SlideShare uma empresa Scribd logo
1 de 87
Baixar para ler offline
Introduction to
quantumoptics with ions
PD Dr. Kilian Singer
Universität Mainz
www.quantenbit.de/#/teach/Public%20Outreach/
start
Ion Gallery
Boulder, USA: Hg+
arhus, Denmark: 40Ca+ (red) and 24Mg+ (blue)
Oxford, England: 40Ca+ coherent breathing motion of a 7-ion linear
Innsbruck, Austria: 40Ca+
Paul trap
fluorescence
detection
ring
electrode
endcap
electrode
endcap
electrode
cooling
beam
z
lens
y
x
Paul trap
Binding in three dimensions
Electrical quadrupole potential
Binding force for charge Q
leads to a harmonic binding:
no static trapping in 3 dimensions
Laplace equation requires
Ion confinement requires a focusing force in 3 dimensions, but
such that at least one of the coefficients is negative,
e.g. binding in x- and y-direction but anti-binding in z-direction !
trap size:
Dynamical trapping: Paul‘s idea
time depending potential
with
leads to the equation of motion for a particle with charge Q and mass m
takes the standard form of the Mathieu equation
(linear differential equ. with time depending cofficients)
with substitutions
radial and axial trap radius
Regions of stability
time-periodic diff. equation leads to Floquet Ansatz
If the exponent µ is purely real, the motion is bound,
if µ has some imaginary part x is exponantially growing and the motion is unstable.
The parameters a and q determine if the motion is stable or not.
Find solution analytically (complicated) or numerically:
a=0, q =0.1 a=0, q =0.2
time time
excursion
excursion
a=0, q =0.3 a=0, q =0.4
time time
excursion
excursion
a=0, q =0.5 a=0, q =0.6
time time
excursion
excursion
a=0, q =0.7 a=0, q =0.8
time time
excursion
excursion
a=0, q =0.9 a=0, q =1.0
time time
excursion
excursion
6 1019
-3 1019
unstable
time
positionintrap
micromotion
1D-solution of Mathieu equation single Aluminium dust particle in trap
Two oscillation frequencies
slow frequency: Harmonic secular motion, frequency w increases with increasing q
fast frequency: Micromotion with frequency W
Ion is shaken with the RF drive frequency (disappears at trap center)
Lissajous figure
3-Dim. Paul trap stability diagram
for a << q << 1 exist approximate solutions
The 3D harmonic motion with frequency wi can
be interpreted as being caused by
a pseudo-potential Y
leads to a quantized harmonic oscillator
Real 3-Dim. Paul traps
ideal 3-Dim. Paul trap with equi-potental
surfaces formed by copper electrodes
endcap electrodes at distance
ideal surfaces:
but non-ideal surfaces do trap also well:
rring ~ 1.2mm
A. Mundt, Innsbr
ideal 3 dim. Paul trap with equi-potental
surfaces formed by copper electrodes
non-ideal surfaces
rring ~ 1.2mm
numerical calculation
of equipotental lines
similar potential
near the center
Real 3-Dim. Paul traps
determine the quadrupole part of the potential:
ideal:
real:
rring ~ 1.2mm
Paul trap: wire ring + endcaps
Paul Straubel trap: ring only
inverted Paul Straubel trap: endcaps only
Paul trap
main advantages:
good optical access
large observation angle
fully harmonic
potential
Loss factor
Real 3-Dim. Paul traps
x
y
2-Dim. Paul mass filter stability diagram
time depending potential
with
dynamical confinement in the x- y-plane
with substitutions
radial trap radius
2-Dim. Paul mass filter stability diagram
x
y
A Linear Paul trap
plug the ends of a mass filter by positive electrodes:
mass filter blade design side view
RF
RF 0V
0V Uend Uend
numerically calculate the axial electric potential,
fit parabula into the potential
and get the axial trap frequency
with k geometry factor
z0
Innsbruck linear ion trap
1.0mm
5mm
MHz5radialwMHz27.0 axialw
Blade design
eVdepthtrap F. Schmidt-Kaler, et al.,
Appl. Phys. B 77, 789 (2003).
MACOR frame
compensation
electrodes
Electrodes
Innsbruck linear ion trap
F. Schmidt-Kaler, et al.,
Appl. Phys. B 77, 789 (2003).
Aarhus, Denmark
Linear ion traps in Rood design
trap electrodes are
nearly in ideal geometry
R= 4mm
r0= 3.5mm
harmonic trapping
in a large region, and
even outside the center
Rood design
Boulder, USA
Innsbruck, Austria
Leibfried, Schätz
Physik Journal 3 (2004) 23
Schulz, NJP (2008)
d ~ 250µm
Stick et al., Nature
Physics 2, 36 (2006)
d ~ 60µm
Seidelin et al.,
PRL 96, 253003 (2006)
d ~ 40µm
Hensinger et al.,
Appl. Phys. Lett.,
034101 (2006)
d ~ 200µm
Segmented micro traps overview
Labaziewicz et al,
PRL 100, 013001 (2008)
Kielpinski et al,
Nature 417, 709 (2002)
RF
DC
RF
DC
• Micro structuring - high number and density of ions
- high trap frequency and gate speed
• Segmentation - Processor and memory section
- Transport of Ion crystals
- Separation of ions
- Cavity QED region
500µm
250µm250µm
100µm
Schulz et al., Fortschr. Phys. 54, 648 (2006)
Ulm segmented micro trap
ceramics,
fs-Laser stuctured,
Gold-coated
base
spacer
top
Ulm segmented micro trap: Fabrication
Schulz et al.,
New Journal of Physics 2008
Loading zone / Transfer zone Experiment zoneSandwich construction
• Ti/Au on Al2O3-Wafer
(10nm/400nm)
• fs-Laser cut in Au/Ti and Al2O3
• adjusting and
• gluing
into Chip Carrier
• bonding
Ulm segmented micro trap: Fabrication
Schulz et al.,
New Journal of Physics 2008
… assembled and connected
in the UHV recipient
Schulz et al.,
New Journal of Physics 2008
Planar micro traps
RF
DC
DC
RF
DC
RF DCDC RF
DC RFRF DC DC
Trapping potential
Pros:
Easy fabrication
High precision
Small sizes possible (few µm)
high surface quality
Cons:
shallow trap potential
Planar micro traps S. Seidelin, et. al.,
PRL 96 253003, (2006).
J. Labaziewicz, et. al.,
PRL 100, 013001 (2008).
Equilibrium positions in the axial potential
z-axis
mutual ion repulsiontrap potential
find equilibrium positions x0: ions oscillate with q(t) arround
condition for equilibrium:
dimensionless positions with length scale
D. James, Appl. Phys.
B 66, 181 (1998)
Equilibrium positions in the axial potential
numerical solution (Mathematica),
e.g. N=5 ions
equilibrium positions
set of N equations for um
-1.74 -0.82 0 +0.82 +1.74
force of the
trap potential
Coulomb force
of all ions from left side
Coulomb force
of all ions from left side
-40 -30 -20 -10 0 10 20 30 40
0
1
2
3
4
5
6
7
8
9
10
NumberofIons
z-position (µm)
Experiment: equilibrium positions
equilibrium positions
are not equally spaced
H. C. Nägerl et al.,
Appl. Phys. B 66, 603 (1998)
theory
experiment
minimum inter-ion distance:
Eigenmodes and Eigenfrequencies
Lagrangian of the axial ion motion:
m,n=1m=1
N N
describes small excursions
arround equilibrium positions
with
and
N
m,n=1m=1
N N
D. James, Appl. Phys.
B 66, 181 (1998)
linearized Coulomb interaction leads to Eigenmodes, but the
next term in Tailor expansion leads to mode coupling, which is
however very small.
C. Marquet, et al.,
Appl. Phys. B 76, 199
(2003)
Eigenmodes and Eigenfrequencies
Matrix, to diagonize
numerical solution (Mathematica),
e.g. N=4 ions
Eigenvectors
Eigenvalues
for the radial modes:
Market et al., Appl. Phys.
B76, (2003) 199depends on N
pictorial
does not
Common mode excitation: Experiment
H. C. Nägerl, Optics
Express / Vol. 3, No. 2 /
89 (1998).
time
position
Center of
mass mode
breathing
mode
Common mode excitations
H. C. Nägerl, Optics
Express / Vol. 3, No. 2 /
89 (1998).
Breathing mode excitation
H. C. Nägerl, Optics
Express / Vol. 3, No. 2 /
89 (1998).
Basics: Harmonic oscillator
Why? The trap confinement is leads to three
independend harmonic oscillators !
here only for the linear direction
of the linear trap no micro-motion
treat the oscillator quantum mechanically and
introduce a+ and a
and get Hamiltonian
Eigenstates |n> with:
Harmonic oscillator wavefunctions
Eigen functions
with orthonormal Hermite polynoms
and energies:
Two – level atom
Why? Is an idealization which is a good approximation to real
physical system in many cases
two level system is connected
with spin ½ algebra using the
Pauli matrices
D. Leibfried, C. Monroe,
R. Blatt, D. Wineland,
Rev. Mod. Phys. 75, 281 (2003)
Two – level atom
Why? Is an idealization which is a good approximation to real
pyhsical system in many cases
gn ,1
en ,1
en,
en ,1
gn ,1
gn,
together with the harmonic oscillator leading to the ladder of
eigenstates |g,n>, |e,n>:
levels not coupled
Laser coupling
dipole interaction, Laser radiation with frequency wl, and intensity |E|2
Rabi frequency:
the laser interaction (running laser wave) has a spatial dependence:
Laser
with
momentum kick, recoil:
Laser coupling
in the rotating wave approximation
using
and defining the Lamb
Dicke parameter h:
Raman transition: projection of Dk=k1-k2
x-axis
if the laser direction is at an angle f to the vibration mode direction:
x-axis
single photon transition
Interaction picture
In the interaction picture defined by
we obtain for the Hamiltonian
with
coupling states with vibration quantum numbers
laser detuning D
2-level-atom harmonic trap
Laser coupling
dressed system
„molecular
Franck Condo
picture
dressed system
gn ,1
en ,1
en,
en ,1
gn ,1
gn,
„energy
ladder“
picture
2-level-atom harmonic trap
Laser coupling
dressed system
„molecular
Franck Condon“
picture
„energy
ladder“
picture
S
D
D
S
Sn ,1
Dn ,1
Dn,
Dn ,1
Sn ,1
Sn,
Lamb Dicke Regime
carrier:
red sideband:
blue sideband:
laser is tuned to
the resonances:
kicked wave function is non-orthogonal to the other
wave functions
Wavefunctions in momentum space
kick by the laser:
0,S
0,D
Prob.forD
electronic
excitation
laser pulse length in µs
electronic
excitation
Coherent qubit rotation
Carrier flops
0,S
0,D
1,D
1,S
internal
electronic
state
Vibrational quanta
laser pulse length in µs
Coherent qubit rotation
Carrier flops
carrier and sideband
Rabi oscillations
with Rabi frequencies
and
What is a quantum gate?
• QBit ist kleinste quantenmechanische
Informationseiheit:
-Verknüpfung von QBits mittels
-1Qbit Gatter
-Und 2 Qbit-Gatter=> Quanten-Computer
Damit kann man universellen Quantencomputer bauen!
1 Qubit Gatter – Licht
Wechselwirkung
1D-WW
Atom-Licht-WW
What is a Superposition?
two different quantum states
are simultaneous existing
at the very same place
two different quantum states
are simultaneous existing
at the very same place
What is a Superposition?
Vector on the Bloch-sphere
two different quantum states
are simultaneous existing
at the very same place
What is a Superposition?
10  
in superposition of Zero and One
A single quantum-bit
two different quantum states
are simultaneous existing
at the very same place
What is a Superposition?
P
S
t = 7 ns
397 nm
D
729 nm
„qubit“
Energy
|1>
|0>
A single Ion
in superposition
of Zero and One
two different quantum states
are simultaneous existing
at the very same place
What is a Superposition?
What is entanglement?
Solvay Konferenz 1927
Entangled particles show correlations and can only
propery discribed by a common quantum state,
regardless how far appart they are.
Still open
Problem:
Entanglement
measures and
characterization
Co-Carrier
Raman
|1>
|0>
PopulationPopulation
Raman Pulsdauer [µs]
Poschinger et al,
arXive 0902.2826
Bei Messung
50% der Fälle
2 Qubit gate
CNOT-GATE
Particle A Particle B
CNOT
Particle A Particle B
2 Qubit gate
CNOT-GATE
Particle A Particle B
CNOT
Particle A Particle B
Generation of Entanglement
Particle A Particle B Particle A Particle
Particle A Particle B
CNOT
1 Qbit gate on
each A and B
does not generate
entanglement:
Measurement would result in uncorrelated results
Measurement results in always the same outcomes at A and B !!!
Properties of the
complete system are fully determined,
but properties of sub-systems
completely undeterined
Erwin Schrödinger 1935:
"I would call entanglement not one but rather
the characteristic trait of quantum mechanics,
the one that enforces its entire departure from
classical lines of thought."
What is Entanglement?
Laser pulse
Entanglement by Laser pulses
get two ions
Laser-Puls
Entanglement by Laser pulses
two ions in entangled state
Entanglement by Laser pulses
Measurement
two ions in entangled state
detection
Laser
detection
Laser
|1> |0>
.... Repeated measurements
Fully determined
correlation
Measurement results
left
Measurement results
right
Subsystems completly random
Erwin Schrödinger 1935:
"I would call entanglement not one but
rather the characteristic trait of quantum
mechanics, the one that enforces its entire
departure from classical lines of thought."
Temporal sequence
of quantum logic
operations
INPUT OUTPUT
Basics of a quantum computer
Single
qubit gate
two-qubit
gatetime
applications in physics and informatics
 P. Shor, 1994: factorization of large numbers, L digits, is much more
efficient on a quantum computer than with a classical computer:
classical computer: ~exp(L1/3), quantum computer: ~ L2
 L. Grover, 1997: search data base - quantum computer: ~ L
 simulation of Schrödinger equations or any unitary evolution
 spin interactions, quantum phase transitions
 quantum cryptography / repeaters / quantum links
 improved atomic clocks
 understanding the fundamentals of quantum mechanics /
Gedanken-Experimente
 Experiments with entangled matter
Why?
The requirements for experimental qc
• Qubits store superposition information, scalable physical system
• Ability to initialize the state of the qubits
• Universal set of quantum gates: Single bit and two bit gates
• Long coherence times, much longer than gate operation time
• Qubit-specific measurement capability
D. P. DiVincenzo,
Quant. Inf. Comp. 1
(Special), 1 (2001)
Qubit
Transformation
10  
Scalable device?
Experimental status
Quantum Information Roadmaps
http://qist.ect.it/
http://qist.lanl.gov/
Quantum gate proposal
control bit target bit
• single bit rotations and
quantum gates
• small decoherence
• unity detection efficiency
• scalable
J. I. Cirac P. ZollerW. Paul
• single bit rotations and
quantum gates
• small decoherence
• unity detection efficiency
• scalable
J. I. Cirac P. Zoller21121:   NOTControlled
0111
1101
1010
0000




0111
1101
1010
0000




control bit target bit
Quantum gate proposal
Cirac & Zoller gate
with two ions




S S S S
S D S D
D D DS
D D D S
ion 1
motion
ion 2
,S D
,S D
0 0
control qubit
target qubit
SWAP
1 2
control target
Controlled-NOT operation




S S S S
S D S D
D D DS
D D D S
ion 1
motion
ion 2
,S D
,S D
0 0
control qubit
target qubit
|0>, |1>
1 2
Controlled-NOT operationControlled-NOT operation




S S S S
S D S D
D D DS
D D D S
ion 1
motion
ion 2
,S D
SWAP-1
,S D
0 0
control qubit
target qubit
|0>, |1>
1 2
Controlled-NOT operationControlled-NOT operation
SWAP and SWAP-1
,0S
,1S
,0D
,1D

SWAP
,0S
,1S
,0D
,1D

SWAP-1
starting with |n=0> phonons,
write into and read from the common vibrational mode
-pulse on blue SB
control bit control bit
Conditional phase gate
Effect:
phase factor of -1
for all, except |D,0 >
target bit
2
2
Composite pulse phase gate
I.Chuang,
MIT Boston
Rabi frequency:
1W nhBlue SB:
Composite phase gate (2 rotation)
       1 1 1 1( , ) , 2 2,0 , 2 2,0R R R R R f         

1
2
3
4
,0 ,1S Don2
Population of |S,1> - |D,2> remains unaffected
       1 1 1 1( , ) 2, 2 ,0 2, 2 ,0R R R R R f         

4
3
2
1
ion 1
motion
ion 2
,S D
SWAP-1
,S D
0 0
SWAP
Ion 1
Ion 2
pulse sequence:
control bit
target bit
laser frequency
pulse duration
optical phase
Controlled-NOT operation
input
output
Fidelity of Cirac-Zoller CNOT
|<Yexp| Yideal >|2
F. Schmidt-Kaler et al.,
Nature 422, 408 (2003)
Fidelity : 73%
M. Riebe et al.,
PRL 97, 220407 (2006)
Fidelity : 92,6%
GHZ state:
W state:
C. Roos et al., Science
304, 1478 (2004)
Ion 3
Ion 2
Ion 1
Deterministic generation of GHZ state
Experiment Ideal
Fidelity: 72 %
Tomography of the GHZ state
C. Roos et al., Science
304, 1478 (2004)
What is a Schrödinger’s cat ?
Kilian Singer - Symposium
Hybride Quantensysteme Ulm
87
Schrödingerkatze im
Bewegungszustand
D. Leibfried et al., Nature 422, 412 (200
P.J. Lee et al., J. Opt. B. 7, 371 (2005)
Bestimmung der Phasenraumtrajektorie eines verschränkten Wellenpackets
U. G. Poschinger, A. Walther, KS, F. Schmidt-Kaler, Physical Review Letters 105,
263602 (2010).

Mais conteúdo relacionado

Mais procurados

Coordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesCoordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesImtiaz Alam
 
Index of hydrogen deficiency
Index of hydrogen deficiencyIndex of hydrogen deficiency
Index of hydrogen deficiencyMahendra G S
 
Slide Show Presentation
Slide Show PresentationSlide Show Presentation
Slide Show PresentationNga Nguyen
 
Pericyclic reaction ii.pp
Pericyclic reaction ii.ppPericyclic reaction ii.pp
Pericyclic reaction ii.ppZaid Najah
 
Hammett Plots in the World of Enzymes
Hammett Plots in the World of EnzymesHammett Plots in the World of Enzymes
Hammett Plots in the World of EnzymesDaniel Morton
 
Examen cwi
Examen cwiExamen cwi
Examen cwileonpier
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexesSANTHANAM V
 
ASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSISASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSISBasudeb Mondal
 
Optical activity in helicines
Optical activity in helicinesOptical activity in helicines
Optical activity in helicinesPRUTHVIRAJ K
 
Symmetry and point group theory 260912
Symmetry and point group theory 260912Symmetry and point group theory 260912
Symmetry and point group theory 260912Shahibul Bariah
 
Applications of lanthanides
Applications of lanthanidesApplications of lanthanides
Applications of lanthanidesShahrbano Awan
 
Molecular orbitals diagrams for octahedral coordination compound without pi i...
Molecular orbitals diagrams for octahedral coordination compound without pi i...Molecular orbitals diagrams for octahedral coordination compound without pi i...
Molecular orbitals diagrams for octahedral coordination compound without pi i...Mithil Fal Desai
 

Mais procurados (20)

Coordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and TheoriesCoordination Chemistry, Fundamental Concepts and Theories
Coordination Chemistry, Fundamental Concepts and Theories
 
Index of hydrogen deficiency
Index of hydrogen deficiencyIndex of hydrogen deficiency
Index of hydrogen deficiency
 
Spirocompounds
SpirocompoundsSpirocompounds
Spirocompounds
 
GROUP THEORY ( SYMMETRY)
GROUP THEORY ( SYMMETRY)GROUP THEORY ( SYMMETRY)
GROUP THEORY ( SYMMETRY)
 
Sae 28.8.13
Sae 28.8.13Sae 28.8.13
Sae 28.8.13
 
Slide Show Presentation
Slide Show PresentationSlide Show Presentation
Slide Show Presentation
 
Nonstoichiometric defects
Nonstoichiometric defectsNonstoichiometric defects
Nonstoichiometric defects
 
Pericyclic reaction ii.pp
Pericyclic reaction ii.ppPericyclic reaction ii.pp
Pericyclic reaction ii.pp
 
Retrosynthesis: 123.312
Retrosynthesis: 123.312Retrosynthesis: 123.312
Retrosynthesis: 123.312
 
Hemoerythrine and Hemocyanin.pptx
Hemoerythrine and Hemocyanin.pptxHemoerythrine and Hemocyanin.pptx
Hemoerythrine and Hemocyanin.pptx
 
Hammett Plots in the World of Enzymes
Hammett Plots in the World of EnzymesHammett Plots in the World of Enzymes
Hammett Plots in the World of Enzymes
 
Examen cwi
Examen cwiExamen cwi
Examen cwi
 
10. Lead tetra acetate
10. Lead tetra acetate10. Lead tetra acetate
10. Lead tetra acetate
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexes
 
ASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSISASYMMETRIC ORGANOCATALYSIS
ASYMMETRIC ORGANOCATALYSIS
 
Optical activity in helicines
Optical activity in helicinesOptical activity in helicines
Optical activity in helicines
 
Symmetry and point group theory 260912
Symmetry and point group theory 260912Symmetry and point group theory 260912
Symmetry and point group theory 260912
 
Applications of lanthanides
Applications of lanthanidesApplications of lanthanides
Applications of lanthanides
 
Organocatalysis
OrganocatalysisOrganocatalysis
Organocatalysis
 
Molecular orbitals diagrams for octahedral coordination compound without pi i...
Molecular orbitals diagrams for octahedral coordination compound without pi i...Molecular orbitals diagrams for octahedral coordination compound without pi i...
Molecular orbitals diagrams for octahedral coordination compound without pi i...
 

Destaque

Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01laboratoridalbasso
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02laboratoridalbasso
 
Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01laboratoridalbasso
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03laboratoridalbasso
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01laboratoridalbasso
 
Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03laboratoridalbasso
 
Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02laboratoridalbasso
 

Destaque (20)

Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01
 
Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01
 
Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02
 
Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01
 
Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02Ldb Convergenze Parallele_trueblood_02
Ldb Convergenze Parallele_trueblood_02
 
Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03
 
Ldb Convergenze Parallele_05
Ldb Convergenze Parallele_05Ldb Convergenze Parallele_05
Ldb Convergenze Parallele_05
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01
 
Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01Ldb Convergenze Parallele_caminiti_01
Ldb Convergenze Parallele_caminiti_01
 
Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03
 
Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01
 
Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02
 

Semelhante a Ldb Convergenze Parallele_11

Undulator Design and Fabrication using Wakefields
Undulator Design and Fabrication using WakefieldsUndulator Design and Fabrication using Wakefields
Undulator Design and Fabrication using WakefieldsJoshua Cutler
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptxWilliamkambi
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"Chad Orzel
 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notesSAURAVMAITY
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensorsRam Niwas Bajiya
 
Romiya_HR_presenetation
Romiya_HR_presenetationRomiya_HR_presenetation
Romiya_HR_presenetationRomiya Bose
 
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentumBlundering boffins exposed
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+niba50
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 
Laser trappedmirrorsinspace
Laser trappedmirrorsinspaceLaser trappedmirrorsinspace
Laser trappedmirrorsinspaceClifford Stone
 
Arndt matter wave interferometry
Arndt matter wave interferometry Arndt matter wave interferometry
Arndt matter wave interferometry Vorname Nachname
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Cleophas Rwemera
 

Semelhante a Ldb Convergenze Parallele_11 (20)

x-rays.pdf
x-rays.pdfx-rays.pdf
x-rays.pdf
 
X – ray diffraction by iswar hazarika
X – ray diffraction by iswar hazarikaX – ray diffraction by iswar hazarika
X – ray diffraction by iswar hazarika
 
xrd basic
 xrd basic xrd basic
xrd basic
 
Undulator Design and Fabrication using Wakefields
Undulator Design and Fabrication using WakefieldsUndulator Design and Fabrication using Wakefields
Undulator Design and Fabrication using Wakefields
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx
 
Optical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdfOptical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdf
 
nbigagli_00393293223155
nbigagli_00393293223155nbigagli_00393293223155
nbigagli_00393293223155
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Opto electronics notes
Opto electronics notesOpto electronics notes
Opto electronics notes
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
 
Chapter_5.pptx .
Chapter_5.pptx                                    .Chapter_5.pptx                                    .
Chapter_5.pptx .
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Gravitational Radiation
Gravitational RadiationGravitational Radiation
Gravitational Radiation
 
Romiya_HR_presenetation
Romiya_HR_presenetationRomiya_HR_presenetation
Romiya_HR_presenetation
 
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
1101.6015 v1 radio_beam_vorticity_and_orbital_angular_momentum
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
Laser trappedmirrorsinspace
Laser trappedmirrorsinspaceLaser trappedmirrorsinspace
Laser trappedmirrorsinspace
 
Arndt matter wave interferometry
Arndt matter wave interferometry Arndt matter wave interferometry
Arndt matter wave interferometry
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02
 

Mais de laboratoridalbasso

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz laboratoridalbasso
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01laboratoridalbasso
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02laboratoridalbasso
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02laboratoridalbasso
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01laboratoridalbasso
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Actionlaboratoridalbasso
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Bassolaboratoridalbasso
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3laboratoridalbasso
 

Mais de laboratoridalbasso (20)

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02
 
Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08 Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08
 
Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07 Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07
 
Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06 Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06
 
Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05 Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05
 
Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04 Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04
 
Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03 Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03
 
Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01
 
Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01 Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01
 
Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01
 
Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01
 
Ldb Asola Non Verba_Attanasio
Ldb Asola Non Verba_AttanasioLdb Asola Non Verba_Attanasio
Ldb Asola Non Verba_Attanasio
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Basso
 
Ldb valecoricerca_lentini_web
Ldb valecoricerca_lentini_webLdb valecoricerca_lentini_web
Ldb valecoricerca_lentini_web
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3
 

Último

Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceBangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDamini Dixit
 
Call girls in Andheri with phone number 9892124323
Call girls in Andheri with phone number 9892124323Call girls in Andheri with phone number 9892124323
Call girls in Andheri with phone number 9892124323Pooja Nehwal
 
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceHyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDamini Dixit
 
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDamini Dixit
 
Lucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Lucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceLucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Lucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDamini Dixit
 
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceSohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceDamini Dixit
 
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.inEV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.inStartupSprouts.in
 
NEON LIGHT CITY pitch deck for the new PC game
NEON LIGHT CITY pitch deck for the new PC gameNEON LIGHT CITY pitch deck for the new PC game
NEON LIGHT CITY pitch deck for the new PC gametess51
 
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...StartupSprouts.in
 
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceSangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDamini Dixit
 
Dàni Velvet Personal Brand Exploration (1).pptx
Dàni Velvet Personal Brand Exploration (1).pptxDàni Velvet Personal Brand Exploration (1).pptx
Dàni Velvet Personal Brand Exploration (1).pptxdmtillman
 
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceTirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDamini Dixit
 
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Famedesired Project portfolio1 . Fullsail
Famedesired Project portfolio1 . FullsailFamedesired Project portfolio1 . Fullsail
Famedesired Project portfolio1 . Fullsailfergusonamani
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verifiedKarol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 

Último (16)

Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceBangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Bangalore Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Call girls in Andheri with phone number 9892124323
Call girls in Andheri with phone number 9892124323Call girls in Andheri with phone number 9892124323
Call girls in Andheri with phone number 9892124323
 
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceHyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Hyderabad Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceDehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Dehradun Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Lucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Lucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceLucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Lucknow Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceSohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Sohna Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
 
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.inEV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
EV Electric Vehicle Startup Pitch Deck- StartupSprouts.in
 
NEON LIGHT CITY pitch deck for the new PC game
NEON LIGHT CITY pitch deck for the new PC gameNEON LIGHT CITY pitch deck for the new PC game
NEON LIGHT CITY pitch deck for the new PC game
 
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
Shareholders Agreement Template for Compulsorily Convertible Debt Funding- St...
 
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceSangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Sangareddy Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Dàni Velvet Personal Brand Exploration (1).pptx
Dàni Velvet Personal Brand Exploration (1).pptxDàni Velvet Personal Brand Exploration (1).pptx
Dàni Velvet Personal Brand Exploration (1).pptx
 
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceTirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Tirupati Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Famedesired Project portfolio1 . Fullsail
Famedesired Project portfolio1 . FullsailFamedesired Project portfolio1 . Fullsail
Famedesired Project portfolio1 . Fullsail
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verifiedKarol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
Karol Bagh, Delhi Call girls :8448380779 Model Escorts | 100% verified
 

Ldb Convergenze Parallele_11

  • 1. Introduction to quantumoptics with ions PD Dr. Kilian Singer Universität Mainz www.quantenbit.de/#/teach/Public%20Outreach/ start
  • 2. Ion Gallery Boulder, USA: Hg+ arhus, Denmark: 40Ca+ (red) and 24Mg+ (blue) Oxford, England: 40Ca+ coherent breathing motion of a 7-ion linear Innsbruck, Austria: 40Ca+
  • 5. Binding in three dimensions Electrical quadrupole potential Binding force for charge Q leads to a harmonic binding: no static trapping in 3 dimensions Laplace equation requires Ion confinement requires a focusing force in 3 dimensions, but such that at least one of the coefficients is negative, e.g. binding in x- and y-direction but anti-binding in z-direction ! trap size:
  • 6. Dynamical trapping: Paul‘s idea time depending potential with leads to the equation of motion for a particle with charge Q and mass m takes the standard form of the Mathieu equation (linear differential equ. with time depending cofficients) with substitutions radial and axial trap radius
  • 7. Regions of stability time-periodic diff. equation leads to Floquet Ansatz If the exponent µ is purely real, the motion is bound, if µ has some imaginary part x is exponantially growing and the motion is unstable. The parameters a and q determine if the motion is stable or not. Find solution analytically (complicated) or numerically: a=0, q =0.1 a=0, q =0.2 time time excursion excursion a=0, q =0.3 a=0, q =0.4 time time excursion excursion a=0, q =0.5 a=0, q =0.6 time time excursion excursion a=0, q =0.7 a=0, q =0.8 time time excursion excursion a=0, q =0.9 a=0, q =1.0 time time excursion excursion 6 1019 -3 1019 unstable
  • 8. time positionintrap micromotion 1D-solution of Mathieu equation single Aluminium dust particle in trap Two oscillation frequencies slow frequency: Harmonic secular motion, frequency w increases with increasing q fast frequency: Micromotion with frequency W Ion is shaken with the RF drive frequency (disappears at trap center) Lissajous figure
  • 9. 3-Dim. Paul trap stability diagram for a << q << 1 exist approximate solutions The 3D harmonic motion with frequency wi can be interpreted as being caused by a pseudo-potential Y leads to a quantized harmonic oscillator
  • 10. Real 3-Dim. Paul traps ideal 3-Dim. Paul trap with equi-potental surfaces formed by copper electrodes endcap electrodes at distance ideal surfaces: but non-ideal surfaces do trap also well: rring ~ 1.2mm A. Mundt, Innsbr
  • 11. ideal 3 dim. Paul trap with equi-potental surfaces formed by copper electrodes non-ideal surfaces rring ~ 1.2mm numerical calculation of equipotental lines similar potential near the center Real 3-Dim. Paul traps
  • 12. determine the quadrupole part of the potential: ideal: real: rring ~ 1.2mm Paul trap: wire ring + endcaps Paul Straubel trap: ring only inverted Paul Straubel trap: endcaps only Paul trap main advantages: good optical access large observation angle fully harmonic potential Loss factor Real 3-Dim. Paul traps
  • 13. x y 2-Dim. Paul mass filter stability diagram time depending potential with dynamical confinement in the x- y-plane with substitutions radial trap radius
  • 14. 2-Dim. Paul mass filter stability diagram
  • 15. x y A Linear Paul trap plug the ends of a mass filter by positive electrodes: mass filter blade design side view RF RF 0V 0V Uend Uend numerically calculate the axial electric potential, fit parabula into the potential and get the axial trap frequency with k geometry factor z0
  • 16. Innsbruck linear ion trap 1.0mm 5mm MHz5radialwMHz27.0 axialw Blade design eVdepthtrap F. Schmidt-Kaler, et al., Appl. Phys. B 77, 789 (2003).
  • 17. MACOR frame compensation electrodes Electrodes Innsbruck linear ion trap F. Schmidt-Kaler, et al., Appl. Phys. B 77, 789 (2003).
  • 18. Aarhus, Denmark Linear ion traps in Rood design trap electrodes are nearly in ideal geometry R= 4mm r0= 3.5mm harmonic trapping in a large region, and even outside the center
  • 20. Leibfried, Schätz Physik Journal 3 (2004) 23 Schulz, NJP (2008) d ~ 250µm Stick et al., Nature Physics 2, 36 (2006) d ~ 60µm Seidelin et al., PRL 96, 253003 (2006) d ~ 40µm Hensinger et al., Appl. Phys. Lett., 034101 (2006) d ~ 200µm Segmented micro traps overview Labaziewicz et al, PRL 100, 013001 (2008) Kielpinski et al, Nature 417, 709 (2002)
  • 21. RF DC RF DC • Micro structuring - high number and density of ions - high trap frequency and gate speed • Segmentation - Processor and memory section - Transport of Ion crystals - Separation of ions - Cavity QED region 500µm 250µm250µm 100µm Schulz et al., Fortschr. Phys. 54, 648 (2006) Ulm segmented micro trap
  • 22. ceramics, fs-Laser stuctured, Gold-coated base spacer top Ulm segmented micro trap: Fabrication Schulz et al., New Journal of Physics 2008
  • 23. Loading zone / Transfer zone Experiment zoneSandwich construction • Ti/Au on Al2O3-Wafer (10nm/400nm) • fs-Laser cut in Au/Ti and Al2O3 • adjusting and • gluing into Chip Carrier • bonding Ulm segmented micro trap: Fabrication Schulz et al., New Journal of Physics 2008
  • 24. … assembled and connected in the UHV recipient Schulz et al., New Journal of Physics 2008
  • 25. Planar micro traps RF DC DC RF DC RF DCDC RF DC RFRF DC DC Trapping potential Pros: Easy fabrication High precision Small sizes possible (few µm) high surface quality Cons: shallow trap potential
  • 26. Planar micro traps S. Seidelin, et. al., PRL 96 253003, (2006). J. Labaziewicz, et. al., PRL 100, 013001 (2008).
  • 27. Equilibrium positions in the axial potential z-axis mutual ion repulsiontrap potential find equilibrium positions x0: ions oscillate with q(t) arround condition for equilibrium: dimensionless positions with length scale D. James, Appl. Phys. B 66, 181 (1998)
  • 28. Equilibrium positions in the axial potential numerical solution (Mathematica), e.g. N=5 ions equilibrium positions set of N equations for um -1.74 -0.82 0 +0.82 +1.74 force of the trap potential Coulomb force of all ions from left side Coulomb force of all ions from left side
  • 29. -40 -30 -20 -10 0 10 20 30 40 0 1 2 3 4 5 6 7 8 9 10 NumberofIons z-position (µm) Experiment: equilibrium positions equilibrium positions are not equally spaced H. C. Nägerl et al., Appl. Phys. B 66, 603 (1998) theory experiment minimum inter-ion distance:
  • 30. Eigenmodes and Eigenfrequencies Lagrangian of the axial ion motion: m,n=1m=1 N N describes small excursions arround equilibrium positions with and N m,n=1m=1 N N D. James, Appl. Phys. B 66, 181 (1998) linearized Coulomb interaction leads to Eigenmodes, but the next term in Tailor expansion leads to mode coupling, which is however very small. C. Marquet, et al., Appl. Phys. B 76, 199 (2003)
  • 31. Eigenmodes and Eigenfrequencies Matrix, to diagonize numerical solution (Mathematica), e.g. N=4 ions Eigenvectors Eigenvalues for the radial modes: Market et al., Appl. Phys. B76, (2003) 199depends on N pictorial does not
  • 32. Common mode excitation: Experiment H. C. Nägerl, Optics Express / Vol. 3, No. 2 / 89 (1998).
  • 33. time position Center of mass mode breathing mode Common mode excitations H. C. Nägerl, Optics Express / Vol. 3, No. 2 / 89 (1998).
  • 34. Breathing mode excitation H. C. Nägerl, Optics Express / Vol. 3, No. 2 / 89 (1998).
  • 35. Basics: Harmonic oscillator Why? The trap confinement is leads to three independend harmonic oscillators ! here only for the linear direction of the linear trap no micro-motion treat the oscillator quantum mechanically and introduce a+ and a and get Hamiltonian Eigenstates |n> with:
  • 36. Harmonic oscillator wavefunctions Eigen functions with orthonormal Hermite polynoms and energies:
  • 37. Two – level atom Why? Is an idealization which is a good approximation to real physical system in many cases two level system is connected with spin ½ algebra using the Pauli matrices D. Leibfried, C. Monroe, R. Blatt, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)
  • 38. Two – level atom Why? Is an idealization which is a good approximation to real pyhsical system in many cases gn ,1 en ,1 en, en ,1 gn ,1 gn, together with the harmonic oscillator leading to the ladder of eigenstates |g,n>, |e,n>: levels not coupled
  • 39. Laser coupling dipole interaction, Laser radiation with frequency wl, and intensity |E|2 Rabi frequency: the laser interaction (running laser wave) has a spatial dependence: Laser with momentum kick, recoil:
  • 40. Laser coupling in the rotating wave approximation using and defining the Lamb Dicke parameter h: Raman transition: projection of Dk=k1-k2 x-axis if the laser direction is at an angle f to the vibration mode direction: x-axis single photon transition
  • 41. Interaction picture In the interaction picture defined by we obtain for the Hamiltonian with coupling states with vibration quantum numbers laser detuning D
  • 42. 2-level-atom harmonic trap Laser coupling dressed system „molecular Franck Condo picture dressed system gn ,1 en ,1 en, en ,1 gn ,1 gn, „energy ladder“ picture
  • 43. 2-level-atom harmonic trap Laser coupling dressed system „molecular Franck Condon“ picture „energy ladder“ picture S D D S Sn ,1 Dn ,1 Dn, Dn ,1 Sn ,1 Sn,
  • 44. Lamb Dicke Regime carrier: red sideband: blue sideband: laser is tuned to the resonances:
  • 45. kicked wave function is non-orthogonal to the other wave functions Wavefunctions in momentum space kick by the laser:
  • 46. 0,S 0,D Prob.forD electronic excitation laser pulse length in µs electronic excitation Coherent qubit rotation Carrier flops
  • 47. 0,S 0,D 1,D 1,S internal electronic state Vibrational quanta laser pulse length in µs Coherent qubit rotation Carrier flops carrier and sideband Rabi oscillations with Rabi frequencies and
  • 48. What is a quantum gate? • QBit ist kleinste quantenmechanische Informationseiheit: -Verknüpfung von QBits mittels -1Qbit Gatter -Und 2 Qbit-Gatter=> Quanten-Computer Damit kann man universellen Quantencomputer bauen!
  • 49. 1 Qubit Gatter – Licht Wechselwirkung 1D-WW Atom-Licht-WW
  • 50. What is a Superposition? two different quantum states are simultaneous existing at the very same place
  • 51. two different quantum states are simultaneous existing at the very same place What is a Superposition?
  • 52. Vector on the Bloch-sphere two different quantum states are simultaneous existing at the very same place What is a Superposition?
  • 53. 10   in superposition of Zero and One A single quantum-bit two different quantum states are simultaneous existing at the very same place What is a Superposition?
  • 54. P S t = 7 ns 397 nm D 729 nm „qubit“ Energy |1> |0> A single Ion in superposition of Zero and One two different quantum states are simultaneous existing at the very same place What is a Superposition?
  • 55. What is entanglement? Solvay Konferenz 1927 Entangled particles show correlations and can only propery discribed by a common quantum state, regardless how far appart they are. Still open Problem: Entanglement measures and characterization
  • 56. Co-Carrier Raman |1> |0> PopulationPopulation Raman Pulsdauer [µs] Poschinger et al, arXive 0902.2826 Bei Messung 50% der Fälle
  • 57. 2 Qubit gate CNOT-GATE Particle A Particle B CNOT Particle A Particle B
  • 58. 2 Qubit gate CNOT-GATE Particle A Particle B CNOT Particle A Particle B
  • 59. Generation of Entanglement Particle A Particle B Particle A Particle Particle A Particle B CNOT 1 Qbit gate on each A and B does not generate entanglement: Measurement would result in uncorrelated results Measurement results in always the same outcomes at A and B !!!
  • 60. Properties of the complete system are fully determined, but properties of sub-systems completely undeterined Erwin Schrödinger 1935: "I would call entanglement not one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." What is Entanglement?
  • 61. Laser pulse Entanglement by Laser pulses get two ions
  • 63. two ions in entangled state Entanglement by Laser pulses
  • 64. Measurement two ions in entangled state detection Laser detection Laser |1> |0>
  • 65. .... Repeated measurements Fully determined correlation Measurement results left Measurement results right Subsystems completly random Erwin Schrödinger 1935: "I would call entanglement not one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought."
  • 66. Temporal sequence of quantum logic operations INPUT OUTPUT Basics of a quantum computer Single qubit gate two-qubit gatetime
  • 67. applications in physics and informatics  P. Shor, 1994: factorization of large numbers, L digits, is much more efficient on a quantum computer than with a classical computer: classical computer: ~exp(L1/3), quantum computer: ~ L2  L. Grover, 1997: search data base - quantum computer: ~ L  simulation of Schrödinger equations or any unitary evolution  spin interactions, quantum phase transitions  quantum cryptography / repeaters / quantum links  improved atomic clocks  understanding the fundamentals of quantum mechanics / Gedanken-Experimente  Experiments with entangled matter Why?
  • 68. The requirements for experimental qc • Qubits store superposition information, scalable physical system • Ability to initialize the state of the qubits • Universal set of quantum gates: Single bit and two bit gates • Long coherence times, much longer than gate operation time • Qubit-specific measurement capability D. P. DiVincenzo, Quant. Inf. Comp. 1 (Special), 1 (2001) Qubit Transformation 10  
  • 69. Scalable device? Experimental status Quantum Information Roadmaps http://qist.ect.it/ http://qist.lanl.gov/
  • 70. Quantum gate proposal control bit target bit • single bit rotations and quantum gates • small decoherence • unity detection efficiency • scalable J. I. Cirac P. ZollerW. Paul
  • 71. • single bit rotations and quantum gates • small decoherence • unity detection efficiency • scalable J. I. Cirac P. Zoller21121:   NOTControlled 0111 1101 1010 0000     0111 1101 1010 0000     control bit target bit Quantum gate proposal
  • 72. Cirac & Zoller gate with two ions
  • 73.     S S S S S D S D D D DS D D D S ion 1 motion ion 2 ,S D ,S D 0 0 control qubit target qubit SWAP 1 2 control target Controlled-NOT operation
  • 74.     S S S S S D S D D D DS D D D S ion 1 motion ion 2 ,S D ,S D 0 0 control qubit target qubit |0>, |1> 1 2 Controlled-NOT operationControlled-NOT operation
  • 75.     S S S S S D S D D D DS D D D S ion 1 motion ion 2 ,S D SWAP-1 ,S D 0 0 control qubit target qubit |0>, |1> 1 2 Controlled-NOT operationControlled-NOT operation
  • 76. SWAP and SWAP-1 ,0S ,1S ,0D ,1D  SWAP ,0S ,1S ,0D ,1D  SWAP-1 starting with |n=0> phonons, write into and read from the common vibrational mode -pulse on blue SB control bit control bit
  • 77. Conditional phase gate Effect: phase factor of -1 for all, except |D,0 > target bit 2 2 Composite pulse phase gate I.Chuang, MIT Boston Rabi frequency: 1W nhBlue SB:
  • 78. Composite phase gate (2 rotation)        1 1 1 1( , ) , 2 2,0 , 2 2,0R R R R R f           1 2 3 4 ,0 ,1S Don2
  • 79. Population of |S,1> - |D,2> remains unaffected        1 1 1 1( , ) 2, 2 ,0 2, 2 ,0R R R R R f           4 3 2 1
  • 80. ion 1 motion ion 2 ,S D SWAP-1 ,S D 0 0 SWAP Ion 1 Ion 2 pulse sequence: control bit target bit laser frequency pulse duration optical phase Controlled-NOT operation
  • 81. input output Fidelity of Cirac-Zoller CNOT |<Yexp| Yideal >|2 F. Schmidt-Kaler et al., Nature 422, 408 (2003) Fidelity : 73% M. Riebe et al., PRL 97, 220407 (2006) Fidelity : 92,6%
  • 82. GHZ state: W state: C. Roos et al., Science 304, 1478 (2004)
  • 83. Ion 3 Ion 2 Ion 1 Deterministic generation of GHZ state
  • 84. Experiment Ideal Fidelity: 72 % Tomography of the GHZ state C. Roos et al., Science 304, 1478 (2004)
  • 85. What is a Schrödinger’s cat ?
  • 86.
  • 87. Kilian Singer - Symposium Hybride Quantensysteme Ulm 87 Schrödingerkatze im Bewegungszustand D. Leibfried et al., Nature 422, 412 (200 P.J. Lee et al., J. Opt. B. 7, 371 (2005) Bestimmung der Phasenraumtrajektorie eines verschränkten Wellenpackets U. G. Poschinger, A. Walther, KS, F. Schmidt-Kaler, Physical Review Letters 105, 263602 (2010).