SlideShare uma empresa Scribd logo
1 de 100
Baixar para ler offline
Kilian Singer
Quantum information processing with ions and towards scalable
quantum information processing with solid state systems
http://www.quantenbit.de
Collaborations: P. Zahariev, P. Ivanov, N. Vitanov
F. Schmidt-Kaler, U. Poschinger, A. Walther, S. Dawkins
Implantation: F.Jelezko, B. Naydenov (Ulm), J. Wrachtrup (Stutt.),
J. Meijer, S. Pezzagna (Bochum), S. Hell(Göttingen)
Moving ions
• out of the trap for ion implantation
connecting solid state quantum systems
• within the trap
for quantum information processing
• with heat
for the realization of a heat engine
• to investigate the Kibble-Zurek mechanism
Cold
Hot
Work
Moving ions
• out of the trap for ion implantation
connecting solid state quantum systems
• within the trap
for quantum information processing
• with heat
for the realization of a heat engine
• to investigate the Kibble-Zurek mechanism
Cold
Hot
Work
Motivation: Scalable Quantum Computing
with Nitrogen vacancy colour centers
[NV] color center
Wavelength 637 nm
Line width 24 MHz
Dipole moment 1×10-29 Cm
ms = +/-1
ms = 0
3E
3A
optical excitation
637nm
2.88GHz0.3nm
J. Meijer et al., Appl. Phys. B 82, 321 (2006).
Coupling through Dipolar Magnetic
Interaction of the Electron Spins
10nm
2 NV interacting:
100kHz @ 10nm
P. Neumann, et al.,Nature Physics 6, 249 (2010)
Future Visions for 2nd vw funding
period
Motivation: Scalable Quantum Computing
with Nitrogen vacancy colour centers
Universität Stuttgart,
RUBION, Bochum
T=1.6 K
10 µm
1 NV
2 NV
3 NV
2 MeV: spot size 300nm
MV tandem accelerator
(Bochum)
kV nano-beam setup
(Bochum)
kV single laser
cooled ions
(Mainz)
300nm higher resolution 1nm
Ion Implantation
Kooperation: F.Jelezko, B. Naydenov (Ulm),J. Wrachtrup (Stutt.),
J. Meijer, S. Pezzagna (Bochum),S. Hell, D. Wildanger (Göttingen)
+ Top-down method
+ Singly charged ions
+ Independent of doping atom
+ Low energies (<1keV)
+ Nm resolution (expected)
- 3 Hz throughput
Segmented Paul Trap as Perfect
Point Source for Laser Cooled Ions
AFM tip
Segmented ion trap
Electrostatic
einzel-lens
Substrate
Translation stage
9nm
Trap design
KS, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler,
Rev. Mod. Phys. 82, 2609 (2010)
Trap modelling with Fast Multipole Method:
9nm
Trap design
Alignment of trap chips to trap axis
9nm
Trap design
Filter board
Trap Design
• Fs-laser cut alumina (125µm thickness)
• 11 electrodes
• 1 mm distance between chips
• 1 MHz (ax.)/2 MHz (rad.)
Motivation: Transport out of Trap for
Deterministic High Resolution Ion Implantation
35V // 0V // 35V
Potential/a.U.
Axial position / a.U.
500V // 0V // 35V
Potential/a.U.
Axial position / a.U.
Diamond
Ion Extraction
(-2kV)
Amp
Phase switch
Helical resonator
01.08.2013 17
Automatic Extraction of Ions
12,2 12,4 12,6 12,8 13,0 15,0 15,2 15,4 15,6
0,00
0,05
EMdetectorsignal/a.u.
time of flight / µs
dark ions
EMdetectorsignal[a.U.] Deterministic Extraction of Ions
Ca
40 +
88(3) % detected
independent
of ion or molecule species
Dark ions ( CaO )+
W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, K. Singer,
PRL 102, 070501 (2009)
Velocity Distribution
Velocity (m/s)
= 7. 10
v
v -5
Factor of 4 improvement
Aperture Scans
Deflector
Aperture
300µm
Dynode Ion Detector
Verification of alignment
x-deflection voltage
y-deflectionvoltage
95% efficiency
Lens design
Determinstic single ion delivery with 5nm resolution
13 µm before lens
(7x improved)
Electr. deflector
Blade Position (nm)
Hitrate
Dynode
Ion Detector
IonIon lens
Translation stage
Knife edge
Eion=1.5keV
2 keV
5.1 ± 2.7nm
Ion lens
(1000x improved)
Results:
Setup:
Agreement with simulations
Spot Size @ 2mK
Nitrogen loading with ion gun
• Loading rate typically 1 Nitrogen per 10s
• Extraction 1 per minute
• N2
+ (Mass from flight time: 28.4 ± 0.5 AMU)
• Tests of loading Pr+ are in progress
• Narrow velocity distribution
Trigger-delay (s)Trigger-delay (s)
Flighttime(s)
Flighttime(s)
N2
+
Ca+
Time of flight measurements
∆𝑣
𝑣
= 2.5 10−5
NV in-situ detection with
Super-resolution microscope
1µm
Status:
• Singe NV identification
• Spatial resolution 100nm
Plan:
• In-situ annealing of NV
• Improving resolution to 10nm
• Integration of MW double-resonance
spectoscopy
S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup and J. Meijer, New J. Phys. 12 065017
(2010)
NV Yield versus implantation energy
NV Yield
Handling Dark Ions:
Separation of ion chains in the trap
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-15000 -10000 -5000 0 5000 10000
axial direction / mu
axial trap potential
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-15000 -10000 -5000 0 5000 10000
axial direction / mu
axial trap potential
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-15000 -10000 -5000 0 5000 10000
axial direction / mu
axial trap potential
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-15000 -10000 -5000 0 5000 10000
axial direction / mu
axial trap potential
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-15000 -10000 -5000 0 5000 10000
axial direction / mu
axial trap potential
Axial position [µm]
Axialtrappingpotential[V]
Handling Dark Ions:
Feedback position control
desired
position
real
position
Voltage control
Trap
CCD Image & Real time position determination
Handling Dark Ions:
Separation of ion chains in the trap
Voltage/V
Time / s
J. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, KS,
Journal of the Optical Society of America B 27, A99 (2010).
After separation any
motional excitation
of the dark ion has
to be minimized !
Moving ions
• out of the trap for ion implantation
connecting solid state quantum systems
• within the trap
for quantum information processing
• with heat
for the realization of a heat engine
• to investigate the Kibble-Zurek mechanism
Cold
Hot
Work
Scalable Quantum Information with
Segmented Ion Traps
J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried,
and D. J. Wineland,
“Complete Methods Set for Scalable Ion Trap Quantum
Information Processing”,
Science 325, 1227 (2009).
D. Kielpinski, C. Monroe and D. J. Wineland,
“Architecture for a large-scale ion-trap
quantum computer”
Nature 417, 709 (2002).
Ion Transport in Segmented Traps elect
Size of wavefunction:
a single pixel on a HD screen (2000x1000)
Fast Diabatic Transport in
Segmented Microtrap
• A. Walther, F. Ziesel, M. Hettrich , S. Dawkins,
KS, F. Schmidt-Kaler,U.G. Poschinger, PRL 109, 080501 (2012).
• Ryan Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. P.
Home, D. Leibfried, and D. J. Wineland,
PRL 109, 080502 (2012)
• Blakestad et al., PRL 102, 153002 (2009)
Fast Diabatic Transport in
Segmented Microtrap
• fs-laser cut Alumina
• 3-layered sandwich design
• evaporated gold as electrode material
• 31 individual DC segments
• typical trap frequencies:
1.4 MHz (ax.)/3 MHz (rad.)
• possible total transport distance: ~ 5mm
Fast Diabatic Transport in
Segmented Microtrap
FPGA
DAC 1
Output → filters → trap segments
Prerequisites: Precision arbitrary waveform
source for ion transport
• Virtex 5FXT FPGA
• 64 Mbyte DDR RAM
• 400 MHz Power PC CPU
• 10ns timing
• GB Ethernet
• 64 IO
Prerequisites: Precision arbitrary waveform source for
ion transport
• serial 16 bit DACs (TI DAC8814)
• 2.5 MSamples/s/electrode
• Resolution: 0.3 mV
• 12 channels per analog card
• expandable to 4 analog cards
Optimized signal routing, to minimize digital cross talk.
P1/2
S1/2
t = 7 ns
397 nm
Doppler cooling
D5/2
t = 1 s
729 nm
Sideband cooling
Energy
Level scheme of Calcium+
2 Level Atom Harmonic trap
„Dressed“ System
„molecular
Franck Condon“
Picture
„Dressed“ System
Sn ,1
Dn ,1
Dn,
Dn ,1
Sn ,1
Sn,
„Energy
Ladder“
Picture
S
D
D
S
Laser Excitation of a single Ion
Signature: no further excitation allowed
„Dark state“ |0>
forbidden!
g,0
e,0
e,1
g,2
g,1
Optical Pumping into the Ground state
e,2
Sideband cooling into
the Motional Ground State
P1/2
S1/2
t = 7 ns
397 nm
Doppler cooling
D5/2
t = 1 s
729 nm
Sideband cooling
Energie
Level-Scheme of Calcium+
+1/2
-1/2
~10MHz
@6G
~10-100
GHz
Raman transition
Qubit-Manipulation
Spin dependent forces
Shelving
bright
dark
U. G. Poschinger, et. al, KS, F. Schmidt-Kaler, Journal of Physics B 42,
154013 (2009).
Different Diabatic transport schemes
Symmetric transport (back and forth) Asymmetric transport with kick
distance
time
distance
time
Seg 1
Seg 2
Only one
Laser interaction zone
280µm
Different Diabatic transport schemes
Symmetric transport (back and forth) Asymmetric transport with kick
distance
time
distance
time
Seg 1
Seg 2
Symmetric Transport electrode
Size of wavefunction:
a single pixel on a HD Screen (2000x1000)
Transport Backtransport
Energy measurement
Efficient Energy Measurement
Results of symmetric transport
Pseudo energy
Phonon fit to Rabi oscillations
• Trap periodicity
visible
• Coherent control of
oscillation amplitude
over 4 orders of
magnitude
• < 0.1 phonons
minimal energy
transfer
Dwell time is scanned:
Transport details (each direction):
• 20 sample points
• 8 µs → ~ 11 motion cycles
• 220 µm → to next segment, ~23000
times the size of ion wavepacket
• Speed: >2000 wavepackets/cycle
• ~100 km/h
Note: 𝜂2
𝑛 ≪ 1,
well within Lamb-Dicke
regime
→ allows gates after
transport
𝑓𝑡𝑟𝑎𝑝 = 1.4 𝑀𝐻𝑧
Assymmetric Transport electrode
Size of wavefunction:
a single pixel on a HD Screen (2000x1000)
Transport with decelleration kick
3.85 V
-3.68 V
• Control via kick voltage or wait time
• demonstration of fast, controlled one-way
transport
• 0.2 phonons minimal energy transfer
Controlled Displacement Kicks
Kick
Coherent state in Fock basis:
P(n)
P(n)
Theory Experiment
Controlled Displacement Kicks
Kick
Displaced Fock state in Fock basis:
P(n)
P(n)
Theory
Experiment
Transport of Spin Motion Entanglement
Transport
p/2 bsb p/2 bsbp bsb
• Very sensitive measurement of trap frequency variations during transport
• No effect of magnetic field gradients due to compensation with Ramsey spectroscopy on
carrier transition
(A. Walther, U. Poschinger, F. Ziesel, M. Hettrich, A. Wiens, J. Welzel, and F. Schmidt-Kaler,
Phys. Rev. A 83, 062329 (2011).
s=390 Hz
Carrier Ramsey Ramsey on blue sideband
Transport of a motional superposition state
without transport
with transport
A. Walther, F. Ziesel, M. Hettrich , S. Dawkins, KS, F. Schmidt-Kaler, U.G. Poschinger,
Physical Review Letters 109, 080501 (2012).
Moving Ions
• out of the trap for ion implantation
connecting solid state quantum systems
• within the trap
for quantum information processing
• with heat
for the realization of a heat engine
• to investigate the Kibble-Zurek mechanism
Cold
Hot
Work
Macroscopic Heat engine
Converts thermal energy into mechanical work / motion
 essential for industry
Carnot efficiency (Sadi Carnot 1823):
𝜂 =
Work produced
Heat absorbed
=
𝑊
𝑄 𝐻
≤ 1 −
𝑇𝐶
𝑇 𝐻
= 1 −
𝛽 𝐻
𝛽 𝐶
heat heat
Heat
Engine
mechanical
work
coldhot
James Watt 1783: 𝜂 ≅ 5 − 7%
Modern power plats: 𝜂 ≅ 30%
maximum
possible value
Downscaling of Heat Engines
Size
Car Engine
mini heat engine
m mm µm nm
Steeneken et al., Nature Phys. 7, 354 (2011)
Blickle et al., Nature Phys 8, 143 (2012)
piezoresistive heat engine
colloidal heat engine
single particle
thermodynamics
?
single trapped ion
in a Paul Trap
Quantum regime excessible
Fundamental limit
Single Ion heat engine
Proposal:
• Heat engine with one single ion trapped in a Paul trap as working
substance.
– Excellent preparation and control
– Allow for reservoir engineering
• detuned lasers  Doppler interaction
• electronic noise
• …
• Potential to reach quantum regime
– Quantum heat engines: studied theoretically for >50
years
– No one has been realized yet
Scovil,Schulz-Dubois, PRL (1959)
Hot bath Cold bath
Abah, Rossnagel, Jacob, Deffner, Lutz, Schmidt-Kaler, Singer,
Phys. Rev. Lett. 109, 203006 (2012)
Realization: Idea
• Converting thermal energy into motion
– Thermal state of ion expands when heated
– Driving the engine in the radial states of motion
(linear paul trap)
– Converting thermal ernergy of the radial mode into
motion
– Storing motional energy in axial mode
heating
Realization: tapered Paul trap
angle between rf-rods
𝜔 𝑥,𝑦  𝜔 𝑥,𝑦(𝑧)
Pseudo potential:
𝑉𝑝 𝑟, 𝑧 =
𝑚
2
(𝜔0𝑥
2
𝑥2+𝜔0𝑦
2
𝑦2)𝑟0
4
(𝑟0 + 𝑧 tan 𝛼)4
+
𝑚
2
𝜔0𝑧
2
𝑧2
Coupling between axial and radial modes
𝐻 = ħ𝜔0𝑖 𝑎𝑖
†
𝑎𝑖 +
1
2
− 𝐶 ∙ 𝑧 (𝜔0𝑥
2
𝑥2 + 𝜔0𝑦
2
𝑦2) 𝐶 =
2𝑚 tan 𝜃
𝑟0
𝑖∈ 𝑥,𝑦,𝑧
Difference to
linear Paul trap
The trapped ion as engine gas
Doppler heating/cooling in radial direction induces axial
displacement
To reach reach large axial amplitudes of movement
• strong radial confinement
• weak axial confinement
Pseudopotential
heating
r
z
F
Equilibrium position shifted
A
BC
D
Working cycle
heating
moving
cooling
moving
Driving resonantly
with axial trap freq.
Equivalence to macroscopic Heat Engine
heating
moving
cooling
moving
ignition
expansion
compression
themalizing
Equivalence to macroscopic Heat Engine
Converting thermal energy into motion
=
Heat engine
Classical thermodynamics:
Large ensemble of particles
Quantum Otto Cycle: principle
Isentropic expansion
Isentropic compression
Hot
isochore
Cold
isochore
𝑊3
𝑄4
𝑊1
𝑄2
D (ω1,β2)
A (ω1,β1) B (ω2,β1)
C (ω2,β2)
1
2
3
4
β = 1/kT
Quantum Otto Cycle: theory
non-thermal
non-thermal
unitary
unitary
Quantum Otto cycle: efficiency
Exact quantum expression:
Adiabaticity Parameter Qi* (Husimi 1953)
– Depends on driving
Adiabatic process: 𝑄∗
1,2 = 1  approximates our process
Sudden switch (extreme): 𝑄∗
1,2 = (𝜔1
2
+ 𝜔2
2
)/(2𝜔1 𝜔2)
Monte Carlo Simulation
simulating thermal state of a single ion
High temperture limit - classical trajectories:
• Ensemble of classical realizations
• Thermal probability distribution through
Monte-Carlo simulation of laser interaction
Realistic trap geometries:
Finite size method to calculate potentials
 including micromotion and realistic dynamics
Probability for spontanous scattering
Momenteum Transfer of Photons
R. Casdorff, R. Blatt, Appl. Phys. B 45, 175 (1988)
K. Singer et al., Rev. Mod. Phys. (2010)
Excitation of the heat engine
• Resonant driving of heating and cooling cycles
• Sum over large ensembles of realizations
Thermal states in
radial modes
Coherent
excitation of axial
modes
Steady state due to axial damping force (cooling laser)
Radial energy
start heat engine
Doppler cooling
Thermal ensemble
time
Equilibrum between
heating and cooling
 detuning
Heating and cooling:
20% of axial oscillation
work
Phase-space analysis
radial: 0 𝜋 3
2 𝜋
0 1
2 𝜋 𝜋axial:
• Ensemble average over one axial period
1
2 𝜋
3
2 𝜋
x
x
p
p
α
Phase-space analysis
• transformation from thermal energy into coherent motion
DPG 2012 Johannes Roßnagel - University of Mainz 72
axial:radial:
x
x v
v
Efficiency at maximum power
• Two essential characteristics of HE:
power output and efficiency at maximum power
Power 𝑃 =
Work done per cycle
Duration of cycle
= −
𝑊1 + 𝑊3
𝑡cycle
Maximization of P for given heat baths and ω1
 maximum condition for ω2
𝜔2 𝜔1 = 𝛽1 𝛽2
Adiabatic process (Q*=1):
• High temperture (classical) limit:
𝜂 = 1 −
𝛽2
𝛽1
= 1 −
𝑇1
𝑇2
• Low temperture limit (for cold bath):
𝜂 = 1 −
𝛽2
𝛽1
= 1 −
ħ𝜔1
2 𝑘𝑇2
 Curzon-Ahlborn Efficiency (1975)
𝜔2 = 2𝜔1 ħ𝛽2
 Quantum Efficiency
Efficiency at maximum power
Classical Carnot limit
adiabatic
Curzon-Ahlborn
𝜼 𝑪𝑨 = 𝟏 − 𝜷 𝟐/𝜷 𝟏
O. Abah, J. Roßnagel, G. Jacob et al., Phys. Rev. Lett. 109, 203006 (2012)
efficiencyη
sudden switch
𝛽2 𝛽1 = 𝑇1/𝑇2
Engine can run at maximum power 𝜔2 𝜔1 = 𝛽1 𝛽2
Single ion refrigerator• Reverse the thermodynamic
cycle to convert mechanical
work into heat flow
• Carnot efficiency for heat
pump:
𝜀 𝐶 =
1
𝜂 𝐶
=
𝑇𝑐
𝑇ℎ − 𝑇𝑐
heat
R
mechanical
work
cold hot
heat
Heat pump: working principle
Heat pump: working principle
heat
transport
Single Ion Refrigerator
• Smallest possible refrigerator
• Driving three ion Egyptian mode
• Middle ion transfers heat
between two oscillatory
reservoirs
• Coupling to all kind of micro-
oscillators possible
Heat Transport
Transport oscillation Transport thermal energy
heat transport of radial modes along the crystal
Steady state
Between two heat baths
Hot
Bath
Cold
Bath
Transport single Phonons
# ion
#phonon
1 n
# ion
#phonon impurity
1 n
G.D. Lin, L.M. Duan, NJP 13 (2011)
Ivanov, Vitanov, Singer, Schmidt-Kaler, arXiv (2010)
Bermudez, Bruderer, Plenio, arXiv (2013)
Squeezed thermal bath
Cooling to ground state
• Heat baths: increasing
and decresing single
phonons
• kT  1/2 ħω
Driving quantum
states
• Storing energy not in
coherent states but in
non-classical states
• Amplifing cat state,
squeezed ground
state…
Non-classical
thermodynamics
• Driving engine by
non-classical
baths
• Squeezed baths
increases
efficiency
• Spin bath,
magnetic gradient
along the trap axis
O. Abah, E. Lutz, arXiv:1303.6558(2013)
Non-classical heat baths:
Squeezed heat engine
squeezing
Phase space:
Thermal state
effective
distribution
becomes larger…
…Impact on axial
movement stronger
Non-thermal heat baths
• Introducing squeezed hot reservoir bath:
• Hot bath heats and squeezes thermal state
• 𝐻∗
= 𝐻 + ∆𝐻  𝑛∗
= 𝑛 + ∆𝑛 higher effective temperature
squeezing
Non-thermal heat baths
Increasing efficiency
• Repeat same calculations as before…
𝜂∗ = 1 −
𝛽2
𝛽1 1+2 sinh2 𝑟
Limit for large squeezing (𝑟 ≫ 0):
𝜂∗ = 1 −
𝛽2
𝛽1
2 exp(−2𝑟)
Limit for low squeezing (𝑟 → 0):
𝜂∗ = 1 −
𝛽2
𝛽1
(1 − 2𝑟2)
increases efficiency exponentially
Carnot-limit
𝛽2 𝛽1 = 0.3
𝛽2 𝛽1 = 0.6
𝛽2 𝛽1 = 0.9
Efficiency above Carnot Limit is possible!
Experimental realization
Holding and
compensation
electrodes
RF-electrodes
Anti-symmetric
supply on all of the
four rods
Mount and endcaps
Gold coated ceramics
Distance ion – endcaps: 4mm
Distance ion – electrodes: 1.5mm
RF driving: 800Vpp at 60MHz
Axial trap frequency: 35kHz
Radial trap frequency: 6MHz
Moving Ions
• out of the trap for ion implantation
connecting solid state quantum systems
• within the trap
for quantum information processing
• with heat
for the realization of a heat engine
• to investigate the Kibble-Zurek mechanism
Cold
Hot
Work
Observation of the Kibble Zurek scaling law
for defect formation in ion crystals
1976 (Kibble)
symmetry breaking at a second order
phase transitions such that topological
defects form, this may explain formation of
cosmic strings or domain walls
Thomas Kibble
(Imperial London)
Universal principles of defect
formation
T. W. B. Kibble, Journal of Physics A 9, 1387 (1976).
T. W. B. Kibble, Physics Reports 67, 183 (1980).
1976 (Kibble)
symmetry breaking at a second order
phase transitions such that topological
defects form, this may explain formation of
cosmic strings or domain walls
Thomas Kibble
(Imperial London)
Universal principles of defect
formation
Free energy landscape changes
across the critical point from a single
well to a double well potential
Spontaneous symmetry breaking
Universal principles of defect
formation
• System response time, thus information transfer,
diverges when approaching critical point
• At some moment, the system becomes non-
adiabatic and freezes
Freezout
timescale
Linear quench
Diverging slow
response
Relative Temperature:
Relaxation time:
W. H. Zurek, Physics Reports 276, 177 (1996).
1976 (Kibble)
symmetry breaking at a second order
phase transitions such that topological
defects form, this may explain formation of
cosmic strings or domain walls
W. Zurek
(los Alamos)
Universal principles of defect
formation
1985 (Zurek)
Sudden quench though the critical point leads to
defect formation, experiments in solid state phys.
may test theory of universal scaling
• Experiments with rapid cooling of liquid
crystals observe structures
• Experiments for vortex formation in liquid 3He
• Experiments with vortexes in superconductors
2010 (Morigi, Retzger, Plenio et al)
Proposal for KZ study in trapped ions crystals
W. H. Zurek, Nature 317, 505 (1985).
• Landau Ginzburg theory of phase transition for ion trap situation
• Universal scaling found
• Prediction of for the inhomogenious case
Proposal for KZ physics with ion
crystals
Defect formation in ion crystals
Linear
Zig-zag
Zag-zig
Defect
Defect
Double defect
Experimental setup
and parameters
Trap with 11 segments
Controlled by FPGA and
arbitray waveform gen.
/2p = 1.4MHz (rad.)
/2p = 160 – 250kHz (ax.)
Laser cooling /
CCD observation
Smooth axial compression over critical point
• Exponential soft start and stop
• Low excitation of axial breathing mode
• Slope at critical point variable for variable quench times
• Acurate frequency determination
Molecular dynamics simulations
Molecular dynamics simulations
Simulation of
ion trajectories
Tiny axial
excitation
No position flips
Experimental test of the =8/3 power law scaling
= 2.68 ± 0.06 for anisotropy at
critical point of 1.03
= 2.62 ± 0.15 for anisotropy at
critical point of 1.05
fits prediction for the
inhomogenious Kibble Zurek case
with 8/3 = 2.67
Saturation of
defect density
Offset kink
formation
S. Ulm, et. al., KS, accepted at Nat. Com. (2013) 1302.5343. also Pyka et al., arXiv:1211.7005
Summary/Outlook
 Paul-trap successfully established as first
deterministic source of single ions
 Verification of nm resolution and generation of NV
 Scalable diabatic transport of a ground state
cooled ion
 Splitting of Ion chains with combined gate
operations
 Numerical simulation and prototype
 Using squeezed states to increase efficiency
 Realization of the Kibble-Zurek mechanism
 Tranisition between inhomogeneous and
homogeneous KZM by shaping the potentials
Cold
Hot
Work
www.quantenbit.de
Ion Light Interface
(FSK)
Rydberg Ions (FSK)Zig-Zag Ion Crystals
(KS/FSK)
Quantum Sim (RG)
Ion Implantation (KS)
QI with Ions (UGP/FSK)
www.quantenbit.de
PhD,
Postdoc
positions!
A. Bautista, S. Dawkins, C. Degüther, T. Feldker, R. Gerritsma,
M. Hettrich, G. Jacob, H. Kaufmann, A. Kesser, N. Kurz,
U.G. Poschinger, J. Roßnagel, T. Ruster, F. Schmidt-Kaler,
K. Singer, S. Ulm, A. Walther, C. Warschburger, J. Welzel,
S. Wolf, F. Ziesel
Single Ion Heat Engine (KS)

Mais conteúdo relacionado

Mais procurados

MRI PRINCIPLES, WEIGHTING AND CONTRAST
MRI PRINCIPLES, WEIGHTING AND CONTRASTMRI PRINCIPLES, WEIGHTING AND CONTRAST
MRI PRINCIPLES, WEIGHTING AND CONTRAST
SusmitaShrestha9
 
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo ModelCoherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Pratik Tarafdar
 
Trapped Field Superconducting Magnets
Trapped Field Superconducting MagnetsTrapped Field Superconducting Magnets
Trapped Field Superconducting Magnets
Kavita Selva
 

Mais procurados (20)

Superconductive Radiation Space Shielding
Superconductive Radiation Space ShieldingSuperconductive Radiation Space Shielding
Superconductive Radiation Space Shielding
 
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructuresCoulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
 
Copper (775) - an optics, 2PPE, and Bulk state simulation study
Copper (775) - an optics, 2PPE, and Bulk state simulation studyCopper (775) - an optics, 2PPE, and Bulk state simulation study
Copper (775) - an optics, 2PPE, and Bulk state simulation study
 
Generation of optical harmonics
Generation of optical harmonicsGeneration of optical harmonics
Generation of optical harmonics
 
MRI Physics
MRI PhysicsMRI Physics
MRI Physics
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - ppt
 
MRI PRINCIPLES, WEIGHTING AND CONTRAST
MRI PRINCIPLES, WEIGHTING AND CONTRASTMRI PRINCIPLES, WEIGHTING AND CONTRAST
MRI PRINCIPLES, WEIGHTING AND CONTRAST
 
Young Scientist Award in JPS (invited talk)
Young Scientist Award in JPS (invited talk)Young Scientist Award in JPS (invited talk)
Young Scientist Award in JPS (invited talk)
 
MRI SMU (3rd chapter)
MRI SMU  (3rd chapter)MRI SMU  (3rd chapter)
MRI SMU (3rd chapter)
 
Research Poster 2 Dongwei Liu
Research Poster 2 Dongwei LiuResearch Poster 2 Dongwei Liu
Research Poster 2 Dongwei Liu
 
Mri physics
Mri physicsMri physics
Mri physics
 
Mri 3
Mri 3Mri 3
Mri 3
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
 
APS March Meeting - Superconducting qubit devices: fabrication suite
APS March Meeting - Superconducting qubit devices: fabrication suiteAPS March Meeting - Superconducting qubit devices: fabrication suite
APS March Meeting - Superconducting qubit devices: fabrication suite
 
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo ModelCoherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
 
Trapped Field Superconducting Magnets
Trapped Field Superconducting MagnetsTrapped Field Superconducting Magnets
Trapped Field Superconducting Magnets
 
JSHS
JSHSJSHS
JSHS
 
141 physics of mri
141 physics of mri141 physics of mri
141 physics of mri
 
MAGNETIC RESONANCE IMAGING; physics
MAGNETIC RESONANCE IMAGING;   physicsMAGNETIC RESONANCE IMAGING;   physics
MAGNETIC RESONANCE IMAGING; physics
 
Aftab ahmad
Aftab ahmadAftab ahmad
Aftab ahmad
 

Destaque

Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02
laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03
laboratoridalbasso
 
Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01
laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01
laboratoridalbasso
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03
laboratoridalbasso
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01
laboratoridalbasso
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01
laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03
laboratoridalbasso
 
Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01
laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01
laboratoridalbasso
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01
laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02
laboratoridalbasso
 

Destaque (20)

Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02
 
Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03
 
Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01
 
Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01
 
Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16
 
Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14
 
Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01
 
Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13
 
Ldb Convergenze Parallele_05
Ldb Convergenze Parallele_05Ldb Convergenze Parallele_05
Ldb Convergenze Parallele_05
 
Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15
 
Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03
 
Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01
 
Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02
 

Semelhante a Ldb Convergenze Parallele_11

poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
Swayandipta Dey
 
Wafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMS
Wafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMSWafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMS
Wafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMS
Junjun Huan
 

Semelhante a Ldb Convergenze Parallele_11 (20)

Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
 
Optical forces for assembling complex plasmonic nanostructures
Optical forces for assembling complex plasmonic nanostructuresOptical forces for assembling complex plasmonic nanostructures
Optical forces for assembling complex plasmonic nanostructures
 
CUPC Oct 14, 2015
CUPC Oct 14, 2015CUPC Oct 14, 2015
CUPC Oct 14, 2015
 
Magnetic resonance imaging
Magnetic resonance imagingMagnetic resonance imaging
Magnetic resonance imaging
 
ULTRASONICS
ULTRASONICSULTRASONICS
ULTRASONICS
 
Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
 
Laser drivenplasma
Laser drivenplasmaLaser drivenplasma
Laser drivenplasma
 
X ray generation Radiology information by rahul ppt 2
X ray generation  Radiology information by rahul ppt 2X ray generation  Radiology information by rahul ppt 2
X ray generation Radiology information by rahul ppt 2
 
Atomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular DichroismAtomic Plane Resolution Electron Magnetic Circular Dichroism
Atomic Plane Resolution Electron Magnetic Circular Dichroism
 
PhysRevB.94.205204
PhysRevB.94.205204PhysRevB.94.205204
PhysRevB.94.205204
 
Wafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMS
Wafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMSWafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMS
Wafer-Level Vacuum-Encapsulated Ultra-Low Voltage Tuning Fork MEMS
 
ION IMPLANTATION
ION IMPLANTATIONION IMPLANTATION
ION IMPLANTATION
 
Magnetic field sensing
Magnetic field sensingMagnetic field sensing
Magnetic field sensing
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
TUDORTMUND1
TUDORTMUND1TUDORTMUND1
TUDORTMUND1
 
Mri hardware
Mri hardwareMri hardware
Mri hardware
 
Ion Implantation UPS.pdf
Ion Implantation UPS.pdfIon Implantation UPS.pdf
Ion Implantation UPS.pdf
 

Mais de laboratoridalbasso

Mais de laboratoridalbasso (20)

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02
 
Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08 Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08
 
Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07 Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07
 
Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06 Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06
 
Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05 Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05
 
Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04 Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04
 
Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03 Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03
 
Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01
 
Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01 Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01
 
Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01
 
Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01
 
Ldb Asola Non Verba_Attanasio
Ldb Asola Non Verba_AttanasioLdb Asola Non Verba_Attanasio
Ldb Asola Non Verba_Attanasio
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Basso
 
Ldb valecoricerca_lentini_web
Ldb valecoricerca_lentini_webLdb valecoricerca_lentini_web
Ldb valecoricerca_lentini_web
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3
 

Último

call Now 9811711561 Cash Payment乂 Call Girls in Dwarka
call Now 9811711561 Cash Payment乂 Call Girls in Dwarkacall Now 9811711561 Cash Payment乂 Call Girls in Dwarka
call Now 9811711561 Cash Payment乂 Call Girls in Dwarka
vikas rana
 
Enabling Business Users to Interpret Data Through Self-Service Analytics (2).pdf
Enabling Business Users to Interpret Data Through Self-Service Analytics (2).pdfEnabling Business Users to Interpret Data Through Self-Service Analytics (2).pdf
Enabling Business Users to Interpret Data Through Self-Service Analytics (2).pdf
Smartinfologiks
 
Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...
Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...
Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...
ZurliaSoop
 

Último (20)

Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
 
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceSangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceHyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
call Now 9811711561 Cash Payment乂 Call Girls in Dwarka
call Now 9811711561 Cash Payment乂 Call Girls in Dwarkacall Now 9811711561 Cash Payment乂 Call Girls in Dwarka
call Now 9811711561 Cash Payment乂 Call Girls in Dwarka
 
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceBangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Dive into Angel Investing s 2024 0502.pptx
Dive into Angel Investing s 2024 0502.pptxDive into Angel Investing s 2024 0502.pptx
Dive into Angel Investing s 2024 0502.pptx
 
NEON LIGHT CITY pitch deck for the new PC game
NEON LIGHT CITY pitch deck for the new PC gameNEON LIGHT CITY pitch deck for the new PC game
NEON LIGHT CITY pitch deck for the new PC game
 
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verifiedKarol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.inEV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
 
Dàni Velvet Personal Brand Exploration (1).pptx
Dàni Velvet Personal Brand Exploration (1).pptxDàni Velvet Personal Brand Exploration (1).pptx
Dàni Velvet Personal Brand Exploration (1).pptx
 
JAIPUR CALL GIRLS SERVICE REAL HOT SEXY 👯 CALL GIRLS IN JAIPUR BOOK YOUR DREA...
JAIPUR CALL GIRLS SERVICE REAL HOT SEXY 👯 CALL GIRLS IN JAIPUR BOOK YOUR DREA...JAIPUR CALL GIRLS SERVICE REAL HOT SEXY 👯 CALL GIRLS IN JAIPUR BOOK YOUR DREA...
JAIPUR CALL GIRLS SERVICE REAL HOT SEXY 👯 CALL GIRLS IN JAIPUR BOOK YOUR DREA...
 
Famedesired Project portfolio1 . Fullsail
Famedesired Project portfolio1 . FullsailFamedesired Project portfolio1 . Fullsail
Famedesired Project portfolio1 . Fullsail
 
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceSohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
 
How to structure your pitch - B4i template
How to structure your pitch - B4i templateHow to structure your pitch - B4i template
How to structure your pitch - B4i template
 
Enabling Business Users to Interpret Data Through Self-Service Analytics (2).pdf
Enabling Business Users to Interpret Data Through Self-Service Analytics (2).pdfEnabling Business Users to Interpret Data Through Self-Service Analytics (2).pdf
Enabling Business Users to Interpret Data Through Self-Service Analytics (2).pdf
 
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceTirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...
Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...
Jual Obat Aborsi Bojonegoro ( Asli No.1 ) 085657271886 Obat Penggugur Kandung...
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 

Ldb Convergenze Parallele_11

  • 1. Kilian Singer Quantum information processing with ions and towards scalable quantum information processing with solid state systems http://www.quantenbit.de Collaborations: P. Zahariev, P. Ivanov, N. Vitanov F. Schmidt-Kaler, U. Poschinger, A. Walther, S. Dawkins Implantation: F.Jelezko, B. Naydenov (Ulm), J. Wrachtrup (Stutt.), J. Meijer, S. Pezzagna (Bochum), S. Hell(Göttingen)
  • 2. Moving ions • out of the trap for ion implantation connecting solid state quantum systems • within the trap for quantum information processing • with heat for the realization of a heat engine • to investigate the Kibble-Zurek mechanism Cold Hot Work
  • 3. Moving ions • out of the trap for ion implantation connecting solid state quantum systems • within the trap for quantum information processing • with heat for the realization of a heat engine • to investigate the Kibble-Zurek mechanism Cold Hot Work
  • 4. Motivation: Scalable Quantum Computing with Nitrogen vacancy colour centers [NV] color center Wavelength 637 nm Line width 24 MHz Dipole moment 1×10-29 Cm ms = +/-1 ms = 0 3E 3A optical excitation 637nm 2.88GHz0.3nm J. Meijer et al., Appl. Phys. B 82, 321 (2006).
  • 5. Coupling through Dipolar Magnetic Interaction of the Electron Spins 10nm 2 NV interacting: 100kHz @ 10nm P. Neumann, et al.,Nature Physics 6, 249 (2010)
  • 6. Future Visions for 2nd vw funding period
  • 7. Motivation: Scalable Quantum Computing with Nitrogen vacancy colour centers Universität Stuttgart, RUBION, Bochum T=1.6 K 10 µm 1 NV 2 NV 3 NV 2 MeV: spot size 300nm
  • 8. MV tandem accelerator (Bochum) kV nano-beam setup (Bochum) kV single laser cooled ions (Mainz) 300nm higher resolution 1nm Ion Implantation Kooperation: F.Jelezko, B. Naydenov (Ulm),J. Wrachtrup (Stutt.), J. Meijer, S. Pezzagna (Bochum),S. Hell, D. Wildanger (Göttingen)
  • 9.
  • 10. + Top-down method + Singly charged ions + Independent of doping atom + Low energies (<1keV) + Nm resolution (expected) - 3 Hz throughput Segmented Paul Trap as Perfect Point Source for Laser Cooled Ions AFM tip Segmented ion trap Electrostatic einzel-lens Substrate Translation stage
  • 11. 9nm Trap design KS, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, Rev. Mod. Phys. 82, 2609 (2010) Trap modelling with Fast Multipole Method:
  • 12. 9nm Trap design Alignment of trap chips to trap axis
  • 14. Trap Design • Fs-laser cut alumina (125µm thickness) • 11 electrodes • 1 mm distance between chips • 1 MHz (ax.)/2 MHz (rad.)
  • 15. Motivation: Transport out of Trap for Deterministic High Resolution Ion Implantation 35V // 0V // 35V Potential/a.U. Axial position / a.U. 500V // 0V // 35V Potential/a.U. Axial position / a.U. Diamond
  • 18. 12,2 12,4 12,6 12,8 13,0 15,0 15,2 15,4 15,6 0,00 0,05 EMdetectorsignal/a.u. time of flight / µs dark ions EMdetectorsignal[a.U.] Deterministic Extraction of Ions Ca 40 + 88(3) % detected independent of ion or molecule species Dark ions ( CaO )+ W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, K. Singer, PRL 102, 070501 (2009)
  • 19. Velocity Distribution Velocity (m/s) = 7. 10 v v -5 Factor of 4 improvement
  • 21. Verification of alignment x-deflection voltage y-deflectionvoltage 95% efficiency
  • 23. Determinstic single ion delivery with 5nm resolution 13 µm before lens (7x improved) Electr. deflector Blade Position (nm) Hitrate Dynode Ion Detector IonIon lens Translation stage Knife edge Eion=1.5keV 2 keV 5.1 ± 2.7nm Ion lens (1000x improved) Results: Setup:
  • 25. Nitrogen loading with ion gun • Loading rate typically 1 Nitrogen per 10s • Extraction 1 per minute • N2 + (Mass from flight time: 28.4 ± 0.5 AMU) • Tests of loading Pr+ are in progress • Narrow velocity distribution Trigger-delay (s)Trigger-delay (s) Flighttime(s) Flighttime(s) N2 + Ca+ Time of flight measurements ∆𝑣 𝑣 = 2.5 10−5
  • 26. NV in-situ detection with Super-resolution microscope 1µm Status: • Singe NV identification • Spatial resolution 100nm Plan: • In-situ annealing of NV • Improving resolution to 10nm • Integration of MW double-resonance spectoscopy
  • 27. S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup and J. Meijer, New J. Phys. 12 065017 (2010) NV Yield versus implantation energy NV Yield
  • 28. Handling Dark Ions: Separation of ion chains in the trap 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -15000 -10000 -5000 0 5000 10000 axial direction / mu axial trap potential 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -15000 -10000 -5000 0 5000 10000 axial direction / mu axial trap potential 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -15000 -10000 -5000 0 5000 10000 axial direction / mu axial trap potential 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -15000 -10000 -5000 0 5000 10000 axial direction / mu axial trap potential 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -15000 -10000 -5000 0 5000 10000 axial direction / mu axial trap potential Axial position [µm] Axialtrappingpotential[V]
  • 29. Handling Dark Ions: Feedback position control desired position real position Voltage control Trap CCD Image & Real time position determination
  • 30. Handling Dark Ions: Separation of ion chains in the trap Voltage/V Time / s J. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, KS, Journal of the Optical Society of America B 27, A99 (2010). After separation any motional excitation of the dark ion has to be minimized !
  • 31. Moving ions • out of the trap for ion implantation connecting solid state quantum systems • within the trap for quantum information processing • with heat for the realization of a heat engine • to investigate the Kibble-Zurek mechanism Cold Hot Work
  • 32. Scalable Quantum Information with Segmented Ion Traps J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete Methods Set for Scalable Ion Trap Quantum Information Processing”, Science 325, 1227 (2009). D. Kielpinski, C. Monroe and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer” Nature 417, 709 (2002).
  • 33. Ion Transport in Segmented Traps elect Size of wavefunction: a single pixel on a HD screen (2000x1000)
  • 34. Fast Diabatic Transport in Segmented Microtrap • A. Walther, F. Ziesel, M. Hettrich , S. Dawkins, KS, F. Schmidt-Kaler,U.G. Poschinger, PRL 109, 080501 (2012). • Ryan Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. P. Home, D. Leibfried, and D. J. Wineland, PRL 109, 080502 (2012) • Blakestad et al., PRL 102, 153002 (2009)
  • 35. Fast Diabatic Transport in Segmented Microtrap • fs-laser cut Alumina • 3-layered sandwich design • evaporated gold as electrode material • 31 individual DC segments • typical trap frequencies: 1.4 MHz (ax.)/3 MHz (rad.) • possible total transport distance: ~ 5mm
  • 36. Fast Diabatic Transport in Segmented Microtrap
  • 37. FPGA DAC 1 Output → filters → trap segments Prerequisites: Precision arbitrary waveform source for ion transport • Virtex 5FXT FPGA • 64 Mbyte DDR RAM • 400 MHz Power PC CPU • 10ns timing • GB Ethernet • 64 IO
  • 38. Prerequisites: Precision arbitrary waveform source for ion transport • serial 16 bit DACs (TI DAC8814) • 2.5 MSamples/s/electrode • Resolution: 0.3 mV • 12 channels per analog card • expandable to 4 analog cards Optimized signal routing, to minimize digital cross talk.
  • 39. P1/2 S1/2 t = 7 ns 397 nm Doppler cooling D5/2 t = 1 s 729 nm Sideband cooling Energy Level scheme of Calcium+
  • 40. 2 Level Atom Harmonic trap „Dressed“ System „molecular Franck Condon“ Picture „Dressed“ System Sn ,1 Dn ,1 Dn, Dn ,1 Sn ,1 Sn, „Energy Ladder“ Picture S D D S Laser Excitation of a single Ion
  • 41. Signature: no further excitation allowed „Dark state“ |0> forbidden! g,0 e,0 e,1 g,2 g,1 Optical Pumping into the Ground state e,2 Sideband cooling into the Motional Ground State
  • 42. P1/2 S1/2 t = 7 ns 397 nm Doppler cooling D5/2 t = 1 s 729 nm Sideband cooling Energie Level-Scheme of Calcium+ +1/2 -1/2 ~10MHz @6G ~10-100 GHz Raman transition Qubit-Manipulation Spin dependent forces Shelving bright dark U. G. Poschinger, et. al, KS, F. Schmidt-Kaler, Journal of Physics B 42, 154013 (2009).
  • 43. Different Diabatic transport schemes Symmetric transport (back and forth) Asymmetric transport with kick distance time distance time Seg 1 Seg 2 Only one Laser interaction zone 280µm
  • 44. Different Diabatic transport schemes Symmetric transport (back and forth) Asymmetric transport with kick distance time distance time Seg 1 Seg 2
  • 45. Symmetric Transport electrode Size of wavefunction: a single pixel on a HD Screen (2000x1000) Transport Backtransport
  • 48. Results of symmetric transport Pseudo energy Phonon fit to Rabi oscillations • Trap periodicity visible • Coherent control of oscillation amplitude over 4 orders of magnitude • < 0.1 phonons minimal energy transfer Dwell time is scanned: Transport details (each direction): • 20 sample points • 8 µs → ~ 11 motion cycles • 220 µm → to next segment, ~23000 times the size of ion wavepacket • Speed: >2000 wavepackets/cycle • ~100 km/h Note: 𝜂2 𝑛 ≪ 1, well within Lamb-Dicke regime → allows gates after transport 𝑓𝑡𝑟𝑎𝑝 = 1.4 𝑀𝐻𝑧
  • 49. Assymmetric Transport electrode Size of wavefunction: a single pixel on a HD Screen (2000x1000)
  • 50. Transport with decelleration kick 3.85 V -3.68 V • Control via kick voltage or wait time • demonstration of fast, controlled one-way transport • 0.2 phonons minimal energy transfer
  • 51. Controlled Displacement Kicks Kick Coherent state in Fock basis: P(n) P(n) Theory Experiment
  • 52. Controlled Displacement Kicks Kick Displaced Fock state in Fock basis: P(n) P(n) Theory Experiment
  • 53. Transport of Spin Motion Entanglement Transport p/2 bsb p/2 bsbp bsb • Very sensitive measurement of trap frequency variations during transport • No effect of magnetic field gradients due to compensation with Ramsey spectroscopy on carrier transition (A. Walther, U. Poschinger, F. Ziesel, M. Hettrich, A. Wiens, J. Welzel, and F. Schmidt-Kaler, Phys. Rev. A 83, 062329 (2011).
  • 54. s=390 Hz Carrier Ramsey Ramsey on blue sideband Transport of a motional superposition state without transport with transport A. Walther, F. Ziesel, M. Hettrich , S. Dawkins, KS, F. Schmidt-Kaler, U.G. Poschinger, Physical Review Letters 109, 080501 (2012).
  • 55. Moving Ions • out of the trap for ion implantation connecting solid state quantum systems • within the trap for quantum information processing • with heat for the realization of a heat engine • to investigate the Kibble-Zurek mechanism Cold Hot Work
  • 56. Macroscopic Heat engine Converts thermal energy into mechanical work / motion  essential for industry Carnot efficiency (Sadi Carnot 1823): 𝜂 = Work produced Heat absorbed = 𝑊 𝑄 𝐻 ≤ 1 − 𝑇𝐶 𝑇 𝐻 = 1 − 𝛽 𝐻 𝛽 𝐶 heat heat Heat Engine mechanical work coldhot James Watt 1783: 𝜂 ≅ 5 − 7% Modern power plats: 𝜂 ≅ 30% maximum possible value
  • 57. Downscaling of Heat Engines Size Car Engine mini heat engine m mm µm nm Steeneken et al., Nature Phys. 7, 354 (2011) Blickle et al., Nature Phys 8, 143 (2012) piezoresistive heat engine colloidal heat engine single particle thermodynamics ? single trapped ion in a Paul Trap Quantum regime excessible Fundamental limit
  • 58. Single Ion heat engine Proposal: • Heat engine with one single ion trapped in a Paul trap as working substance. – Excellent preparation and control – Allow for reservoir engineering • detuned lasers  Doppler interaction • electronic noise • … • Potential to reach quantum regime – Quantum heat engines: studied theoretically for >50 years – No one has been realized yet Scovil,Schulz-Dubois, PRL (1959) Hot bath Cold bath Abah, Rossnagel, Jacob, Deffner, Lutz, Schmidt-Kaler, Singer, Phys. Rev. Lett. 109, 203006 (2012)
  • 59. Realization: Idea • Converting thermal energy into motion – Thermal state of ion expands when heated – Driving the engine in the radial states of motion (linear paul trap) – Converting thermal ernergy of the radial mode into motion – Storing motional energy in axial mode heating
  • 60. Realization: tapered Paul trap angle between rf-rods 𝜔 𝑥,𝑦  𝜔 𝑥,𝑦(𝑧) Pseudo potential: 𝑉𝑝 𝑟, 𝑧 = 𝑚 2 (𝜔0𝑥 2 𝑥2+𝜔0𝑦 2 𝑦2)𝑟0 4 (𝑟0 + 𝑧 tan 𝛼)4 + 𝑚 2 𝜔0𝑧 2 𝑧2 Coupling between axial and radial modes 𝐻 = ħ𝜔0𝑖 𝑎𝑖 † 𝑎𝑖 + 1 2 − 𝐶 ∙ 𝑧 (𝜔0𝑥 2 𝑥2 + 𝜔0𝑦 2 𝑦2) 𝐶 = 2𝑚 tan 𝜃 𝑟0 𝑖∈ 𝑥,𝑦,𝑧 Difference to linear Paul trap
  • 61. The trapped ion as engine gas Doppler heating/cooling in radial direction induces axial displacement To reach reach large axial amplitudes of movement • strong radial confinement • weak axial confinement Pseudopotential heating r z F Equilibrium position shifted
  • 63. Equivalence to macroscopic Heat Engine heating moving cooling moving ignition expansion compression themalizing
  • 64. Equivalence to macroscopic Heat Engine Converting thermal energy into motion = Heat engine Classical thermodynamics: Large ensemble of particles
  • 65. Quantum Otto Cycle: principle Isentropic expansion Isentropic compression Hot isochore Cold isochore 𝑊3 𝑄4 𝑊1 𝑄2 D (ω1,β2) A (ω1,β1) B (ω2,β1) C (ω2,β2) 1 2 3 4 β = 1/kT
  • 66. Quantum Otto Cycle: theory non-thermal non-thermal unitary unitary
  • 67. Quantum Otto cycle: efficiency Exact quantum expression: Adiabaticity Parameter Qi* (Husimi 1953) – Depends on driving Adiabatic process: 𝑄∗ 1,2 = 1  approximates our process Sudden switch (extreme): 𝑄∗ 1,2 = (𝜔1 2 + 𝜔2 2 )/(2𝜔1 𝜔2)
  • 68. Monte Carlo Simulation simulating thermal state of a single ion High temperture limit - classical trajectories: • Ensemble of classical realizations • Thermal probability distribution through Monte-Carlo simulation of laser interaction Realistic trap geometries: Finite size method to calculate potentials  including micromotion and realistic dynamics Probability for spontanous scattering Momenteum Transfer of Photons R. Casdorff, R. Blatt, Appl. Phys. B 45, 175 (1988) K. Singer et al., Rev. Mod. Phys. (2010)
  • 69. Excitation of the heat engine • Resonant driving of heating and cooling cycles • Sum over large ensembles of realizations Thermal states in radial modes Coherent excitation of axial modes Steady state due to axial damping force (cooling laser)
  • 70. Radial energy start heat engine Doppler cooling Thermal ensemble time Equilibrum between heating and cooling  detuning Heating and cooling: 20% of axial oscillation work
  • 71. Phase-space analysis radial: 0 𝜋 3 2 𝜋 0 1 2 𝜋 𝜋axial: • Ensemble average over one axial period 1 2 𝜋 3 2 𝜋 x x p p α
  • 72. Phase-space analysis • transformation from thermal energy into coherent motion DPG 2012 Johannes Roßnagel - University of Mainz 72 axial:radial: x x v v
  • 73. Efficiency at maximum power • Two essential characteristics of HE: power output and efficiency at maximum power Power 𝑃 = Work done per cycle Duration of cycle = − 𝑊1 + 𝑊3 𝑡cycle Maximization of P for given heat baths and ω1  maximum condition for ω2 𝜔2 𝜔1 = 𝛽1 𝛽2 Adiabatic process (Q*=1): • High temperture (classical) limit: 𝜂 = 1 − 𝛽2 𝛽1 = 1 − 𝑇1 𝑇2 • Low temperture limit (for cold bath): 𝜂 = 1 − 𝛽2 𝛽1 = 1 − ħ𝜔1 2 𝑘𝑇2  Curzon-Ahlborn Efficiency (1975) 𝜔2 = 2𝜔1 ħ𝛽2  Quantum Efficiency
  • 74. Efficiency at maximum power Classical Carnot limit adiabatic Curzon-Ahlborn 𝜼 𝑪𝑨 = 𝟏 − 𝜷 𝟐/𝜷 𝟏 O. Abah, J. Roßnagel, G. Jacob et al., Phys. Rev. Lett. 109, 203006 (2012) efficiencyη sudden switch 𝛽2 𝛽1 = 𝑇1/𝑇2 Engine can run at maximum power 𝜔2 𝜔1 = 𝛽1 𝛽2
  • 75. Single ion refrigerator• Reverse the thermodynamic cycle to convert mechanical work into heat flow • Carnot efficiency for heat pump: 𝜀 𝐶 = 1 𝜂 𝐶 = 𝑇𝑐 𝑇ℎ − 𝑇𝑐 heat R mechanical work cold hot heat
  • 76. Heat pump: working principle
  • 77. Heat pump: working principle heat transport
  • 78. Single Ion Refrigerator • Smallest possible refrigerator • Driving three ion Egyptian mode • Middle ion transfers heat between two oscillatory reservoirs • Coupling to all kind of micro- oscillators possible
  • 79. Heat Transport Transport oscillation Transport thermal energy heat transport of radial modes along the crystal Steady state Between two heat baths Hot Bath Cold Bath Transport single Phonons # ion #phonon 1 n # ion #phonon impurity 1 n G.D. Lin, L.M. Duan, NJP 13 (2011) Ivanov, Vitanov, Singer, Schmidt-Kaler, arXiv (2010) Bermudez, Bruderer, Plenio, arXiv (2013)
  • 80. Squeezed thermal bath Cooling to ground state • Heat baths: increasing and decresing single phonons • kT  1/2 ħω Driving quantum states • Storing energy not in coherent states but in non-classical states • Amplifing cat state, squeezed ground state… Non-classical thermodynamics • Driving engine by non-classical baths • Squeezed baths increases efficiency • Spin bath, magnetic gradient along the trap axis O. Abah, E. Lutz, arXiv:1303.6558(2013) Non-classical heat baths:
  • 81. Squeezed heat engine squeezing Phase space: Thermal state effective distribution becomes larger… …Impact on axial movement stronger
  • 82. Non-thermal heat baths • Introducing squeezed hot reservoir bath: • Hot bath heats and squeezes thermal state • 𝐻∗ = 𝐻 + ∆𝐻  𝑛∗ = 𝑛 + ∆𝑛 higher effective temperature squeezing
  • 84. Increasing efficiency • Repeat same calculations as before… 𝜂∗ = 1 − 𝛽2 𝛽1 1+2 sinh2 𝑟 Limit for large squeezing (𝑟 ≫ 0): 𝜂∗ = 1 − 𝛽2 𝛽1 2 exp(−2𝑟) Limit for low squeezing (𝑟 → 0): 𝜂∗ = 1 − 𝛽2 𝛽1 (1 − 2𝑟2) increases efficiency exponentially Carnot-limit 𝛽2 𝛽1 = 0.3 𝛽2 𝛽1 = 0.6 𝛽2 𝛽1 = 0.9 Efficiency above Carnot Limit is possible!
  • 85. Experimental realization Holding and compensation electrodes RF-electrodes Anti-symmetric supply on all of the four rods Mount and endcaps Gold coated ceramics Distance ion – endcaps: 4mm Distance ion – electrodes: 1.5mm RF driving: 800Vpp at 60MHz Axial trap frequency: 35kHz Radial trap frequency: 6MHz
  • 86. Moving Ions • out of the trap for ion implantation connecting solid state quantum systems • within the trap for quantum information processing • with heat for the realization of a heat engine • to investigate the Kibble-Zurek mechanism Cold Hot Work
  • 87. Observation of the Kibble Zurek scaling law for defect formation in ion crystals
  • 88. 1976 (Kibble) symmetry breaking at a second order phase transitions such that topological defects form, this may explain formation of cosmic strings or domain walls Thomas Kibble (Imperial London) Universal principles of defect formation T. W. B. Kibble, Journal of Physics A 9, 1387 (1976). T. W. B. Kibble, Physics Reports 67, 183 (1980).
  • 89. 1976 (Kibble) symmetry breaking at a second order phase transitions such that topological defects form, this may explain formation of cosmic strings or domain walls Thomas Kibble (Imperial London) Universal principles of defect formation Free energy landscape changes across the critical point from a single well to a double well potential Spontaneous symmetry breaking
  • 90. Universal principles of defect formation • System response time, thus information transfer, diverges when approaching critical point • At some moment, the system becomes non- adiabatic and freezes Freezout timescale Linear quench Diverging slow response Relative Temperature: Relaxation time: W. H. Zurek, Physics Reports 276, 177 (1996).
  • 91. 1976 (Kibble) symmetry breaking at a second order phase transitions such that topological defects form, this may explain formation of cosmic strings or domain walls W. Zurek (los Alamos) Universal principles of defect formation 1985 (Zurek) Sudden quench though the critical point leads to defect formation, experiments in solid state phys. may test theory of universal scaling • Experiments with rapid cooling of liquid crystals observe structures • Experiments for vortex formation in liquid 3He • Experiments with vortexes in superconductors 2010 (Morigi, Retzger, Plenio et al) Proposal for KZ study in trapped ions crystals W. H. Zurek, Nature 317, 505 (1985).
  • 92. • Landau Ginzburg theory of phase transition for ion trap situation • Universal scaling found • Prediction of for the inhomogenious case Proposal for KZ physics with ion crystals
  • 93. Defect formation in ion crystals Linear Zig-zag Zag-zig Defect Defect Double defect
  • 94. Experimental setup and parameters Trap with 11 segments Controlled by FPGA and arbitray waveform gen. /2p = 1.4MHz (rad.) /2p = 160 – 250kHz (ax.) Laser cooling / CCD observation
  • 95. Smooth axial compression over critical point • Exponential soft start and stop • Low excitation of axial breathing mode • Slope at critical point variable for variable quench times • Acurate frequency determination
  • 97. Molecular dynamics simulations Simulation of ion trajectories Tiny axial excitation No position flips
  • 98. Experimental test of the =8/3 power law scaling = 2.68 ± 0.06 for anisotropy at critical point of 1.03 = 2.62 ± 0.15 for anisotropy at critical point of 1.05 fits prediction for the inhomogenious Kibble Zurek case with 8/3 = 2.67 Saturation of defect density Offset kink formation S. Ulm, et. al., KS, accepted at Nat. Com. (2013) 1302.5343. also Pyka et al., arXiv:1211.7005
  • 99. Summary/Outlook  Paul-trap successfully established as first deterministic source of single ions  Verification of nm resolution and generation of NV  Scalable diabatic transport of a ground state cooled ion  Splitting of Ion chains with combined gate operations  Numerical simulation and prototype  Using squeezed states to increase efficiency  Realization of the Kibble-Zurek mechanism  Tranisition between inhomogeneous and homogeneous KZM by shaping the potentials Cold Hot Work
  • 100. www.quantenbit.de Ion Light Interface (FSK) Rydberg Ions (FSK)Zig-Zag Ion Crystals (KS/FSK) Quantum Sim (RG) Ion Implantation (KS) QI with Ions (UGP/FSK) www.quantenbit.de PhD, Postdoc positions! A. Bautista, S. Dawkins, C. Degüther, T. Feldker, R. Gerritsma, M. Hettrich, G. Jacob, H. Kaufmann, A. Kesser, N. Kurz, U.G. Poschinger, J. Roßnagel, T. Ruster, F. Schmidt-Kaler, K. Singer, S. Ulm, A. Walther, C. Warschburger, J. Welzel, S. Wolf, F. Ziesel Single Ion Heat Engine (KS)