   host  (or  from  the  pathogen)  
  • 130. A  state-­‐based  model  of  interac2on   l Interac<on  of  a  pathogen  with  the  host   can  push  the  system  from  one  basin  of   aJrac/on  to  another   l There  may  be  mul<ple  routes  between   basins  of  a`rac<on,  depending  on  the   direc<on  or  <ming  of  perturba<on   l  There  may  be  more  than  one  way  to   provoke  a  specific  outcome  from  the   host  (or  from  the  pathogen)  
  • 131. A  state-­‐based  model  of  interac2on   l Effectors  may  divert  the  expected  WT  system  trajectory:   l ‘Pushing’  the  host  cell  state     towards  a  different     aJractor/state   l ‘State’  may  be  a  developmental   checkpoint   l Diversion  of  the  trajectory  may     also  be  beneficial  to  the  host   l The  pathogen  may  detect  the  host   state  and  respond  accordingly  (e.g.  <ssue-­‐specific  effector  produc<on   in  Us/lago  maydis;  stage-­‐  and  <ssue-­‐specific  oomycete  effectors)   v1   v2   nutrient     produc<on   PTI   seed   Epidermal  cell   root   HR  
  • 132. A  state-­‐based  model  of  interac2on   l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is   encapsulated  within  a  state-­‐based  model   PTI   No   challenge   ETI   ETS  
  • 133. A  state-­‐based  model  of  interac2on   l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is   encapsulated  within  a  state-­‐based  model   PTI   No   challenge   ETI   ETS  
  • 134. A  state-­‐based  model  of  interac2on   l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is   encapsulated  within  a  state-­‐based  model   PTI   No   challenge   ETI   ETS  
  • 135. A  state-­‐based  model  of  interac2on   l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is   encapsulated  within  a  state-­‐based  model   PTI   No   challenge   ETI   ETS  
  • 136. A  state-­‐based  model  of  interac2on   l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is   encapsulated  within  a  state-­‐based  model   PTI   No   challenge   ETI   ETS  
  • 137. A  state-­‐based  model  of  interac2on   l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is   encapsulated  within  a  state-­‐based  model   PTI   No   challenge   ETI   ETS  
  • 138. A  state-­‐based  model  of  interac2on   l The  state-­‐based  model  has  advantages:   l  Scope:  can  include  host  and  pathogen,   and  extend  beyond  host  immunity   l  Ordering:  explicit  ordering  of  events   represented  by  paths  in  the  model   (determined  by  model)   l  Timescale:  explicit  (determined  by   model)   l  Size  scale:  can  include  mul<cellular   systems   l  Quan2ta2ve  or  qualita2ve:  explicit   (dependent  on  model)     PTI   No   challenge   ETI   ETS  
  • 139. A  state-­‐based  model  of  interac2on   l The  state-­‐based  model  has  advantages:   l  Scope:  can  include  host  and  pathogen,   and  extend  beyond  host  immunity   l  Ordering:  explicit  ordering  of  events   represented  by  paths  in  the  model   (determined  by  model)   l  Timescale:  explicit  (determined  by   model)   l  Size  scale:  can  include  mul<cellular   systems   l  Quan2ta2ve  or  qualita2ve:  explicit   (dependent  on  model)     PTI   No   challenge   ETI   ETS  
  • 140. A  state-­‐based  model  of  interac2on   l The  state-­‐based  model  has  advantages:   l  Scope:  can  include  host  and  pathogen,   and  extend  beyond  host  immunity   l  Ordering:  explicit  ordering  of  events   represented  by  paths  in  the  model   (determined  by  model)   l  Timescale:  explicit  (determined  by   model)   l  Size  scale:  can  include  mul<cellular   systems   l  Quan2ta2ve  or  qualita2ve:  explicit   (dependent  on  model)     PTI   No   challenge   ETI   ETS  
  • 141. A  state-­‐based  model  of  interac2on   l The  state-­‐based  model  has  advantages:   l  Scope:  can  include  host  and  pathogen,   and  extend  beyond  host  immunity   l  Ordering:  explicit  ordering  of  events   represented  by  paths  in  the  model   (determined  by  model)   l  Timescale:  explicit  (determined  by   model)   l  Size  scale:  can  include  mul<cellular   systems   l  Quan2ta2ve  or  qualita2ve:  explicit   (dependent  on  model)     PTI   No   challenge   ETI   ETS  
  • 142. A  state-­‐based  model  of  interac2on   l The  state-­‐based  model  has  advantages:   l  Scope:  can  include  host  and  pathogen,   and  extend  beyond  host  immunity   l  Ordering:  explicit  ordering  of  events   represented  by  paths  in  the  model   (determined  by  model)   l  Timescale:  explicit  (determined  by   model)   l  Size  scale:  can  include  mul<cellular   systems   l  Quan2ta2ve  or  qualita2ve:  explicit   (dependent  on  model)     PTI   No   challenge   ETI   ETS  
  • 143. Summary   l Biological  systems  have  natural  network  representa<ons   l  But  representa<on  must  be  reasonable  and  suit  the  ques<on  being  asked   l Interac<on  of  host  and  pathogen  makes  a  new  single  network  from  two   ini<al  networks   l Network  topology  affects   l  Network  behaviour   l  Suscep<bility  to  a`ack  (hubs,  bridges)   l Network  dynamics  affect   l  Network  behaviour   l  Suscep<bility  to  a`ack  (distributed  control)   l A  state-­‐based  framework  may  be  useful  for  understanding  host-­‐ pathogen  interac<ons  
  • 144. Acknowledgements   l Systems  Biology  at  Aberystwyth/Manchester   l  Doug  Kell,  David  Broadhurst,  Pedro  Mendes,  Roy  Goodacre,  Andy   Woodward,  Simon  Garre`,     l Computa<onal  biology  at  JHI   l  Peter  Cock   l Phytophthora  research  at  JHI   l  Paul  Birch,  Steve  Whisson,  Miles  Armstrong   l Bacteriology  research  at  JHI   l  Ian  Toth,  Sonia  Humphris,  Nicola  Holden   l Many,  many  discussions  with  colleagues  
  • 145. Danger  Theory   l Proposed  by  computer  scien<sts  in  machine  learning:  avoids   detec<on  ‘bloat’  of  one  ‘recogni<on  gene’  per  threat.   l Popular  in  (animal)  immunology;  Analogous  to  Guard  Hypothesis  and   Dense  Overlapping  Regions  (DORs)   l Integra<on  of  mul<ple  signals  and  contextual  cues   Aickelin  et  al.  Danger  theory:  The  link  between  AIS  and  IDS?.  Lect  Notes  Comput  Sc  (2003)  vol.  2787  pp.  147-­‐155  
  • 146. Danger  Theory   l Some  signals  ‘cri<cal’  and  require  immediate  response  (e.g.     avirulence  gene  products?)   l Other  signals  contextual  –  require  ‘processing’  (e.g.  MAMPs)   Boller  and  Felix.  A  renaissance  of  elicitors:  percep<on  of  microbe-­‐associated  molecular  pa`erns  and  danger  signals   by  pa`ern-­‐recogni<on  receptors.  Annu.  Rev.  Plant.  Biol.  (2009)  vol.  60  pp.  379-­‐406  doi:10.1146/annurev.arplant. 57.032905.105346  
  • 147. Danger  Theory   l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems   of  interpreta<on  in  experiments.   l Danger  R  when  signal  ≥  5   l  a+b+c+d  =  6  ⇒  R   l  a+b+c  =  4  ⇒  no  R   l  a+b+d  =  4  ⇒  no  R   l  a+c+d  =  5  ⇒  R   l  b+c+d  =  5  ⇒  R   l  a+b  =  3  ⇒  no  R   l {c  and  d}  required  for  R?  
  • 148. Danger  Theory   l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems   of  interpreta<on  in  experiments.   l Danger  R  when  signal  ≥  5   l  a+b+c+d  =  6  ⇒  R   l  a+b+c  =  4  ⇒  no  R   l  a+b+d  =  4  ⇒  no  R   l  a+c+d  =  5  ⇒  R   l  b+c+d  =  5  ⇒  R   l  a+b  =  3  ⇒  no  R   l {c  and  d}  required  for  R?  
  • 149. Danger  Theory   l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems   of  interpreta<on  in  experiments.   l Danger  R  when  signal  ≥  5   l  a+b+c+d  =  6  ⇒  R   l  a+b+c  =  4  ⇒  no  R   l  a+b+d  =  4  ⇒  no  R   l  a+c+d  =  5  ⇒  R   l  b+c+d  =  5  ⇒  R   l  a+b  =  3  ⇒  no  R   l {c  and  d}  required  for  R?  
  • 150. Danger  Theory   l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems   of  interpreta<on  in  experiments.   l Danger  R  when  signal  ≥  5   l  a+b+c+d  =  6  ⇒  R   l  a+b+c  =  4  ⇒  no  R   l  a+b+d  =  4  ⇒  no  R   l  a+c+d  =  5  ⇒  R   l  b+c+d  =  5  ⇒  R   l  a+b  =  3  ⇒  no  R   l {c  and  d}  required  for  R?   l No:  a+b+c+e,  a+b+d+e  ⇒  R