SlideShare uma empresa Scribd logo
1 de 238
多媒體資料庫
提綱 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
簡介 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
簡介 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
簡介 ,[object Object],[object Object],[object Object],[object Object],[object Object]
多媒體資料庫的挑戰 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
多維度索引技術 ,[object Object],[object Object],[object Object],[object Object],[object Object]
多維度索引技術 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
B +  -Tree  簡介  ,[object Object],[object Object],[object Object],[object Object]
B +  -Tree  節點結構  ,[object Object],[object Object],[object Object]
葉節點結構  ,[object Object],[object Object],[object Object]
非葉節點結構  ,[object Object],[object Object]
範例
討論 ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
多維度上的索引結構 ,[object Object],[object Object],[object Object],[object Object]
[object Object]
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
多維度上的索引結構 ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
 
多維度上的索引結構 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
插入 p 14 R1 R2 R3 R4 R5 p6 p7 p5 p1 p2 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p2 p3 p4 p5 p9 p10 p11 p12 p13 R1 R2 p14
inserting   p14 R1 R2 R3 R4 R5 p6 p7 p5 p1 p2 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p2 p3 p4 p5 p9 p10 p11 p12 p13 p14 p14 R1 R2
[object Object],p14 R1 R2 R1 R2 R3 R4 R5 p6 p7 p5 p1 p2 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p2 p3 p4 p5 p9 p10 p11 p12 p13 p14
[object Object],R1 R2 R1 R2 R3 R4 R5 p6 p7 p5 p1 p2 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p2 p3 p4 p5 p9 p10 p11 p12 p13 p14 p14
[object Object],R1 R2 R1 R2 R3 R4 R5 p6 p7 p5 p1 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p3 p4 p5 p9 p10 p11 p12 p13 p14 p14
[object Object],R1 R2 R1 R2 R3 R4 R5 p6 p7 p5 p1 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p3 p4 p5 p9 p10 p11 p12 p13 p14 p14
[object Object],R1 R2 R3 R4 R5 p6 p7 p5 p1 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p3 p4 p5 p9 p10 p11 p12 p13 p14 p14 R1 R2
另一種簡單之整合單一維度索引之多維索引結構 ,[object Object],[object Object],[object Object],[object Object]
[object Object],P 1 P 3 P 2 P 5 P 4
P 6 P 10 P 9 P 8 P 7
[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],>0.15
[object Object],[object Object],[object Object],[object Object],[object Object],皆小於 0.02 ,故必須進行第二步驟
[object Object],[object Object],[object Object],[object Object],大於已知之最小誤差  0.016 ,所以資料庫內沒有符合查詢的資料存在
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
演算法
 
 
 
 
 
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
文件資料庫 ,[object Object],[object Object],所有的文件 相關的文件 搜尋所得之結果
文件資料庫 ,[object Object],[object Object],所有的文件 相關的文件 搜尋所得之結果 50 150 20
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],0 0 1 0 boat 0 2 2 0 slip 2 0 0 0 connection 3 0 0 1 videotape 3 1 0 1 drug 0 0 0 1 sex d 4 d 3 d 2 d 1 Term/ 文件
文件資料庫 ,[object Object],[object Object],[object Object],[object Object]
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
文件資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
影像資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
影像資料庫搜尋  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
影像距離與相似度 ,[object Object],[object Object],[object Object],[object Object]
顏色相似度  (Color Similarity) ,[object Object],[object Object],[object Object],[object Object],[object Object]
顏色配置 ,[object Object],[object Object],[object Object],[object Object],[object Object]
材質相似度  (Texture Similarity) ,[object Object],[object Object],[object Object]
形狀相似度  (Shape Similarity) ,[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],實作範例 Image-A  Image-B  Image-C
Color model RGB color space  v.s.  HSV color space
[object Object],[object Object],[object Object],[object Object],[object Object]
 
相似度比較 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
 
範例 SIZE = 13 + 10 + 5 = 28 Query image A 13 B 10 C 5
[object Object],[object Object],音樂資料庫
音樂的特徵 ,[object Object],[object Object],[object Object],[object Object]
特徵的取樣 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
特徵的編碼 ,[object Object],[object Object],[object Object],[object Object]
範例 ,[object Object],[object Object],[object Object]
重複出現的式樣—定義 ,[object Object]
重複出現的式樣—實例 ,[object Object],2 3 3 3 2 RPF F E D C E-F RP 3 3 2 3 2 RPF D-E C-D D-E-F C-D-E C-D-E-F RP
重複出現的式樣 ,[object Object],[object Object]
The Correlative-Matrix(1) ,[object Object],[object Object],[object Object],Ab5 1 4 C6 1 6 C6-Ab5-Ab5-C6 4 2 RP PL(Pattern Length) RPF
The Correlative-Matrix(2) Construction of correlative matrix T 12,12 -- C6 -- Bb5 1 -- C6 -- Db5 1 1 -- C6 -- Ab5 1 -- Ab5 1 1 1 -- C6 1 1 4 1 -- C6 3 1 -- Ab5 1 2 1 -- Ab5 1 1 1 1 1 -- C6 C6 Bb5 C6 Db5 C6 Ab5 Ab5 C6 C6 Ab5 Ab5 C6
The Correlative-Matrix(3) ,[object Object],[object Object],[object Object],[object Object]
The Correlative-Matrix(4) ,[object Object],[object Object],[object Object],[object Object]
The Correlative-Matrix(5) ,[object Object]
The String-Join Approach(1) ,[object Object],[object Object]
The String-Join Approach(2) ,[object Object]
The String-Join Approach(3) ,[object Object],[object Object]
The String-Join Approach(4) ,[object Object],[object Object]
討論 ,[object Object],[object Object],[object Object],[object Object]
視訊資料庫 ,[object Object],[object Object],[object Object],[object Object],[object Object]
影片內涵資訊 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
視訊內涵資訊之建構 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object]
Preface  (Cont’d ) ,[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
涵義概念式查詢 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Classification ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Training Data Classification Algorithms IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’  Classifier (Model)
Classifier Testing Data Unseen Data (Jeff, Professor, 4) Tenured?
Classification ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
訓練資料集 (training data set)
決策樹 age? overcast student? credit rating? no yes fair excellent <=30 >40 no no yes yes yes 30..40
Naïve bayesian Network :example P(n) = 5/14 P(p) = 9/14
P(true|n) = 3/5 P(true|p) = 3/9 P(false|n) = 2/5 P(false|p) = 6/9 P(high|n) = 4/5 P(high|p) = 3/9 P(normal|n) = 2/5 P(normal|p) = 6/9 P(hot|n) = 2/5 P(hot|p) = 2/9 P(mild|n) = 2/5 P(mild|p) = 4/9 P(cool|n) = 1/5 P(cool|p) = 3/9 P(rain|n) = 2/5 P(rain|p) = 3/9 P(overcast|n) = 0 P(overcast|p) = 4/9 P(sunny|n) = 3/5 P(sunny|p) = 2/9 windy humidity temperature outlook
Play-tennis example: classifying X ,[object Object],[object Object],[object Object],[object Object]
Bayesian Belief Networks Family History LungCancer PositiveXRay Smoker Emphysema Dyspnea LC ~LC (FH, S) (FH, ~S) (~FH, S) (~FH, ~S) 0.8 0.2 0.5 0.5 0.7 0.3 0.1 0.9 Bayesian Belief Networks The conditional probability table for the variable LungCancer
Bayesian Belief Networks
The  k -Nearest Neighbor Algorithm .  _ + _ x q + _ _ + _ _ + . . . . .
Rough Set Approach ,[object Object],[object Object],[object Object],[object Object]
Fuzzy set approach
Association pattern mining ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
探勘關聯式法則 : 範例 ,[object Object],[object Object],[object Object],[object Object],[object Object],Min. support 50% Min. confidence 50%
Apriori  演算法 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
範例 Database D Scan D C 1 L 1 L 2 C 2 C 2 Scan D C 3 L 3 Scan D
FP-tree  演算法 ,[object Object],[object Object],[object Object],[object Object]
FP-tree  建置過程 min_support = 0.5 TID Items bought   (ordered) frequent items 100 { f, a, c, d, g, i, m, p } { f, c, a, m, p } 200 { a, b, c, f, l, m, o } { f, c, a, b, m } 300   { b, f, h, j, o } { f, b } 400   { b, c, k, s, p } { c, b, p } 500   { a, f, c, e, l, p, m, n } { f, c, a, m, p } ,[object Object],[object Object],[object Object],[object Object]
{} f:4 c:1 b:1 p:1 b:1 c:3 a:3 b:1 m:2 p:2 m:1 Header Table Item  frequency  head  f 4 c 4 a 3 b 3 m 3 p 3
FP-tree  主要探勘過程 ,[object Object],[object Object],[object Object],[object Object]
Step 1: 對 FP-tree 內的每個 node, 建置  conditional pattern base Conditional  pattern bases item cond. pattern base c f:3 a fc:3 b fca:1, f:1, c:1 m fca:2, fcab:1 p fcam:2, cb:1 {} f:4 c:1 b:1 p:1 b:1 c:3 a:3 b:1 m:2 p:2 m:1 Header Table Item  frequency  head  f 4 c 4 a 3 b 3 m 3 p 3
Step 2: 對每一個 conditional pattern-base  建置 conditional FP-tree All frequent patterns concerning  m m,  fm, cm, am,  fcm, fam, cam,  fcam ,[object Object],[object Object],{} f:3 c:3 a:3 m-conditional  FP-tree   {} f:4 c:1 b:1 p:1 b:1 c:3 a:3 b:1 m:2 p:2 m:1 Header Table Item  frequency  head  f 4 c 4 a 3 b 3 m 3 p 3
Mining Frequent Patterns by Creating Conditional Pattern-Bases Empty Empty f {(f:3)}|c {(f:3)} c {(f:3, c:3)}|a {(fc:3)} a Empty {(fca:1), (f:1), (c:1)} b {(f:3, c:3, a:3)}|m {(fca:2), (fcab:1)} m {(c:3)}|p {(fcam:2), (cb:1)} p Conditional FP-tree Conditional pattern-base Item
Step 3: Recursively mine the conditional FP-tree Cond. pattern base of “am”: (fc:3) Cond. pattern base of “cm”: (f:3) {} f:3 cm-conditional  FP-tree Cond. pattern base of “cam”: (f:3) {} f:3 cam-conditional  FP-tree {} f:3 c:3 a:3 m-conditional  FP-tree {} f:3 c:3 am-conditional  FP-tree
效能分析 Data set T25I20D10K
Association pattern mining ,[object Object],[object Object],[object Object],[object Object]
Concepts與Semantic network ,[object Object],[object Object],[object Object]
Concepts與Semantic network ,[object Object],[object Object]
Concepts與Semantic network ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object]
Content-Based Interactivity
 
Paper study : topic 1 A Semantic Modeling Approach for Video Retrieval by Content Edoardo Ardizzone Mohand-Said Hacid ICMCS 1999 July
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction(cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
2 Layers for video`s conceptual content ,[object Object],[object Object]
Schema Language—example1
Query Language (QL) ,[object Object],[object Object]
QL cont. ,[object Object],[object Object]
QL- Example  ,[object Object]
QL- Example ,[object Object]
Semantic Annotation of Sports Video ,[object Object],[object Object]
Introduction  --Typical sequence of shots in sports video
 
Classifying visual shot features
Implementation --Classifying visual shot features (cont.)
Conclusion ,[object Object],[object Object]
Conclusion cont. ,[object Object],[object Object],[object Object]
Paper study: topic 2 Indexing methods for approximate string matching IEEE data engineering bulletin,2000  Gonzalo Navarro, Ricardo Baeza-Yates, Erkki Sutinen, Jorma Tarhio
outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Suffix trees 1  g a  a c c g a c c t 2  a  a c c g a c c t 3  a  c c g a c c t 4  c  c g a c c t 5  c  g a c c t 6  g a  c c t 7  a  c c t 8  c  c t 9  c  t 10  t Weak point:large space requirement,about  9  times of text size.
Suffix array Require less space,about  4  times of text size a $ a  a  a  a  b  b  c  d  r  a b  b  c  d  r  r  a  a r  r  a  a  $  c a  a  c  $  $  c
Q-grams,Q-samples TEXT 1  2  3  4  5  6  7  8  9  10 11 1 2 3 4 5 INDEX a b r a b r a c r a c a a c a d c a d a 1 8 2 3 4 5 Q-samples,unlike q-grams, do not overlap , and may even be some  space  between  each pair of samples. a b r a c a d a b r a
Edit distance ed(“SURVEY”,”SURGERY”) Final result 2 2 2 3 3 4 5 6 Y 3 2 1 2 2 3 4 5 E 4 3 2 1 1 2 3 4 V 4 3 2 1 0 1 2 3 R 5 4 3 2 1 0 1 2 U 6 5 4 3 2 1 0 1 S 7 6 5 4 3 2 1 0 Y R E G R U S
outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Neighborhood generation Pattern :abc with 1 error { * bc, a * c,ab * } U {ab,ac,bc} U{ * abc,a * bc,abc * } Text  a b r   a c  a d  a b r  a {abr},{ac},{abr},.. results K-Neignborhood K-neighborhood(candidate)  could be quite large, So,this approach works well for small m and k. searching
outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Partitioning into exact search Pattern :abr with 1 error {a},{br} Text  a   b r   a  c  a  d  a   b r   a {abra},{abra}.. results Partition pattern 1.For large error level the  text areas to verify cover  almost almost all the text. 2.If s grow,pieces get shorter, more match to check,but  make the filter stricter. Exact search verification Text  a   b r   a  c a d  a b r a into (K+s) pieces filtration
outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Intermediate Partitioning Pattern :abr with 1 error {a},{br} Text  a   b r   a  c  a  d  a   b r   a {abra},{abra}.. results Partition pattern Neighborhood generation allow floor of k/j verification Text  a   b r   a  c a d  a b r a into j (j=2)pieces J=2 (j=K+1;partitioning into exact search) searching
Intermediate Partitioning Pattern :abr with 1 error {abr} Text  a   b r   a  c a d  a b r a {abra},{abra}.. results Partition pattern 1.Which j value to use? the search time decreases when j move from 1 to k+1. but the verification cost  grows, oppositiely. Neighborhood generation allow floor of k/j into j (j=1)pieces J=1 (neighborhood generation) searching {*abr,a*br,ab*r,abr*}U {ab,br,ar}U{ab*,*br,a*r}
outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
summarization
Paper study: topic 3 Lazy Users and automatic  Video  Retrieval Tools in (the) Lowlands The Lowlands Team CWI 1 , TNO 2 , University of Amsterdam 3 , University of Twente 4 The Netherlands Jan Baan 2 , Alex van Ballegooij 1 , Jan Mark Geusenbroek 3 , Jurgen den Hartog 2 , Djoerd Hiemstra 4 ,  Johan List 1 , Thijs Westerveld 4 , Ioannis Patras 3 , Stephan Raaijmakers 2 , Cees Snoek 3 , Leon Todoran 3 ,  Jeroen Vendrig 3 , Arjen P. de Vries 1  and Marcel Worring 3 . Proceeding of the 10 th  Text Retrieval Conference(TREC), 2001
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Basic key subject of    Multimedia   database ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
User is always Lazy! ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction  Combined 1-4, interactive, by a lazy user 5 Query articulation, interactive  4 Transcript-base, automatic 3 Combined 1-3, automatic 2 Detector-base, automatic 1 Description  Run
Detector-base processing ,[object Object]
Detector-base processing  (cont) ,[object Object],[object Object]
Detector-base processing  (cont) Selected detector Analysis of  the topic description Query by  example Filter-out  irrelevant material Final ranked  results
Detectors  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Probabilistic multimedia retrieval ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],Probabilistic multimedia retrieval
Probabilistic multimedia retrieval ,[object Object],video shots scenes scenes shots frames frames
Probabilistic multimedia retrieval ,[object Object],[object Object],[object Object],[object Object]
Probabilistic multimedia retrieval ,[object Object],[object Object],[object Object],[object Object]
Interactive experiments ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Topic 33: White fort Using Run 1:  Any color-based technique worked  out well for this query   Example  known-item keyframe
Topic 19: Lunar rover Color-histogram Example Known-item keyframe ,[object Object],[object Object],[object Object]
Topic 8: Jupiter Example Some correct answers keyframes ,[object Object],[object Object],[object Object],Color-sets
Topic 25: Starwar Example Some correct answers keyframes ,[object Object],[object Object],[object Object],R2D2, C3PO
Lazy users ,[object Object],[object Object],Choose the run  that looks best Concatenate or interleave top-N  from various runs Continue with  an automatic,  seeded search  strategy
Discussion ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusion ,[object Object],[object Object],[object Object]
Paper study : topic 4 VIDEO INDEXING BY MOTION ACTIVITY MAPS Wei Zeng; Wen Gao; Debin Zhao; Image Processing. 2002. Proceedings. 2002 International Conference on , Volume: 1 , 2002 Page(s): 912 -915
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction   ,[object Object],[object Object],[object Object],[object Object]
Motion indexing ,[object Object],[object Object],[object Object],[object Object],[object Object]
Feature-based approach : ,[object Object],[object Object],[object Object]
 
Trajectory-based approach : ,[object Object]
 
Semantic-based approach ,[object Object],[object Object]
 
Image-based approach ,[object Object],[object Object]
Concepts of  MAM(1) ,[object Object],grid t i j
Concepts of MAM(2) ,[object Object],[object Object]
Definition of MAM(1) ,[object Object],[object Object],(i, j)  Where v x = ( i, j, t ) and  v y = ( i, j, t ) are the  x-axis  component and  y-axis  component of motion vector on the  grid ( i, j) .
Definition of MAM(2) ,[object Object],(i, j)  Where f(v(i, j, t)) is the motion activity measure function on grid (i, j) and    is the grid set of video.
Generation of MAM Demo video segmentation Hall    shall Motion  vector field Video Video Video Temporal video Segmentation MAM Computing MAM Quantization MAM spatial Segmentation MAM Region- Based MAMs
Organization of MAMs ,[object Object],[object Object]
Organization of MAMs Interactive Video Retrieval Video Video Video Temporal Segmentation MAM Computing Layered spatial segmentation MAM  display MAM Database
Expermental results (a)Key frame based MAM (b)MAM (c-f)Region-representation of MAM
Conclusion ,[object Object],[object Object],[object Object]
Paper study : topic 5 SOM-Base R*-Tree for  Similarity Retrieval Database Systems for Advanced Applications, 2001. Proceedings. Seventh International Conference on , 2001 Kun-seok. Oh, Yaokai Feng, Kunihiko Kaneko,  Akifumi Makinouchi, Sang-hyun Bae
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object]
Self-Organizing Maps (SOM) What is SOM 1.SOM provide mapping from high-demensional feature vectors onto a two-dismensional space 2.The mapping preserves the topology of the feature vector. 3.The map is called to  topological feature map , and preserves the mutual relationships(similarity) in feature space of input data. 4.The vectors contained in each node of the topological feature map are usually called  codebook vectors .
[object Object],Self-Organizing Maps (SOM)
圖:均勻分佈之資料的自我組織特徵映射圖: (a) 隨機設定之初始鍵結值向量 ; (b) 經過 50 次疊代後之鍵結值向量 ;(c)  經過 1,000 次疊代 後之鍵結值向量 ;(d)  經過 10,000 次疊代後之鍵結值向量 ; Self-Organizing Maps (SOM)
[object Object],三群高斯分佈之資料。   Self-Organizing Maps (SOM)
Self-Organizing Maps (SOM) SOM  Algorithm 1.Init Map neuron. 2.input feature vector x. 3.find winner neuron  (BMN:Beat-Match Node) 4.adjusting all neuron’s weight  5.continus step 2, until no adjusting.
R*-Tree ,[object Object],[object Object]
R*-Tree ,[object Object],[object Object]
R*-Tree (cont.) Space of point data
R*-Tree (cont.) Tree access structure
SOM-Based R*-Tree ,[object Object],[object Object],[object Object],[object Object]
SOM-Based R*-Tree (cont.)
SOM-Based R*-Tree (cont.) ,[object Object],[object Object],[object Object],[object Object]
Experiments ,[object Object],[object Object],[object Object],[object Object]
Experiments (cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object]
Experiments (cont.) ,[object Object]
Experiments (cont.)
Experiments (cont.) ,[object Object],[object Object],[object Object],[object Object],[object Object]
Experiments (cont.) ,[object Object],[object Object]
Experiments (cont.)
Conclusion ,[object Object],[object Object]

Mais conteúdo relacionado

Mais procurados

Introduction to r bddsil meetup
Introduction to r bddsil meetupIntroduction to r bddsil meetup
Introduction to r bddsil meetup
Nimrod Priell
 
Frequent itemset mining using pattern growth method
Frequent itemset mining using pattern growth methodFrequent itemset mining using pattern growth method
Frequent itemset mining using pattern growth method
Shani729
 
Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...
Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...
Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...
Yury Lifshits
 

Mais procurados (11)

Introduction to r bddsil meetup
Introduction to r bddsil meetupIntroduction to r bddsil meetup
Introduction to r bddsil meetup
 
Introduction to Spark: Or how I learned to love 'big data' after all.
Introduction to Spark: Or how I learned to love 'big data' after all.Introduction to Spark: Or how I learned to love 'big data' after all.
Introduction to Spark: Or how I learned to love 'big data' after all.
 
Frequent itemset mining using pattern growth method
Frequent itemset mining using pattern growth methodFrequent itemset mining using pattern growth method
Frequent itemset mining using pattern growth method
 
Democratizing Big Semantic Data management
Democratizing Big Semantic Data managementDemocratizing Big Semantic Data management
Democratizing Big Semantic Data management
 
20190909_PGconf.ASIA_KaiGai
20190909_PGconf.ASIA_KaiGai20190909_PGconf.ASIA_KaiGai
20190909_PGconf.ASIA_KaiGai
 
ffbase, statistical functions for large datasets
ffbase, statistical functions for large datasetsffbase, statistical functions for large datasets
ffbase, statistical functions for large datasets
 
Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...
Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...
Cobinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small Worl...
 
Certified bit coded regular expression parsing
Certified bit coded regular expression parsingCertified bit coded regular expression parsing
Certified bit coded regular expression parsing
 
Strategic Argumentation is NP-complete
Strategic Argumentation is NP-completeStrategic Argumentation is NP-complete
Strategic Argumentation is NP-complete
 
Hadoop for Data Science: Moving from BI dashboards to R models, using Hive st...
Hadoop for Data Science: Moving from BI dashboards to R models, using Hive st...Hadoop for Data Science: Moving from BI dashboards to R models, using Hive st...
Hadoop for Data Science: Moving from BI dashboards to R models, using Hive st...
 
Pig: Data Analysis Tool in Cloud
Pig: Data Analysis Tool in Cloud Pig: Data Analysis Tool in Cloud
Pig: Data Analysis Tool in Cloud
 

Semelhante a 多媒體資料庫(New)3rd

[ABDO] Data Integration
[ABDO] Data Integration[ABDO] Data Integration
[ABDO] Data Integration
Carles Farré
 
Linear regression with R 1
Linear regression with R 1Linear regression with R 1
Linear regression with R 1
Kazuki Yoshida
 
14. Query Optimization in DBMS
14. Query Optimization in DBMS14. Query Optimization in DBMS
14. Query Optimization in DBMS
koolkampus
 
EECS 214395--‐Data Structures and Data Mana.docx
EECS  214395--‐Data    Structures    and    Data   Mana.docxEECS  214395--‐Data    Structures    and    Data   Mana.docx
EECS 214395--‐Data Structures and Data Mana.docx
jack60216
 
Phylogenetic Signal with Induction and non-Contradiction - V Berry
Phylogenetic Signal with Induction and non-Contradiction - V BerryPhylogenetic Signal with Induction and non-Contradiction - V Berry
Phylogenetic Signal with Induction and non-Contradiction - V Berry
Roderic Page
 
Database Management System (1).pdf
Database Management System (1).pdfDatabase Management System (1).pdf
Database Management System (1).pdf
sweta836730
 

Semelhante a 多媒體資料庫(New)3rd (20)

Probabilistic Retrieval Models - Sean Golliher Lecture 8 MSU CSCI 494
Probabilistic Retrieval Models - Sean Golliher Lecture 8 MSU CSCI 494Probabilistic Retrieval Models - Sean Golliher Lecture 8 MSU CSCI 494
Probabilistic Retrieval Models - Sean Golliher Lecture 8 MSU CSCI 494
 
[ABDO] Data Integration
[ABDO] Data Integration[ABDO] Data Integration
[ABDO] Data Integration
 
Framester: A Wide Coverage Linguistic Linked Data Hub
Framester: A Wide Coverage Linguistic Linked Data HubFramester: A Wide Coverage Linguistic Linked Data Hub
Framester: A Wide Coverage Linguistic Linked Data Hub
 
Multimodal Searching and Semantic Spaces: ...or how to find images of Dalmati...
Multimodal Searching and Semantic Spaces: ...or how to find images of Dalmati...Multimodal Searching and Semantic Spaces: ...or how to find images of Dalmati...
Multimodal Searching and Semantic Spaces: ...or how to find images of Dalmati...
 
The Relational Data Model and Relational Database Constraints
The Relational Data Model and Relational Database ConstraintsThe Relational Data Model and Relational Database Constraints
The Relational Data Model and Relational Database Constraints
 
Linear regression with R 1
Linear regression with R 1Linear regression with R 1
Linear regression with R 1
 
Lecture 9 - Machine Learning and Support Vector Machines (SVM)
Lecture 9 - Machine Learning and Support Vector Machines (SVM)Lecture 9 - Machine Learning and Support Vector Machines (SVM)
Lecture 9 - Machine Learning and Support Vector Machines (SVM)
 
Harnessing Linked Knowledge Sources for Topic Classification in Social Media
Harnessing Linked Knowledge Sources for Topic Classification in Social MediaHarnessing Linked Knowledge Sources for Topic Classification in Social Media
Harnessing Linked Knowledge Sources for Topic Classification in Social Media
 
14. Query Optimization in DBMS
14. Query Optimization in DBMS14. Query Optimization in DBMS
14. Query Optimization in DBMS
 
EECS 214395--‐Data Structures and Data Mana.docx
EECS  214395--‐Data    Structures    and    Data   Mana.docxEECS  214395--‐Data    Structures    and    Data   Mana.docx
EECS 214395--‐Data Structures and Data Mana.docx
 
Entity Retrieval (WSDM 2014 tutorial)
Entity Retrieval (WSDM 2014 tutorial)Entity Retrieval (WSDM 2014 tutorial)
Entity Retrieval (WSDM 2014 tutorial)
 
Phylogenetic Signal with Induction and non-Contradiction - V Berry
Phylogenetic Signal with Induction and non-Contradiction - V BerryPhylogenetic Signal with Induction and non-Contradiction - V Berry
Phylogenetic Signal with Induction and non-Contradiction - V Berry
 
JSON and MongoDB in R
JSON and MongoDB in RJSON and MongoDB in R
JSON and MongoDB in R
 
Filtering Inaccurate Entity Co-references on the Linked Open Data
Filtering Inaccurate Entity Co-references on the Linked Open DataFiltering Inaccurate Entity Co-references on the Linked Open Data
Filtering Inaccurate Entity Co-references on the Linked Open Data
 
Class 11: Deeper List Procedures
Class 11: Deeper List ProceduresClass 11: Deeper List Procedures
Class 11: Deeper List Procedures
 
Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order ...
Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order ...Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order ...
Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order ...
 
IE: Named Entity Recognition (NER)
IE: Named Entity Recognition (NER)IE: Named Entity Recognition (NER)
IE: Named Entity Recognition (NER)
 
3.ppt
3.ppt3.ppt
3.ppt
 
Database Management System (1).pdf
Database Management System (1).pdfDatabase Management System (1).pdf
Database Management System (1).pdf
 
LDAvis
LDAvisLDAvis
LDAvis
 

Mais de Kevingo Tsai

Mais de Kevingo Tsai (6)

工研院尾牙工作流程表
工研院尾牙工作流程表工研院尾牙工作流程表
工研院尾牙工作流程表
 
那些年,我們一起Open的data
那些年,我們一起Open的data那些年,我們一起Open的data
那些年,我們一起Open的data
 
Playframework + Twitter Bootstrap
Playframework + Twitter BootstrapPlayframework + Twitter Bootstrap
Playframework + Twitter Bootstrap
 
Design Restful Web Service, use SpringMVC as Example
Design Restful Web Service, use SpringMVC as ExampleDesign Restful Web Service, use SpringMVC as Example
Design Restful Web Service, use SpringMVC as Example
 
Design REST-ful Web Service
Design REST-ful Web ServiceDesign REST-ful Web Service
Design REST-ful Web Service
 
Scrum
ScrumScrum
Scrum
 

Último

Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
FIDO Alliance
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 

Último (20)

How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream Processing
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
 
Top 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development CompaniesTop 10 CodeIgniter Development Companies
Top 10 CodeIgniter Development Companies
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Using IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & IrelandUsing IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & Ireland
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate Guide
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 

多媒體資料庫(New)3rd

  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.  
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.  
  • 26.
  • 27.
  • 28.
  • 29. 插入 p 14 R1 R2 R3 R4 R5 p6 p7 p5 p1 p2 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p2 p3 p4 p5 p9 p10 p11 p12 p13 R1 R2 p14
  • 30. inserting p14 R1 R2 R3 R4 R5 p6 p7 p5 p1 p2 Pointers to data tuples p8 p3 p4 p9 p10 p11 p12 p13 R6 R7 R3 R4 R5 R6 R7 p1 p7 p6 p8 p2 p3 p4 p5 p9 p10 p11 p12 p13 p14 p14 R1 R2
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38. P 6 P 10 P 9 P 8 P 7
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 47.  
  • 48.  
  • 49.  
  • 50.  
  • 51.  
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71. Color model RGB color space v.s. HSV color space
  • 72.
  • 73.  
  • 74.
  • 75.  
  • 76.  
  • 77. 範例 SIZE = 13 + 10 + 5 = 28 Query image A 13 B 10 C 5
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87. The Correlative-Matrix(2) Construction of correlative matrix T 12,12 -- C6 -- Bb5 1 -- C6 -- Db5 1 1 -- C6 -- Ab5 1 -- Ab5 1 1 1 -- C6 1 1 4 1 -- C6 3 1 -- Ab5 1 2 1 -- Ab5 1 1 1 1 1 -- C6 C6 Bb5 C6 Db5 C6 Ab5 Ab5 C6 C6 Ab5 Ab5 C6
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107. Training Data Classification Algorithms IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’ Classifier (Model)
  • 108. Classifier Testing Data Unseen Data (Jeff, Professor, 4) Tenured?
  • 109.
  • 111. 決策樹 age? overcast student? credit rating? no yes fair excellent <=30 >40 no no yes yes yes 30..40
  • 112. Naïve bayesian Network :example P(n) = 5/14 P(p) = 9/14
  • 113. P(true|n) = 3/5 P(true|p) = 3/9 P(false|n) = 2/5 P(false|p) = 6/9 P(high|n) = 4/5 P(high|p) = 3/9 P(normal|n) = 2/5 P(normal|p) = 6/9 P(hot|n) = 2/5 P(hot|p) = 2/9 P(mild|n) = 2/5 P(mild|p) = 4/9 P(cool|n) = 1/5 P(cool|p) = 3/9 P(rain|n) = 2/5 P(rain|p) = 3/9 P(overcast|n) = 0 P(overcast|p) = 4/9 P(sunny|n) = 3/5 P(sunny|p) = 2/9 windy humidity temperature outlook
  • 114.
  • 115. Bayesian Belief Networks Family History LungCancer PositiveXRay Smoker Emphysema Dyspnea LC ~LC (FH, S) (FH, ~S) (~FH, S) (~FH, ~S) 0.8 0.2 0.5 0.5 0.7 0.3 0.1 0.9 Bayesian Belief Networks The conditional probability table for the variable LungCancer
  • 117. The k -Nearest Neighbor Algorithm . _ + _ x q + _ _ + _ _ + . . . . .
  • 118.
  • 120.
  • 121.
  • 122.
  • 123. 範例 Database D Scan D C 1 L 1 L 2 C 2 C 2 Scan D C 3 L 3 Scan D
  • 124.
  • 125.
  • 126. {} f:4 c:1 b:1 p:1 b:1 c:3 a:3 b:1 m:2 p:2 m:1 Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3
  • 127.
  • 128. Step 1: 對 FP-tree 內的每個 node, 建置 conditional pattern base Conditional pattern bases item cond. pattern base c f:3 a fc:3 b fca:1, f:1, c:1 m fca:2, fcab:1 p fcam:2, cb:1 {} f:4 c:1 b:1 p:1 b:1 c:3 a:3 b:1 m:2 p:2 m:1 Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3
  • 129.
  • 130. Mining Frequent Patterns by Creating Conditional Pattern-Bases Empty Empty f {(f:3)}|c {(f:3)} c {(f:3, c:3)}|a {(fc:3)} a Empty {(fca:1), (f:1), (c:1)} b {(f:3, c:3, a:3)}|m {(fca:2), (fcab:1)} m {(c:3)}|p {(fcam:2), (cb:1)} p Conditional FP-tree Conditional pattern-base Item
  • 131. Step 3: Recursively mine the conditional FP-tree Cond. pattern base of “am”: (fc:3) Cond. pattern base of “cm”: (f:3) {} f:3 cm-conditional FP-tree Cond. pattern base of “cam”: (f:3) {} f:3 cam-conditional FP-tree {} f:3 c:3 a:3 m-conditional FP-tree {} f:3 c:3 am-conditional FP-tree
  • 132. 效能分析 Data set T25I20D10K
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.  
  • 138.
  • 140.  
  • 141. Paper study : topic 1 A Semantic Modeling Approach for Video Retrieval by Content Edoardo Ardizzone Mohand-Said Hacid ICMCS 1999 July
  • 142.
  • 143.
  • 144.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151. Introduction --Typical sequence of shots in sports video
  • 152.  
  • 154. Implementation --Classifying visual shot features (cont.)
  • 155.
  • 156.
  • 157. Paper study: topic 2 Indexing methods for approximate string matching IEEE data engineering bulletin,2000 Gonzalo Navarro, Ricardo Baeza-Yates, Erkki Sutinen, Jorma Tarhio
  • 158.
  • 159.
  • 160.
  • 161. Suffix trees 1 g a a c c g a c c t 2 a a c c g a c c t 3 a c c g a c c t 4 c c g a c c t 5 c g a c c t 6 g a c c t 7 a c c t 8 c c t 9 c t 10 t Weak point:large space requirement,about 9 times of text size.
  • 162. Suffix array Require less space,about 4 times of text size a $ a a a a b b c d r a b b c d r r a a r r a a $ c a a c $ $ c
  • 163. Q-grams,Q-samples TEXT 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 INDEX a b r a b r a c r a c a a c a d c a d a 1 8 2 3 4 5 Q-samples,unlike q-grams, do not overlap , and may even be some space between each pair of samples. a b r a c a d a b r a
  • 164. Edit distance ed(“SURVEY”,”SURGERY”) Final result 2 2 2 3 3 4 5 6 Y 3 2 1 2 2 3 4 5 E 4 3 2 1 1 2 3 4 V 4 3 2 1 0 1 2 3 R 5 4 3 2 1 0 1 2 U 6 5 4 3 2 1 0 1 S 7 6 5 4 3 2 1 0 Y R E G R U S
  • 165.
  • 166. Neighborhood generation Pattern :abc with 1 error { * bc, a * c,ab * } U {ab,ac,bc} U{ * abc,a * bc,abc * } Text a b r a c a d a b r a {abr},{ac},{abr},.. results K-Neignborhood K-neighborhood(candidate) could be quite large, So,this approach works well for small m and k. searching
  • 167.
  • 168. Partitioning into exact search Pattern :abr with 1 error {a},{br} Text a b r a c a d a b r a {abra},{abra}.. results Partition pattern 1.For large error level the text areas to verify cover almost almost all the text. 2.If s grow,pieces get shorter, more match to check,but make the filter stricter. Exact search verification Text a b r a c a d a b r a into (K+s) pieces filtration
  • 169.
  • 170. Intermediate Partitioning Pattern :abr with 1 error {a},{br} Text a b r a c a d a b r a {abra},{abra}.. results Partition pattern Neighborhood generation allow floor of k/j verification Text a b r a c a d a b r a into j (j=2)pieces J=2 (j=K+1;partitioning into exact search) searching
  • 171. Intermediate Partitioning Pattern :abr with 1 error {abr} Text a b r a c a d a b r a {abra},{abra}.. results Partition pattern 1.Which j value to use? the search time decreases when j move from 1 to k+1. but the verification cost grows, oppositiely. Neighborhood generation allow floor of k/j into j (j=1)pieces J=1 (neighborhood generation) searching {*abr,a*br,ab*r,abr*}U {ab,br,ar}U{ab*,*br,a*r}
  • 172.
  • 174. Paper study: topic 3 Lazy Users and automatic Video Retrieval Tools in (the) Lowlands The Lowlands Team CWI 1 , TNO 2 , University of Amsterdam 3 , University of Twente 4 The Netherlands Jan Baan 2 , Alex van Ballegooij 1 , Jan Mark Geusenbroek 3 , Jurgen den Hartog 2 , Djoerd Hiemstra 4 , Johan List 1 , Thijs Westerveld 4 , Ioannis Patras 3 , Stephan Raaijmakers 2 , Cees Snoek 3 , Leon Todoran 3 , Jeroen Vendrig 3 , Arjen P. de Vries 1 and Marcel Worring 3 . Proceeding of the 10 th Text Retrieval Conference(TREC), 2001
  • 175.
  • 176.
  • 177.
  • 178.
  • 179. Introduction Combined 1-4, interactive, by a lazy user 5 Query articulation, interactive 4 Transcript-base, automatic 3 Combined 1-3, automatic 2 Detector-base, automatic 1 Description Run
  • 180.
  • 181.
  • 182. Detector-base processing (cont) Selected detector Analysis of the topic description Query by example Filter-out irrelevant material Final ranked results
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190. Topic 33: White fort Using Run 1: Any color-based technique worked out well for this query Example known-item keyframe
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197. Paper study : topic 4 VIDEO INDEXING BY MOTION ACTIVITY MAPS Wei Zeng; Wen Gao; Debin Zhao; Image Processing. 2002. Proceedings. 2002 International Conference on , Volume: 1 , 2002 Page(s): 912 -915
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.  
  • 203.
  • 204.  
  • 205.
  • 206.  
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212. Generation of MAM Demo video segmentation Hall shall Motion vector field Video Video Video Temporal video Segmentation MAM Computing MAM Quantization MAM spatial Segmentation MAM Region- Based MAMs
  • 213.
  • 214. Organization of MAMs Interactive Video Retrieval Video Video Video Temporal Segmentation MAM Computing Layered spatial segmentation MAM display MAM Database
  • 215. Expermental results (a)Key frame based MAM (b)MAM (c-f)Region-representation of MAM
  • 216.
  • 217. Paper study : topic 5 SOM-Base R*-Tree for Similarity Retrieval Database Systems for Advanced Applications, 2001. Proceedings. Seventh International Conference on , 2001 Kun-seok. Oh, Yaokai Feng, Kunihiko Kaneko, Akifumi Makinouchi, Sang-hyun Bae
  • 218.
  • 219. Self-Organizing Maps (SOM) What is SOM 1.SOM provide mapping from high-demensional feature vectors onto a two-dismensional space 2.The mapping preserves the topology of the feature vector. 3.The map is called to topological feature map , and preserves the mutual relationships(similarity) in feature space of input data. 4.The vectors contained in each node of the topological feature map are usually called codebook vectors .
  • 220.
  • 221. 圖:均勻分佈之資料的自我組織特徵映射圖: (a) 隨機設定之初始鍵結值向量 ; (b) 經過 50 次疊代後之鍵結值向量 ;(c) 經過 1,000 次疊代 後之鍵結值向量 ;(d) 經過 10,000 次疊代後之鍵結值向量 ; Self-Organizing Maps (SOM)
  • 222.
  • 223. Self-Organizing Maps (SOM) SOM Algorithm 1.Init Map neuron. 2.input feature vector x. 3.find winner neuron (BMN:Beat-Match Node) 4.adjusting all neuron’s weight 5.continus step 2, until no adjusting.
  • 224.
  • 225.
  • 226. R*-Tree (cont.) Space of point data
  • 227. R*-Tree (cont.) Tree access structure
  • 228.
  • 230.
  • 231.
  • 232.
  • 233.
  • 235.
  • 236.
  • 238.

Notas do Editor

  1. 這一章節主要探討收集回來後的多媒體資料,要如何儲存,處理以及搜尋的相關技術