SlideShare uma empresa Scribd logo
1 de 9
Pool Heating using Solar Radiation and Heating Elements<br />933450119380<br />Anthony Williams, Brandon Pak, Carlaton Wong,<br /> Jamil Khoury & Jonathan Wong<br />Group: DTM>JDM<br />ME 116A: Heat Transfer<br />Professor G. Aguilar<br />3 June 2010<br />Introduction: <br />In a world surrounded by the different facets of luxury, swimming pools are considered a novelty. They attract people during comfortable weather to come together and spend quality time with each other, and they serve as an attraction for playful children of all ages. In order to enjoy these outings, however, it is important that the swimming pool be of comfortable temperature, in order not to discourage swimmers sensitive to drastic temperature gradients relative to their own natural temperature. To solve this problem, we must use a preexisting design for heating a pool and model the heat transfer in order to verify that the pool temperature reaches an optimal 30º C. <br />Given Information: <br />The basic information was given as follows: the pool would be 2 meters deep, 3 meters wide, and ‘very’ long. The sides of the pools are covered by electric heaters, each of which provides a constant heat flux of 250 W/m2K, but only through the hours of 6 PM to 6 AM. The surface of the water would be exposed to the ambient air, which would be a source of convective heat transfer. The daily temperature distribution was given as sinusoidal ranging from 0 to 30º C from midnight to noon, respectively. Since wind speed was minimal, we were able to approximate the coefficient of convective heat transfer as 150 W/m2K. From 6 AM to 6 PM the pool was to encounter a solar radiation dependent on the time of day and depth of the water, which was incident in a sinusoidal manner. The solar flux was given as an equation dependent on the depth of the point in question and the time of day, or the intensity of sunlight. The penetration depth of sunlight was given as 0.3 meters.<br />With solar radiation and heaters along the sides of the pool as the main modes of heat transfer, we were to assume infinite pool length along the heated sides, and we were given the heat transfer rate relative to a unit of area. By modeling the pool as having one unit length, we were able to calculate the heat flux into the pool by the heaters alongside the pool, and the heat flux by solar radiation per unit length. We were to assume perfect insulation of the pool walls, standard water properties, and negligible evaporation.<br />We also assumed the fluid properties to be constant throughout the pool and do not change as a function of temperature.  The following are tabulated fluid properties at T = 290 K, which is roughly the average temperature of the pool.<br />,[object Object]
Convection Coefficient:  h=150 Wm2∙K
Specific Heat of Water:  CP=4.184 kJkg∙K
Density of Water:  ρ=1001 kgm3-174567-241069<br />Figure 1: Plot of Ambient Temperature variation with time of day<br />-91440159385<br />Figure 2: Plot of Intensity of solar flux as a function of the time of day<br />Calculations and Governing Equations:<br />From the schematic shown in Figure 1, there is a line of symmetry across the center of the pool, which will simplify the analysis by saving computation time. Based on the finite difference method, we calculated the heat influx and efflux at each ‘node’, which are arbitrarily placed points along the sides, by creating energy balances at each node. Since we know that q''conduction=-kdTdx, qconvection''=h(Ts-T∞), and qradiation''=I0(e-ziμ-e-z0μ), the energy balance of flux in and flux out yields the net flux in and out of each node, which equals the transient heat balance term qt''=mcpdTdt. Knowing that Ein-Eout+Egen=Estored, we balanced these equations for each node and generated the equations shown on the next page.<br />19050124617<br />qradiationquot;
00<br />qconvectionquot;
<br />qheaterquot;
<br />Figure 3: Schematic of our Pool analysis: note the line of symmetry allowing for simplified calculations. Node Set 1 experiences the heat source, while Node Set 2 experiences solar flux. Node sets 3 and 4 are considered to be insulated.<br />,[object Object]
Node C2 (Top Right Corner)
Node C3 (Bottom Left Corner)
Node C4 (Bottom Right Corner)
Node Group 1 (Heater Wall Nodes)
Node Group 2 (Water Surface Nodes)

Mais conteúdo relacionado

Mais procurados

Thermal Energy & Heat Transfer
Thermal Energy & Heat TransferThermal Energy & Heat Transfer
Thermal Energy & Heat Transfer
Alan Wrafter
 
Thermal physics core
Thermal physics coreThermal physics core
Thermal physics core
gavin40
 
17 heat and thermodynamic
17 heat and thermodynamic17 heat and thermodynamic
17 heat and thermodynamic
IZZUDIN IBRAHIM
 
Low_temperature_resistance
Low_temperature_resistanceLow_temperature_resistance
Low_temperature_resistance
Meirin Evans
 
Thermal physics ppt
Thermal physics pptThermal physics ppt
Thermal physics ppt
jghopwood
 
Heat transfer & heat exchangers
Heat transfer & heat exchangersHeat transfer & heat exchangers
Heat transfer & heat exchangers
Mohamed Alsalihi
 
Thermal energy
Thermal energyThermal energy
Thermal energy
theMrNeale
 

Mais procurados (20)

Thermal energy edited
Thermal energy editedThermal energy edited
Thermal energy edited
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermal physics
Thermal physicsThermal physics
Thermal physics
 
Thermodynamics-HEAT ENGINES
Thermodynamics-HEAT ENGINESThermodynamics-HEAT ENGINES
Thermodynamics-HEAT ENGINES
 
Thermal Energy & Heat Transfer
Thermal Energy & Heat TransferThermal Energy & Heat Transfer
Thermal Energy & Heat Transfer
 
Heat Transfer (physics)
Heat Transfer (physics)Heat Transfer (physics)
Heat Transfer (physics)
 
Thermal physics core
Thermal physics coreThermal physics core
Thermal physics core
 
Methods of heat transfer and thermal properties of soil
Methods of heat transfer and thermal properties of soil Methods of heat transfer and thermal properties of soil
Methods of heat transfer and thermal properties of soil
 
Thermal Energy PPT
Thermal Energy PPTThermal Energy PPT
Thermal Energy PPT
 
Heat Capacity and Specific Heat Capacity
Heat Capacity and Specific Heat Capacity Heat Capacity and Specific Heat Capacity
Heat Capacity and Specific Heat Capacity
 
3. temperature and measuring heat
3. temperature and measuring heat3. temperature and measuring heat
3. temperature and measuring heat
 
Thermal properties of matter by shaila mengane
Thermal properties of matter by shaila menganeThermal properties of matter by shaila mengane
Thermal properties of matter by shaila mengane
 
17 heat and thermodynamic
17 heat and thermodynamic17 heat and thermodynamic
17 heat and thermodynamic
 
Low_temperature_resistance
Low_temperature_resistanceLow_temperature_resistance
Low_temperature_resistance
 
Thermal physics ppt
Thermal physics pptThermal physics ppt
Thermal physics ppt
 
Heat transfer & heat exchangers
Heat transfer & heat exchangersHeat transfer & heat exchangers
Heat transfer & heat exchangers
 
Presentation on heat and temperature
Presentation on heat and temperaturePresentation on heat and temperature
Presentation on heat and temperature
 
Heat Capacity
Heat Capacity Heat Capacity
Heat Capacity
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermal energy
Thermal energyThermal energy
Thermal energy
 

Destaque

Beam deflections using singularity functions
Beam deflections using singularity functionsBeam deflections using singularity functions
Beam deflections using singularity functions
aabhash
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
SHAMJITH KM
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
Deepak Agarwal
 
Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1
Deepak Agarwal
 

Destaque (20)

Mechanical of Materials
Mechanical of MaterialsMechanical of Materials
Mechanical of Materials
 
Ak moment area method
Ak moment  area  methodAk moment  area  method
Ak moment area method
 
Beam deflection gere
Beam deflection gereBeam deflection gere
Beam deflection gere
 
Deflection in beams
Deflection in beamsDeflection in beams
Deflection in beams
 
Direct integration method
Direct integration methodDirect integration method
Direct integration method
 
Beam deflections using singularity functions
Beam deflections using singularity functionsBeam deflections using singularity functions
Beam deflections using singularity functions
 
Macaulay's Method & Poisson's Ratio
Macaulay's Method & Poisson's  RatioMacaulay's Method & Poisson's  Ratio
Macaulay's Method & Poisson's Ratio
 
flexibility method
flexibility methodflexibility method
flexibility method
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
 
Moment area theorem
Moment area theoremMoment area theorem
Moment area theorem
 
9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer
 
Flexibility ppt 1
Flexibility ppt 1Flexibility ppt 1
Flexibility ppt 1
 
4 pure bending
4 pure bending4 pure bending
4 pure bending
 
Beam Deflection Formulae
Beam Deflection FormulaeBeam Deflection Formulae
Beam Deflection Formulae
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in Bending
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1Lecture 13 torsion in solid and hollow shafts 1
Lecture 13 torsion in solid and hollow shafts 1
 
9 beam deflection
9 beam deflection9 beam deflection
9 beam deflection
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
 

Semelhante a Heat Transfer Pool Simulation

Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...
Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...
Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...
IJERDJOURNAL
 
2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure
Ingrid McKenzie
 
2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure
Ingrid McKenzie
 
countercurrent heat exchanger lab 2023.pdf
countercurrent  heat exchanger lab 2023.pdfcountercurrent  heat exchanger lab 2023.pdf
countercurrent heat exchanger lab 2023.pdf
DimaJawhar
 
Physics for 9th grade [Chapter 10]
Physics for 9th grade [Chapter 10]Physics for 9th grade [Chapter 10]
Physics for 9th grade [Chapter 10]
Physics Amal Sweis
 
Capter 10 for 9th grade Physics
Capter 10 for 9th grade PhysicsCapter 10 for 9th grade Physics
Capter 10 for 9th grade Physics
Physics Amal Sweis
 
Capter 10 for 9th grade physics
Capter 10 for 9th grade physicsCapter 10 for 9th grade physics
Capter 10 for 9th grade physics
Physics Amal Sweis
 
CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector
CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector
CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector
iMentor Education
 
Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...
Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...
Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...
luthfiyyahadelia
 

Semelhante a Heat Transfer Pool Simulation (20)

“Experimental Analysis of Solar Water Heater, with Heat Exchanger”
“Experimental Analysis of Solar Water Heater, with Heat Exchanger”“Experimental Analysis of Solar Water Heater, with Heat Exchanger”
“Experimental Analysis of Solar Water Heater, with Heat Exchanger”
 
HEAT TRANSFER
HEAT TRANSFER HEAT TRANSFER
HEAT TRANSFER
 
Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...
Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...
Basic Study on Solid-Liquid Phase Change Problem of Ice around Heat Transfer ...
 
2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure
 
2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure
 
countercurrent heat exchanger lab 2023.pdf
countercurrent  heat exchanger lab 2023.pdfcountercurrent  heat exchanger lab 2023.pdf
countercurrent heat exchanger lab 2023.pdf
 
Physics for 9th grade [Chapter 10]
Physics for 9th grade [Chapter 10]Physics for 9th grade [Chapter 10]
Physics for 9th grade [Chapter 10]
 
Lab report conduction
Lab report   conduction Lab report   conduction
Lab report conduction
 
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion SystemDynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
 
Capter 10 for 9th grade Physics
Capter 10 for 9th grade PhysicsCapter 10 for 9th grade Physics
Capter 10 for 9th grade Physics
 
Capter 10 for 9th grade physics
Capter 10 for 9th grade physicsCapter 10 for 9th grade physics
Capter 10 for 9th grade physics
 
Capter 10
Capter 10Capter 10
Capter 10
 
IPAC 2016_final
IPAC 2016_finalIPAC 2016_final
IPAC 2016_final
 
Capter 10
Capter 10Capter 10
Capter 10
 
Capter 10
Capter 10Capter 10
Capter 10
 
CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector
CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector
CFD Analysis of a Heat Collector Element in a Solar Parabolic Trough Collector
 
Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...
Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...
Cfdanalysisofaheatcollectorelementinasolarparabolictroughcollector 1401280320...
 
Poster.pptx
Poster.pptxPoster.pptx
Poster.pptx
 
Ch18 ssm
Ch18 ssmCh18 ssm
Ch18 ssm
 
ME 430 Final
ME 430 FinalME 430 Final
ME 430 Final
 

Último

Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerJual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Pusat Herbal Resmi BPOM
 
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODFRATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
CaitlinCummins3
 
Presentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelledPresentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelled
CaitlinCummins3
 
Powerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metricsPowerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metrics
CaitlinCummins3
 
What is paper chromatography, principal, procedure,types, diagram, advantages...
What is paper chromatography, principal, procedure,types, diagram, advantages...What is paper chromatography, principal, procedure,types, diagram, advantages...
What is paper chromatography, principal, procedure,types, diagram, advantages...
srcw2322l101
 
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTARPEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
doktercalysta
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Dubai Multi Commodity Centre
 
Constitution of Company Article of Association
Constitution of Company Article of AssociationConstitution of Company Article of Association
Constitution of Company Article of Association
seri bangash
 

Último (20)

MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
How Do Venture Capitalists Make Decisions?
How Do Venture Capitalists Make Decisions?How Do Venture Capitalists Make Decisions?
How Do Venture Capitalists Make Decisions?
 
Stages of Startup Funding - An Explainer
Stages of Startup Funding - An ExplainerStages of Startup Funding - An Explainer
Stages of Startup Funding - An Explainer
 
Toyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsToyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & Transformations
 
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerJual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
 
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODFRATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
RATINGS OF EACH VIDEO FOR UNI PROJECT IWDSFODF
 
Copyright: What Creators and Users of Art Need to Know
Copyright: What Creators and Users of Art Need to KnowCopyright: What Creators and Users of Art Need to Know
Copyright: What Creators and Users of Art Need to Know
 
Presentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelledPresentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelled
 
Powerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metricsPowerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metrics
 
What is paper chromatography, principal, procedure,types, diagram, advantages...
What is paper chromatography, principal, procedure,types, diagram, advantages...What is paper chromatography, principal, procedure,types, diagram, advantages...
What is paper chromatography, principal, procedure,types, diagram, advantages...
 
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTARPEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
PEMATANG SIANTAR 0851/8063/4797 JUAL OBAT ABORSI CYTOTEC PEMATANG SIANTAR
 
1Q24_EN hyundai capital 1q performance
1Q24_EN   hyundai capital 1q performance1Q24_EN   hyundai capital 1q performance
1Q24_EN hyundai capital 1q performance
 
Raising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesRaising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE Ventures
 
Hyundai capital 2024 1q Earnings release
Hyundai capital 2024 1q Earnings releaseHyundai capital 2024 1q Earnings release
Hyundai capital 2024 1q Earnings release
 
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In HarareTop^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
 
HAL Financial Performance Analysis and Future Prospects
HAL Financial Performance Analysis and Future ProspectsHAL Financial Performance Analysis and Future Prospects
HAL Financial Performance Analysis and Future Prospects
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
 
Constitution of Company Article of Association
Constitution of Company Article of AssociationConstitution of Company Article of Association
Constitution of Company Article of Association
 
hyundai capital 2023 consolidated financial statements
hyundai capital 2023 consolidated financial statementshyundai capital 2023 consolidated financial statements
hyundai capital 2023 consolidated financial statements
 
Creative Ideas for Interactive Team Presentations
Creative Ideas for Interactive Team PresentationsCreative Ideas for Interactive Team Presentations
Creative Ideas for Interactive Team Presentations
 

Heat Transfer Pool Simulation

  • 1.
  • 2. Convection Coefficient: h=150 Wm2∙K
  • 3. Specific Heat of Water: CP=4.184 kJkg∙K
  • 4.
  • 5. Node C2 (Top Right Corner)
  • 6. Node C3 (Bottom Left Corner)
  • 7. Node C4 (Bottom Right Corner)
  • 8. Node Group 1 (Heater Wall Nodes)
  • 9. Node Group 2 (Water Surface Nodes)
  • 10. Node Group 3 (Axis of Symmetry Nodes)
  • 11. Node Group 4 (Pool Floor Nodes)
  • 12. Interior NodesResults and Discussion:<br />Based on the finite difference approximation, the pool takes roughly 5 days and 11 hours to heat up to an average temperature of 30 ºC. Figure 4 illustrates an approximate linear increase in temperature over time. In contrast, when using a lumped system approximation, the average temperature of the pool appears to oscillate in a sinusoidal manner as shown in Figure 5. In the lumped system analysis, it is important to note that the average temperature never reaches 30 ºC. It converges to a steady state condition in which the convection from the ambient air and radiation from the sun contribute to a larger heat flux that the heaters can provide.<br />Figure 6 shows a lumped system approximation over 20 days. The heater was turned off after 10 days to show effects of not having the heater on. The steady state temperature average with no heater is only about 2 °C lower than the system with the heaters on.<br />The main difference between finite difference analysis and the lumped system approximation is the assumption that in finite difference analysis, the system acts as a ‘solid’ in conduction with the heat sources, with a relatively low thermal conductivity. From Figure 7, we can see that because of the low thermal conductivity of water, the lower middle portion of the pool was not affected by the temperature gradient and heat sources, even after 7 days of heat transfer. This shows that the pool’s absorption of heat is not even throughout the fluid. The sides can reach around 60 °C while the lower middle part stays around 10 °C. Because of low thermal conductivity, there is not a significant change in average temperature during the night when the temperature approaches freezing temperature. This is because only the surface of the pool is exposed to the convection, and since the thermal conductivity of water is so low, the rate of heat transfer between water molecules is low relative to that of the convection to the ambient air (Figure 8). <br />The lumped capacitance method would assume perfect mixing of the water, and essentially a negligible temperature gradient between the nodes in the pool. Although this method would eliminate the need to consider natural convection as a source for heat dissipation, it is not a valid approach, since the rate of convective heat transfer is much higher than the rate of conductive heat transfer within the water.<br />We would be able to more accurately represent the true heat distribution throughout the pool if we considered the effects of mixing, and natural convection. Since the outer edges of the pool experienced a high heat transfer, their densities would have changed, causing natural convection, and a driving force for fluid motion. We assumed, however, that the densities remained constant, and because of this minor detail, we did not attain a perfect model of the heat distribution inside the pool.<br />-25908015240<br />Figure 4: Average pool temperature per day using a finite difference approximation over 7 days.<br />-167640193040<br />Figure 5: Average pool temperature per day using a lumped system approximation over 7 days.<br />-106680-289560<br />Figure 6: Average pool temperature per day using Lumped system approximation with heaters turned off after 10 days. <br />9525024765<br />Figure 7: Temperature distribution at 30 °C average Temperature: lack of uniformity of distribution<br />Figure 8: Temperature of pool over time: the convection at the surface cools the top most layer of water, but because of the low thermal conductivity of water, heat isn’t transferred well to the top layer, keeping it colder than the layer under it.<br />