SlideShare uma empresa Scribd logo
1 de 37
Baixar para ler offline
Eighth AnnualTUC Meeting
June 22, 2015
Martin S. Zand MD PhD
Professor of Medicine and Public Health Sciences
Rochester Center for Health Informatics
University of Rochester Medical Center
rchi.urmc.edu
Graphing Healthcare Networks:
Data, Analytics & Use Cases
Ÿ Healthcare is delivered by networks
- We don't understand their toplogy or dynamics
Ÿ Patients traverse those networks
- A patient journey is a multipartite, directed,
temporal subgraph of the larger network
Ÿ Network topology influences outcomes
- Provider-provider networks determine referrals
- Homophily among providers
Why Graph Databases in Healthcare?
ED
8-16 (MICU)
6-16 (Floor)
8-14
(Step-Down)
3-18
(Trauma ICU)
Death
“Triangle of Doom”
Fundamental Structure of Healthcare Data
{Patient, Provider, Location, Event, Time}
Age
Sex
Race
Address
Insurance
Attributes
.
.
.
Location
Specialty
Organization
Identifier
Education
Certification
.
.
.
Encounter
Admission
Procedure
Diagnosis
Prescription
Birth/Death
.
.
.
+ t
Absolute
Interval
.
.
.
In/Out-patient
Geo Location
County
State
Census Tract
Service Area
.
.
.
Data Set
Ÿ Basic data structure
- 209,173 ER visits and hospital admissions to a single hospital
- All locations and duration of "dwell" for each admissions
Ÿ Associated data
- Discharge destinations (including death)
- Diagnoses, procedures
- All medications, lab test results, bacterial and viral culture results
Ÿ Outcomes
- Hospital "disposition"
- Discharge destinations (including death)
Questions:
- Are patient outcomes associated with graph toplogy?
- Can we identify groups of patients based on graph topology?	
Use Case 1: Intensive Care Unit Readmissions
Approach:
- Pathgraph mapping of patient journeys
Application:
- Use journey topologies for predictive modeling and to design
early interventions
Use Case I: Graph Isomorphism
129278 35659 28786 5707 1164 777 586
428
388
331
224 215 206 101
82
81
78
64
61
60
59
48
40
40
39
36
32
30
29
28
26
24
Use Case I: Graph Isomorphism
2
2
2
2 2
2
2
2
2
2
2
2
2
2 2
2
2
2
2
2
1
1
1
1
1
1 1
1 1
1
1
1
1 1 1
1
1
1
1 1
Basic Patient Journey Topology
ER ICU FL HO
1 2 3
Linear Journey
ER ICU FL HO1 2
3
4
5
Cyclic Journey
ER
ICU
FL DT
1
2
3
4
5 SDU
9
8
7
6
Complex Cyclic Journey
ER OBS
1 2 3 4
5
ICU SDU
6
FL
HO RHB
Complex Linear Journey
Is a cyclic patient journey associated with a poor outcome?
Sequential patient exclusion criteria
• Patients never admitted to ICU or STDU (n=91,035)
• Index admission only (n=8,468)
• Age < 18 yo (n=3,215)
• Age 18 but admitted to a non-adult ICU (n=22)
• Patient died during index ICU admission (n=620)
• Patients admitted to STDU only (n=6,885)
123,184 patients presenting to URMC
209,173 separate encounters
January 2012 - December 2014
4,756 survived first ICU admission
eligible for re-admission to ICU
Cyclic trajectory
(n=1,479)
Linear trajectory
(n=3,277)
Quill C ... Zand MS (2016) in preparation
Graph topology matters for survival
Totals
(n=)
Linear (%)
(n=3277)
Cyclic (%)
(n=1479)
Significance
(p-value)
CHF 1055 17.3 33.1
COPD 670 12.5 17.7
Asthma 364 7.8 7.4
Diabetes 1503 29.0 37.4
Acute Kidney Injury 1255 21.6 36.9
Chronic Kidney Disease 737 12.5 22.2 p < 0.000001
Liver Disease 412 6.4 13.7 p < 0.000001
HIV 46 1.0 1.0 N.S.
Hepatitis 110 2.1 2.8 N.S.
Cancer 800 14.4 22.2 p < 0.000001
Anemia 1447 26.0 40.2
Coagulation Disorder 517 8.3 16.5
Respiratory Failure 1434 24.8 42.1
p < 0.000001
Malnutrition 105 1.5 3.8
Sepsis 911 14.3 29.8 p < 0.000001
Vent 973 16.4 29.5
ESRD 188 3.0 6.1
MI 384 6.3 12.0
PVD 1095 19.5 30.9
CVD 671 14.1 14.1
Lipid Metabolism 1420 28.2 33.5 p<0.0003
p < 0.000001
p < 0.000001
N.S.
N.S.
Quill C ... Zand MS (2016) in preparation
FractionSurviving
Linear Journeys
Cyclic Journeys
0 100 200 300 400 500
Hospital Length of Stay (days)
1.0
0.8
0.6
0.4
0.2
0.0
Death in 1st
ICU Admission
P<0.00001
Questions:
- How are hospital floors/units really linked by patient transfers?
- Can we model patient flow between units?	
Use Case 2: Hospital Flow Mapping
Approach:
- Traceroute graphing of the hospital using patient admission traces
Applications:
- Managing hospital patient distribution
- Graph "module" based feature vectors for classifying hospitals
Graph inspiration....
74.125.226.18
24.93.10.62
107.14.19.100
216.156.16.133
$ traceroute 74.125.226.18
Trace-route Hospital Mapping
316
312
HHLTH
712
PSY
816
TIP
WCC7
416
334I
612
736
428
436
434
PACU
EDB
323
218
SNF
328
814
616
318
812 634
392
OTHER
418
516
STAC
636
192
CATH
EDSW
REHAB
836
OU1
512
734
WCC6
834
HOSP
534
336
FED
536
414
ED
WCC5
716
614
ICF
LTC
LAW
LAMA
714
514
SDAU
412
314
316N
PEOB
292
DEATH 390W
336N
NVN
490
323I
LED
HOME
GCR
LEDNS
Ÿ Hospital unit linkage
- by patient transfers
- patient flow model
Ÿ Patients traverse this network
- Multiple inter-ICU transfers
- Implications for load balancing
- Some units more "isolated"
from hospital flow
Ÿ Hairball visualizations don't help
rchi.urmc.edu
��� �����
��
�� �
�� ���
�� ����
�� ��������
�� �������� ����
�� ���� ����
�� ���
�� ��� �����
�� ����
�� ����
�� ��� ��
�� ��� ����
�� ��� ���
�� ��� ����
�� ��� ����
�� ��� ����
�� ��� ����
�� ��� ����
�� ���� �
�� ���� ����
�� ���� ���� �
�� ���� �
�� ���� �
�� ��� �
�� ��� �
��� �����
�� ���� �
�� ��� �
�� ��� �
�� ��� �
�� ��� �
�� ������� �
�� ������� ����
�� ����� �
�� �����
�� ��� �
�� ��� �
�� ��� �
�� ����� �
�� �����
�� ��� �
�� ��� �
�� ��� �
�� ��� �
�������
�� �� �
�� �� �� �
�� �� �� �
�� �� �� �
�� ���� �
�� ���� �
�� ���� �
�� ���� ���
�� ���� ��� ����
�� ���� ��� ����
�� ���� ���� �
�� ���� ���� �
�� ���� ���� �
�� ���� ���� ��
�� ���� ���� ���
�� ���� ���
�� ���� ��� �
�� ����
�� �����
��������
��
���
�����
������
����������
��������������
����������
�����
����������
������
������
�������
���������
��������
���������
���������
���������
���������
���������
�������
����������
�����������
�������
�������
������
������
��������
�������
������
������
������
������
����������
�������������
��������
�������
������
������
������
��������
�������
������
������
������
������
�������
�����
�������
�������
�������
�������
�������
�������
���������
�������������
�������������
�����������
�����������
�����������
������������
�������������
���������
����������
������
�������
�����
�������
������
���������
�����
������
�����
�����������
�����
�������
������
�������
�����
������
������
�������
��������������� ��������� ����
TransferringUnit
Receiving Unit
ŸVisualization
- Adjacency matrix map
- Topical clustering of units
Ÿ Hospital Simulations/Modeling
- Models of patient flow
- Disaster modeling
- Infection control prediction
Ÿ Compare hospitals by topology
- Like gene regulatory networks
- Find functional modules
- Academic vs. community, etc.
Questions:
- How are healthcare providers linked by common patients?
- Can we model patient flow throught the US healthcare system?	
Use Case 3: Mapping the US Healthcare System
Approach:
- Traceroute graphing of Medicare using outpatient claims traces
Application:
- Identifying self-organized provider teaming networks
	 - Improving outcomes for care of complex medical condition
Mapping Medicare Properly
Ÿ Freedom of Information request to use
Medicare claims data from 2009 to build
networks
Ÿ Designed to study provider "referrals"
Ÿ Algorithm described, but actual code
not released
Ÿ DocGraph 2009 =
- 1.1 M vertices (provider + organization)
- 93.7 million edges
Zand MS, Trayhan M, Trotter F, et al. (2016): Rochester Center for Health Informatics
Ÿ Medicare Part B Claims Datasets (dnav.cms.gov)
Ÿ ~180 million annual claims x ~40M patients
Ÿ 100+ data elements per claim
Ÿ Data is temporal
Ÿ Requires HIPAA compliant compute platform
Ÿ National Provider Identifier Dataset (download.cms.gov/nppes/NPI_Files.html)
Ÿ ~22 million providers by ~210 data elements
Ÿ Data is mostly static
Ÿ Benchmark?
Ÿ Bipartite (provider → patient) to Unipartite (provider → provider) projection
Data Sets
Medicare Part B Claims
~ 180 million x ~100
National Provider ID
~2.2 million x ~210
GIS Coded Addresses
~ 2.1 M x 2
Taxonomy Attribute
Lookup File
Census Tract Data
74,134 x ~ 300
HAS_NPI
Network Construction
Network Analytics
Graph Metrics
Community Identification
Outcomes Analaysis
Quality of Care, Cost, Network Flow
Provider Teaming
HAS_ADDRESS
HAS_CTIDIS_TAXA HAS_ATTR
rchi.urmc.edu
643528211470
A CB A B D CE F
A CB A B D CE F
A CB A B D CE FX
> 30 days
BinningDyadSlidingWindow days
τ = 30 days
τ = 30 days
Ÿ Algorithms
- Sort claims by patient
- Next order claims temporally
- Iterate through claims using a
frame/window τ
Ÿ Sliding Algorithm
- Similar to Medicare algorithm
- Slides window between claims
Ÿ Binning Algorithm
- Complete graphs within frame τ
Ÿ Dyad Algorithm
- Enforces sequential edge order
- Traceroute mapping
rchi.urmc.edu
rchi.urmc.edu
Provider-Provider
Organization-Organization
X
X
X
X
X
X
X X X X
X
X
X
X X
30 60 90 180 365
0
200000
400000
600000
800000
Vertices
X
X
X
X
XX X X X X
X
X X X X
30 60 90 180 365
0
10000
20000
30000
40000
Window
Vertices
XBINNING
XDYAD
XSLIDING
FULL CENSORED
X
X
X
X
X
X X X X X
X
X X
X X
30 60 90 180 365
100
1000
104
105
106
107
Edges
X
X
X
X
XX X X X X
X X X X X
30 60 90 180 365
1000
104
105
106
Window
Edges
Ÿ Temporal windows
- Capture network by τ=180 days
- Binning method highly variable
Ÿ Censoring
- Limit edge weights to > 10
- Greatly decreasesV, E
Ÿ Dyad and Sliding Algorithms
-Very stable with respect to scope
Ÿ Organization analysis
- Capture essentially sameV
rchi.urmc.edu
30 60 90 180 365
0.0000
0.0001
0.0002
0.0003
0.0004
X
X
X X X
X X X X X
X X X X X
306090 180 365
NetworkDensity
XBINNING
XDYAD
XSLIDING
FULL CENSORED
30 60 90 180 365
0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
X X X X X
X X X X XX X X X X
306090 180 365
Temporal Window τ (days)Temporal Window τ (days)
Patient-Patient
Organization-Organization
Ÿ Network Density
- Capture network by τ=180 days
with dyad and sliding window
- Binning method highly variable
Ÿ Censoring
- Greatly decreases density for all
methods
Ÿ Provider Analysis
- Much lower network densities
- Regional effect?
Ÿ Organization analysis
-Very dense networks (expected)
rchi.urmc.edu
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 0.1 - 5 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 5.1 - 15 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 15.1 - 22.6 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 22.7 - 30 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 30.1 - 66 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance =66.1-214 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 214.1 - 585 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance = 585.1 - 1728 miles 250,000 connections
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
Network of Medicare providers sharing patients
Distance >1,728 miles 250,000 connections
Big Data in Transplant Research: Identifying Novel Therapeutics
MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu
ProviderDyads
Provider-Provider Teaming Visits
Counts
Provider-Provider Shared Patients
67% of provider pairs
94% of provider pairs
share < 50 patients
● Analysis using the “dyad counting” method
● >50% of provider pairs are within 40 miles of each other
● Dyad counting method with 11 visit threshold also does
not capture multiple visits to the same provider
● Primary care providers now have highest netowrk
centrality with this method
1 10 100 1000 104
0
2000
4000
6000
8000
10000
12000
14000
0 20 40 60 80 100
0
50000
100000
150000
200000
0 100 200 300 400 500 600
0
50000
100000
150000
200000
250000
rchi.urmc.edu
Transformation Opportunity: Population Health, Cost, Outcomes
rchi.urmc.edu
Graph analytics useful for healthcare dataset analysis
Ÿ Community identification algorithms
Ÿ Self-organized provider cliques, clans, and communities
Ÿ Patient cohort identification
Ÿ Geospatial, social, and "non-medical" edges
Ÿ Network construction algorithms
Ÿ Multipartite and lower dimensional projections
Ÿ Routines for constructing time-varying graphs
Ÿ Clustering and cohort identification
Ÿ Hypergraphs
rchi.urmc.edu
Software and hardware we use
University of Rochester HPC:
178 compute nodes, each with:
2 Intel Xeon E5-2695 v2 processors (12 core)
rchi.urmc.edu

Mais conteúdo relacionado

Semelhante a 8th TUC Meeting - Martin Zand University of Rochester Clinical and Translational Science Institute). Graphing Healthcare Networks: Data, Analytics, and Use Cases.

Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...
Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...
Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...
University of Malaya
 
Ijarcet vol-2-issue-4-1393-1397
Ijarcet vol-2-issue-4-1393-1397Ijarcet vol-2-issue-4-1393-1397
Ijarcet vol-2-issue-4-1393-1397
Editor IJARCET
 
VIReC CyberSeminar Series 2006 VIReC CyberSeminar Series 2006
VIReC CyberSeminar Series 2006 	 VIReC CyberSeminar Series 2006VIReC CyberSeminar Series 2006 	 VIReC CyberSeminar Series 2006
VIReC CyberSeminar Series 2006 VIReC CyberSeminar Series 2006
MedicineAndDermatology
 
HEALTH_PROC_8_Waiting times for selected elective surgeries.pdf
HEALTH_PROC_8_Waiting times for selected elective surgeries.pdfHEALTH_PROC_8_Waiting times for selected elective surgeries.pdf
HEALTH_PROC_8_Waiting times for selected elective surgeries.pdf
KhalilSemlali
 
VIReC Cyber Seminar Series 2006 VIReC Cyber Seminar Series 2006
VIReC Cyber Seminar Series 2006 	 VIReC Cyber Seminar Series 2006VIReC Cyber Seminar Series 2006 	 VIReC Cyber Seminar Series 2006
VIReC Cyber Seminar Series 2006 VIReC Cyber Seminar Series 2006
MedicineAndDermatology
 

Semelhante a 8th TUC Meeting - Martin Zand University of Rochester Clinical and Translational Science Institute). Graphing Healthcare Networks: Data, Analytics, and Use Cases. (20)

Shahadat Uddin
Shahadat UddinShahadat Uddin
Shahadat Uddin
 
Healthcare deserts: How accessible is US healthcare?
Healthcare deserts: How accessible is US healthcare?Healthcare deserts: How accessible is US healthcare?
Healthcare deserts: How accessible is US healthcare?
 
From Experimental to Applied Predictive Analytics on Big Data - Milan Vukicevic
 From Experimental to Applied Predictive Analytics on Big Data - Milan Vukicevic From Experimental to Applied Predictive Analytics on Big Data - Milan Vukicevic
From Experimental to Applied Predictive Analytics on Big Data - Milan Vukicevic
 
Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...
Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...
Data Science in Healthcare -The University Malaya Medical Centre Breast Cance...
 
Ijarcet vol-2-issue-4-1393-1397
Ijarcet vol-2-issue-4-1393-1397Ijarcet vol-2-issue-4-1393-1397
Ijarcet vol-2-issue-4-1393-1397
 
Development of computer vision medical recognition systems in Moscow
Development of computer vision medical recognition systems in MoscowDevelopment of computer vision medical recognition systems in Moscow
Development of computer vision medical recognition systems in Moscow
 
VIReC CyberSeminar Series 2006 VIReC CyberSeminar Series 2006
VIReC CyberSeminar Series 2006 	 VIReC CyberSeminar Series 2006VIReC CyberSeminar Series 2006 	 VIReC CyberSeminar Series 2006
VIReC CyberSeminar Series 2006 VIReC CyberSeminar Series 2006
 
Working With Large-Scale Clinical Datasets
Working With Large-Scale Clinical DatasetsWorking With Large-Scale Clinical Datasets
Working With Large-Scale Clinical Datasets
 
Lung Nodule Feature Extraction and Classification using Improved Neural Netwo...
Lung Nodule Feature Extraction and Classification using Improved Neural Netwo...Lung Nodule Feature Extraction and Classification using Improved Neural Netwo...
Lung Nodule Feature Extraction and Classification using Improved Neural Netwo...
 
Interpretable and robust hospital readmission predictions from Electronic Hea...
Interpretable and robust hospital readmission predictions from Electronic Hea...Interpretable and robust hospital readmission predictions from Electronic Hea...
Interpretable and robust hospital readmission predictions from Electronic Hea...
 
tranSMART Community Meeting 5-7 Nov 13 - Session 3: The TraIT user stories fo...
tranSMART Community Meeting 5-7 Nov 13 - Session 3: The TraIT user stories fo...tranSMART Community Meeting 5-7 Nov 13 - Session 3: The TraIT user stories fo...
tranSMART Community Meeting 5-7 Nov 13 - Session 3: The TraIT user stories fo...
 
Components And Workflow Of A Digital Radiology Department
Components And Workflow Of A Digital Radiology DepartmentComponents And Workflow Of A Digital Radiology Department
Components And Workflow Of A Digital Radiology Department
 
Meaningful use stage 3 - Nalashaa capabilities
Meaningful use stage 3 - Nalashaa capabilitiesMeaningful use stage 3 - Nalashaa capabilities
Meaningful use stage 3 - Nalashaa capabilities
 
A NEW SELF-ADAPTIVE APPROACH FOR MEDICAL IMAGE SECURITY
A NEW SELF-ADAPTIVE APPROACH FOR MEDICAL IMAGE SECURITYA NEW SELF-ADAPTIVE APPROACH FOR MEDICAL IMAGE SECURITY
A NEW SELF-ADAPTIVE APPROACH FOR MEDICAL IMAGE SECURITY
 
HEALTH_PROC_8_Waiting times for selected elective surgeries.pdf
HEALTH_PROC_8_Waiting times for selected elective surgeries.pdfHEALTH_PROC_8_Waiting times for selected elective surgeries.pdf
HEALTH_PROC_8_Waiting times for selected elective surgeries.pdf
 
PCI-CAMPOS-ACC14-Presentation-Slides.ppt
PCI-CAMPOS-ACC14-Presentation-Slides.pptPCI-CAMPOS-ACC14-Presentation-Slides.ppt
PCI-CAMPOS-ACC14-Presentation-Slides.ppt
 
1st CUTEHeart Workshop Resnic Presentation
1st CUTEHeart Workshop Resnic Presentation1st CUTEHeart Workshop Resnic Presentation
1st CUTEHeart Workshop Resnic Presentation
 
Clinical Radiotherapy Planning basics for beginners
Clinical Radiotherapy Planning basics for beginnersClinical Radiotherapy Planning basics for beginners
Clinical Radiotherapy Planning basics for beginners
 
VIReC Cyber Seminar Series 2006 VIReC Cyber Seminar Series 2006
VIReC Cyber Seminar Series 2006 	 VIReC Cyber Seminar Series 2006VIReC Cyber Seminar Series 2006 	 VIReC Cyber Seminar Series 2006
VIReC Cyber Seminar Series 2006 VIReC Cyber Seminar Series 2006
 
Proposed Transport Protocols Suite for Wireless Medical Body Area Networks
Proposed Transport Protocols Suite for Wireless Medical Body Area NetworksProposed Transport Protocols Suite for Wireless Medical Body Area Networks
Proposed Transport Protocols Suite for Wireless Medical Body Area Networks
 

Mais de LDBC council

Mais de LDBC council (20)

8th TUC Meeting - Juan Sequeda (Capsenta). Integrating Data using Graphs and ...
8th TUC Meeting - Juan Sequeda (Capsenta). Integrating Data using Graphs and ...8th TUC Meeting - Juan Sequeda (Capsenta). Integrating Data using Graphs and ...
8th TUC Meeting - Juan Sequeda (Capsenta). Integrating Data using Graphs and ...
 
8th TUC Meeting - Zhe Wu (Oracle USA). Bridging RDF Graph and Property Graph...
8th TUC Meeting -  Zhe Wu (Oracle USA). Bridging RDF Graph and Property Graph...8th TUC Meeting -  Zhe Wu (Oracle USA). Bridging RDF Graph and Property Graph...
8th TUC Meeting - Zhe Wu (Oracle USA). Bridging RDF Graph and Property Graph...
 
8th TUC Meeting – Yinglong Xia (Huawei), Big Graph Analytics Engine
8th TUC Meeting – Yinglong Xia (Huawei), Big Graph Analytics Engine8th TUC Meeting – Yinglong Xia (Huawei), Big Graph Analytics Engine
8th TUC Meeting – Yinglong Xia (Huawei), Big Graph Analytics Engine
 
8th TUC Meeting – George Fletcher (TU Eindhoven), gMark: Schema-driven data a...
8th TUC Meeting – George Fletcher (TU Eindhoven), gMark: Schema-driven data a...8th TUC Meeting – George Fletcher (TU Eindhoven), gMark: Schema-driven data a...
8th TUC Meeting – George Fletcher (TU Eindhoven), gMark: Schema-driven data a...
 
8th TUC Meeting – Marcus Paradies (SAP) Social Network Benchmark
8th TUC Meeting – Marcus Paradies (SAP) Social Network Benchmark8th TUC Meeting – Marcus Paradies (SAP) Social Network Benchmark
8th TUC Meeting – Marcus Paradies (SAP) Social Network Benchmark
 
8th TUC Meeting - Sergey Edunov (Facebook). Generating realistic trillion-edg...
8th TUC Meeting - Sergey Edunov (Facebook). Generating realistic trillion-edg...8th TUC Meeting - Sergey Edunov (Facebook). Generating realistic trillion-edg...
8th TUC Meeting - Sergey Edunov (Facebook). Generating realistic trillion-edg...
 
Weining Qian (ECNU). On Statistical Characteristics of Real-Life Knowledge Gr...
Weining Qian (ECNU). On Statistical Characteristics of Real-Life Knowledge Gr...Weining Qian (ECNU). On Statistical Characteristics of Real-Life Knowledge Gr...
Weining Qian (ECNU). On Statistical Characteristics of Real-Life Knowledge Gr...
 
8th TUC Meeting - Peter Boncz (CWI). Query Language Task Force status
8th TUC Meeting - Peter Boncz (CWI). Query Language Task Force status8th TUC Meeting - Peter Boncz (CWI). Query Language Task Force status
8th TUC Meeting - Peter Boncz (CWI). Query Language Task Force status
 
8th TUC Meeting | Lijun Chang (University of New South Wales). Efficient Subg...
8th TUC Meeting | Lijun Chang (University of New South Wales). Efficient Subg...8th TUC Meeting | Lijun Chang (University of New South Wales). Efficient Subg...
8th TUC Meeting | Lijun Chang (University of New South Wales). Efficient Subg...
 
8th TUC Meeting - Eugene I. Chong (Oracle USA). Balancing Act to improve RDF ...
8th TUC Meeting - Eugene I. Chong (Oracle USA). Balancing Act to improve RDF ...8th TUC Meeting - Eugene I. Chong (Oracle USA). Balancing Act to improve RDF ...
8th TUC Meeting - Eugene I. Chong (Oracle USA). Balancing Act to improve RDF ...
 
8th TUC Meeting -
8th TUC Meeting - 8th TUC Meeting -
8th TUC Meeting -
 
8th TUC Meeting - David Meibusch, Nathan Hawes (Oracle Labs Australia). Frapp...
8th TUC Meeting - David Meibusch, Nathan Hawes (Oracle Labs Australia). Frapp...8th TUC Meeting - David Meibusch, Nathan Hawes (Oracle Labs Australia). Frapp...
8th TUC Meeting - David Meibusch, Nathan Hawes (Oracle Labs Australia). Frapp...
 
8th TUC Meeting - Tim Hegeman (TU Delft). Social Network Benchmark, Analytics...
8th TUC Meeting - Tim Hegeman (TU Delft). Social Network Benchmark, Analytics...8th TUC Meeting - Tim Hegeman (TU Delft). Social Network Benchmark, Analytics...
8th TUC Meeting - Tim Hegeman (TU Delft). Social Network Benchmark, Analytics...
 
LDBC 8th TUC Meeting: Introduction and status update
LDBC 8th TUC Meeting: Introduction and status updateLDBC 8th TUC Meeting: Introduction and status update
LDBC 8th TUC Meeting: Introduction and status update
 
LDBC 6th TUC Meeting conclusions
LDBC 6th TUC Meeting conclusionsLDBC 6th TUC Meeting conclusions
LDBC 6th TUC Meeting conclusions
 
Parallel and incremental materialisation of RDF/DATALOG in RDFOX
Parallel and incremental materialisation of RDF/DATALOG in RDFOXParallel and incremental materialisation of RDF/DATALOG in RDFOX
Parallel and incremental materialisation of RDF/DATALOG in RDFOX
 
MODAClouds Decision Support System for Cloud Service Selection
MODAClouds Decision Support System for Cloud Service SelectionMODAClouds Decision Support System for Cloud Service Selection
MODAClouds Decision Support System for Cloud Service Selection
 
E-Commerce and Graph-driven Applications: Experiences and Optimizations while...
E-Commerce and Graph-driven Applications: Experiences and Optimizations while...E-Commerce and Graph-driven Applications: Experiences and Optimizations while...
E-Commerce and Graph-driven Applications: Experiences and Optimizations while...
 
LDBC SNB Benchmark Auditing
LDBC SNB Benchmark AuditingLDBC SNB Benchmark Auditing
LDBC SNB Benchmark Auditing
 
Social Network Benchmark Interactive Workload
Social Network Benchmark Interactive WorkloadSocial Network Benchmark Interactive Workload
Social Network Benchmark Interactive Workload
 

Último

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 

Último (20)

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 

8th TUC Meeting - Martin Zand University of Rochester Clinical and Translational Science Institute). Graphing Healthcare Networks: Data, Analytics, and Use Cases.

  • 1. Eighth AnnualTUC Meeting June 22, 2015 Martin S. Zand MD PhD Professor of Medicine and Public Health Sciences Rochester Center for Health Informatics University of Rochester Medical Center rchi.urmc.edu Graphing Healthcare Networks: Data, Analytics & Use Cases
  • 2. Ÿ Healthcare is delivered by networks - We don't understand their toplogy or dynamics Ÿ Patients traverse those networks - A patient journey is a multipartite, directed, temporal subgraph of the larger network Ÿ Network topology influences outcomes - Provider-provider networks determine referrals - Homophily among providers Why Graph Databases in Healthcare? ED 8-16 (MICU) 6-16 (Floor) 8-14 (Step-Down) 3-18 (Trauma ICU) Death “Triangle of Doom”
  • 3. Fundamental Structure of Healthcare Data {Patient, Provider, Location, Event, Time} Age Sex Race Address Insurance Attributes . . . Location Specialty Organization Identifier Education Certification . . . Encounter Admission Procedure Diagnosis Prescription Birth/Death . . . + t Absolute Interval . . . In/Out-patient Geo Location County State Census Tract Service Area . . .
  • 4. Data Set Ÿ Basic data structure - 209,173 ER visits and hospital admissions to a single hospital - All locations and duration of "dwell" for each admissions Ÿ Associated data - Discharge destinations (including death) - Diagnoses, procedures - All medications, lab test results, bacterial and viral culture results Ÿ Outcomes - Hospital "disposition" - Discharge destinations (including death)
  • 5. Questions: - Are patient outcomes associated with graph toplogy? - Can we identify groups of patients based on graph topology? Use Case 1: Intensive Care Unit Readmissions Approach: - Pathgraph mapping of patient journeys Application: - Use journey topologies for predictive modeling and to design early interventions
  • 6. Use Case I: Graph Isomorphism 129278 35659 28786 5707 1164 777 586 428 388 331 224 215 206 101 82 81 78 64 61 60 59 48 40 40 39 36 32 30 29 28 26 24
  • 7. Use Case I: Graph Isomorphism 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  • 8. Basic Patient Journey Topology ER ICU FL HO 1 2 3 Linear Journey ER ICU FL HO1 2 3 4 5 Cyclic Journey ER ICU FL DT 1 2 3 4 5 SDU 9 8 7 6 Complex Cyclic Journey ER OBS 1 2 3 4 5 ICU SDU 6 FL HO RHB Complex Linear Journey
  • 9. Is a cyclic patient journey associated with a poor outcome? Sequential patient exclusion criteria • Patients never admitted to ICU or STDU (n=91,035) • Index admission only (n=8,468) • Age < 18 yo (n=3,215) • Age 18 but admitted to a non-adult ICU (n=22) • Patient died during index ICU admission (n=620) • Patients admitted to STDU only (n=6,885) 123,184 patients presenting to URMC 209,173 separate encounters January 2012 - December 2014 4,756 survived first ICU admission eligible for re-admission to ICU Cyclic trajectory (n=1,479) Linear trajectory (n=3,277) Quill C ... Zand MS (2016) in preparation
  • 10. Graph topology matters for survival Totals (n=) Linear (%) (n=3277) Cyclic (%) (n=1479) Significance (p-value) CHF 1055 17.3 33.1 COPD 670 12.5 17.7 Asthma 364 7.8 7.4 Diabetes 1503 29.0 37.4 Acute Kidney Injury 1255 21.6 36.9 Chronic Kidney Disease 737 12.5 22.2 p < 0.000001 Liver Disease 412 6.4 13.7 p < 0.000001 HIV 46 1.0 1.0 N.S. Hepatitis 110 2.1 2.8 N.S. Cancer 800 14.4 22.2 p < 0.000001 Anemia 1447 26.0 40.2 Coagulation Disorder 517 8.3 16.5 Respiratory Failure 1434 24.8 42.1 p < 0.000001 Malnutrition 105 1.5 3.8 Sepsis 911 14.3 29.8 p < 0.000001 Vent 973 16.4 29.5 ESRD 188 3.0 6.1 MI 384 6.3 12.0 PVD 1095 19.5 30.9 CVD 671 14.1 14.1 Lipid Metabolism 1420 28.2 33.5 p<0.0003 p < 0.000001 p < 0.000001 N.S. N.S. Quill C ... Zand MS (2016) in preparation FractionSurviving Linear Journeys Cyclic Journeys 0 100 200 300 400 500 Hospital Length of Stay (days) 1.0 0.8 0.6 0.4 0.2 0.0 Death in 1st ICU Admission P<0.00001
  • 11. Questions: - How are hospital floors/units really linked by patient transfers? - Can we model patient flow between units? Use Case 2: Hospital Flow Mapping Approach: - Traceroute graphing of the hospital using patient admission traces Applications: - Managing hospital patient distribution - Graph "module" based feature vectors for classifying hospitals
  • 13. Trace-route Hospital Mapping 316 312 HHLTH 712 PSY 816 TIP WCC7 416 334I 612 736 428 436 434 PACU EDB 323 218 SNF 328 814 616 318 812 634 392 OTHER 418 516 STAC 636 192 CATH EDSW REHAB 836 OU1 512 734 WCC6 834 HOSP 534 336 FED 536 414 ED WCC5 716 614 ICF LTC LAW LAMA 714 514 SDAU 412 314 316N PEOB 292 DEATH 390W 336N NVN 490 323I LED HOME GCR LEDNS Ÿ Hospital unit linkage - by patient transfers - patient flow model Ÿ Patients traverse this network - Multiple inter-ICU transfers - Implications for load balancing - Some units more "isolated" from hospital flow Ÿ Hairball visualizations don't help
  • 14. rchi.urmc.edu ��� ����� �� �� � �� ��� �� ���� �� �������� �� �������� ���� �� ���� ���� �� ��� �� ��� ����� �� ���� �� ���� �� ��� �� �� ��� ���� �� ��� ��� �� ��� ���� �� ��� ���� �� ��� ���� �� ��� ���� �� ��� ���� �� ���� � �� ���� ���� �� ���� ���� � �� ���� � �� ���� � �� ��� � �� ��� � ��� ����� �� ���� � �� ��� � �� ��� � �� ��� � �� ��� � �� ������� � �� ������� ���� �� ����� � �� ����� �� ��� � �� ��� � �� ��� � �� ����� � �� ����� �� ��� � �� ��� � �� ��� � �� ��� � ������� �� �� � �� �� �� � �� �� �� � �� �� �� � �� ���� � �� ���� � �� ���� � �� ���� ��� �� ���� ��� ���� �� ���� ��� ���� �� ���� ���� � �� ���� ���� � �� ���� ���� � �� ���� ���� �� �� ���� ���� ��� �� ���� ��� �� ���� ��� � �� ���� �� ����� �������� �� ��� ����� ������ ���������� �������������� ���������� ����� ���������� ������ ������ ������� ��������� �������� ��������� ��������� ��������� ��������� ��������� ������� ���������� ����������� ������� ������� ������ ������ �������� ������� ������ ������ ������ ������ ���������� ������������� �������� ������� ������ ������ ������ �������� ������� ������ ������ ������ ������ ������� ����� ������� ������� ������� ������� ������� ������� ��������� ������������� ������������� ����������� ����������� ����������� ������������ ������������� ��������� ���������� ������ ������� ����� ������� ������ ��������� ����� ������ ����� ����������� ����� ������� ������ ������� ����� ������ ������ ������� ��������������� ��������� ���� TransferringUnit Receiving Unit ŸVisualization - Adjacency matrix map - Topical clustering of units Ÿ Hospital Simulations/Modeling - Models of patient flow - Disaster modeling - Infection control prediction Ÿ Compare hospitals by topology - Like gene regulatory networks - Find functional modules - Academic vs. community, etc.
  • 15. Questions: - How are healthcare providers linked by common patients? - Can we model patient flow throught the US healthcare system? Use Case 3: Mapping the US Healthcare System Approach: - Traceroute graphing of Medicare using outpatient claims traces Application: - Identifying self-organized provider teaming networks - Improving outcomes for care of complex medical condition
  • 16. Mapping Medicare Properly Ÿ Freedom of Information request to use Medicare claims data from 2009 to build networks Ÿ Designed to study provider "referrals" Ÿ Algorithm described, but actual code not released Ÿ DocGraph 2009 = - 1.1 M vertices (provider + organization) - 93.7 million edges Zand MS, Trayhan M, Trotter F, et al. (2016): Rochester Center for Health Informatics
  • 17. Ÿ Medicare Part B Claims Datasets (dnav.cms.gov) Ÿ ~180 million annual claims x ~40M patients Ÿ 100+ data elements per claim Ÿ Data is temporal Ÿ Requires HIPAA compliant compute platform Ÿ National Provider Identifier Dataset (download.cms.gov/nppes/NPI_Files.html) Ÿ ~22 million providers by ~210 data elements Ÿ Data is mostly static Ÿ Benchmark? Ÿ Bipartite (provider → patient) to Unipartite (provider → provider) projection Data Sets
  • 18. Medicare Part B Claims ~ 180 million x ~100 National Provider ID ~2.2 million x ~210 GIS Coded Addresses ~ 2.1 M x 2 Taxonomy Attribute Lookup File Census Tract Data 74,134 x ~ 300 HAS_NPI Network Construction Network Analytics Graph Metrics Community Identification Outcomes Analaysis Quality of Care, Cost, Network Flow Provider Teaming HAS_ADDRESS HAS_CTIDIS_TAXA HAS_ATTR
  • 19. rchi.urmc.edu 643528211470 A CB A B D CE F A CB A B D CE F A CB A B D CE FX > 30 days BinningDyadSlidingWindow days τ = 30 days τ = 30 days Ÿ Algorithms - Sort claims by patient - Next order claims temporally - Iterate through claims using a frame/window τ Ÿ Sliding Algorithm - Similar to Medicare algorithm - Slides window between claims Ÿ Binning Algorithm - Complete graphs within frame τ Ÿ Dyad Algorithm - Enforces sequential edge order - Traceroute mapping
  • 21. rchi.urmc.edu Provider-Provider Organization-Organization X X X X X X X X X X X X X X X 30 60 90 180 365 0 200000 400000 600000 800000 Vertices X X X X XX X X X X X X X X X 30 60 90 180 365 0 10000 20000 30000 40000 Window Vertices XBINNING XDYAD XSLIDING FULL CENSORED X X X X X X X X X X X X X X X 30 60 90 180 365 100 1000 104 105 106 107 Edges X X X X XX X X X X X X X X X 30 60 90 180 365 1000 104 105 106 Window Edges Ÿ Temporal windows - Capture network by τ=180 days - Binning method highly variable Ÿ Censoring - Limit edge weights to > 10 - Greatly decreasesV, E Ÿ Dyad and Sliding Algorithms -Very stable with respect to scope Ÿ Organization analysis - Capture essentially sameV
  • 22. rchi.urmc.edu 30 60 90 180 365 0.0000 0.0001 0.0002 0.0003 0.0004 X X X X X X X X X X X X X X X 306090 180 365 NetworkDensity XBINNING XDYAD XSLIDING FULL CENSORED 30 60 90 180 365 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 X X X X X X X X X XX X X X X 306090 180 365 Temporal Window τ (days)Temporal Window τ (days) Patient-Patient Organization-Organization Ÿ Network Density - Capture network by τ=180 days with dyad and sliding window - Binning method highly variable Ÿ Censoring - Greatly decreases density for all methods Ÿ Provider Analysis - Much lower network densities - Regional effect? Ÿ Organization analysis -Very dense networks (expected)
  • 24. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 0.1 - 5 miles 250,000 connections
  • 25. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 5.1 - 15 miles 250,000 connections
  • 26. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 15.1 - 22.6 miles 250,000 connections
  • 27. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 22.7 - 30 miles 250,000 connections
  • 28. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 30.1 - 66 miles 250,000 connections
  • 29. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance =66.1-214 miles 250,000 connections
  • 30. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 214.1 - 585 miles 250,000 connections
  • 31. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance = 585.1 - 1728 miles 250,000 connections
  • 32. MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu Network of Medicare providers sharing patients Distance >1,728 miles 250,000 connections
  • 33. Big Data in Transplant Research: Identifying Novel Therapeutics MS Zand, et al. (2016) in preparation. http://rchi.urmc.edu ProviderDyads Provider-Provider Teaming Visits Counts Provider-Provider Shared Patients 67% of provider pairs 94% of provider pairs share < 50 patients ● Analysis using the “dyad counting” method ● >50% of provider pairs are within 40 miles of each other ● Dyad counting method with 11 visit threshold also does not capture multiple visits to the same provider ● Primary care providers now have highest netowrk centrality with this method 1 10 100 1000 104 0 2000 4000 6000 8000 10000 12000 14000 0 20 40 60 80 100 0 50000 100000 150000 200000 0 100 200 300 400 500 600 0 50000 100000 150000 200000 250000
  • 35. rchi.urmc.edu Graph analytics useful for healthcare dataset analysis Ÿ Community identification algorithms Ÿ Self-organized provider cliques, clans, and communities Ÿ Patient cohort identification Ÿ Geospatial, social, and "non-medical" edges Ÿ Network construction algorithms Ÿ Multipartite and lower dimensional projections Ÿ Routines for constructing time-varying graphs Ÿ Clustering and cohort identification Ÿ Hypergraphs
  • 36. rchi.urmc.edu Software and hardware we use University of Rochester HPC: 178 compute nodes, each with: 2 Intel Xeon E5-2695 v2 processors (12 core)