SlideShare uma empresa Scribd logo
1 de 35
MCE 565
Wave Motion & Vibration in Continuous Media
Spring 2005
Professor M. H. Sadd
Introduction to Finite Element Methods
Need for Computational Methods
• Solutions Using Either Strength of Materials or Theory of
Elasticity Are Normally Accomplished for Regions and
Loadings With Relatively Simple Geometry
• Many Applicaitons Involve Cases with Complex Shape,
Boundary Conditions and Material Behavior
• Therefore a Gap Exists Between What Is Needed in
Applications and What Can Be Solved by Analytical Closed-
form Methods
• This Has Lead to the Development of Several
Numerical/Computational Schemes Including: Finite
Difference, Finite Element and Boundary Element Methods
Introduction to Finite Element Analysis
The finite element method is a computational scheme to solve field problems in
engineering and science. The technique has very wide application, and has been used on
problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations,
electrical and magnetic fields, etc. The fundamental concept involves dividing the body
under study into a finite number of pieces (subdomains) called elements (see Figure).
Particular assumptions are then made on the variation of the unknown dependent
variable(s) across each element using so-called interpolation or approximation functions.
This approximated variation is quantified in terms of solution values at special element
locations called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values which approximate the
continuous solution. Because element size, shape and approximating scheme can be
varied to suit the problem, the method can accurately simulate solutions to problems of
complex geometry and loading and thus this technique has become a very useful and
practical tool.
Advantages of Finite Element Analysis
- Models Bodies of Complex Shape
- Can Handle General Loading/Boundary Conditions
- Models Bodies Composed of Composite and Multiphase Materials
- Model is Easily Refined for Improved Accuracy by Varying
Element Size and Type (Approximation Scheme)
- Time Dependent and Dynamic Effects Can Be Included
- Can Handle a Variety Nonlinear Effects Including Material
Behavior, Large Deformations, Boundary Conditions, Etc.
Basic Concept of the Finite Element Method
Any continuous solution field such as stress, displacement,
temperature, pressure, etc. can be approximated by a
discrete model composed of a set of piecewise continuous
functions defined over a finite number of subdomains.
Exact Analytical Solution
x
T
Approximate Piecewise
Linear Solution
x
T
One-Dimensional Temperature Distribution
Two-Dimensional Discretization
-1
-0.5
0
0.5
1
1.5
2
2.5
3
1
1.5
2
2.5
3
3.5
4
-3
-2
-1
0
1
2
x
y
u(x,y)
Approximate Piecewise
Linear Representation
Discretization Concepts
x
T
Exact Temperature Distribution, T(x)
Finite Element Discretization
Linear Interpolation Model
(Four Elements)
Quadratic Interpolation Model
(Two Elements)
T1
T2
T2
T3 T3
T4 T4
T5
T1
T2
T3
T4 T5
Piecewise Linear Approximation
T
x
T1
T2
T3 T3
T4 T5
T
T1
T2
T3
T4 T5
Piecewise Quadratic Approximation
x
Temperature Continuous but with
Discontinuous Temperature Gradients
Temperature and Temperature Gradients
Continuous
Common Types of Elements
One-Dimensional Elements
Line
Rods, Beams, Trusses, Frames
Two-Dimensional Elements
Triangular, Quadrilateral
Plates, Shells, 2-D Continua
Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)
3-D Continua
Discretization Examples
One-Dimensional
Frame Elements
Two-Dimensional
Triangular Elements
Three-Dimensional
Brick Elements
Basic Steps in the Finite Element Method
Time Independent Problems
- Domain Discretization
- Select Element Type (Shape and Approximation)
- Derive Element Equations (Variational and Energy Methods)
- Assemble Element Equations to Form Global System
[K]{U} = {F}
[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector
- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values
Common Sources of Error in FEA
• Domain Approximation
• Element Interpolation/Approximation
• Numerical Integration Errors
(Including Spatial and Time Integration)
• Computer Errors (Round-Off, Etc., )
Measures of Accuracy in FEA
Accuracy
Error = |(Exact Solution)-(FEM Solution)|
Convergence
Limit of Error as:
Number of Elements (h-convergence)
or
Approximation Order (p-convergence)
Increases
Ideally, Error  0 as Number of Elements or
Approximation Order  
Two-Dimensional Discretization Refinement
(Discretization with 228 Elements)
(Discretization with 912 Elements)
(Triangular Element)
(Node)



One Dimensional Examples
Static Case
1 2
u1 u2
Bar Element
Uniaxial Deformation of Bars
Using Strength of Materials Theory
Beam Element
Deflection of Elastic Beams
Using Euler-Bernouli Theory
1 2
w1
w2
q2
q1
dx
du
a
u
q
cu
au
dx
d
,
:
ion
Specificat
Condtions
Boundary
0
)
(
:
Equation
al
Differenti




)
(
,
,
,
:
ion
Specificat
Condtions
Boundary
)
(
)
(
:
Equation
al
Differenti
2
2
2
2
2
2
2
2
dx
w
d
b
dx
d
dx
w
d
b
dx
dw
w
x
f
dx
w
d
b
dx
d


Two Dimensional Examples
u1
u2
1
2
3 u3
v1
v2
v3
1
2
3
f1
f2
f3
Triangular Element
Scalar-Valued, Two-Dimensional
Field Problems
Triangular Element
Vector/Tensor-Valued, Two-
Dimensional Field Problems
y
x n
y
n
x
dn
d
y
x
f
y
x

f



f


f
f


f



f

,
:
ion
Specificat
Condtions
Boundary
)
,
(
:
Equation
ial
Different
Example
2
2
2
2
y
x
y
y
x
x
y
x
n
y
v
C
x
u
C
n
x
v
y
u
C
T
n
x
v
y
u
C
n
y
v
C
x
u
C
T
F
y
v
x
u
y
E
v
F
y
v
x
u
x
E
u




































































































22
12
66
66
12
11
2
2
Conditons
Boundary
0
)
1
(
2
0
)
1
(
2
ents
Displacem
of
Terms
in
Equations
Field
Elasticity
Development of Finite Element Equation
• The Finite Element Equation Must Incorporate the Appropriate Physics
of the Problem
• For Problems in Structural Solid Mechanics, the Appropriate Physics
Comes from Either Strength of Materials or Theory of Elasticity
• FEM Equations are Commonly Developed Using Direct, Variational-
Virtual Work or Weighted Residual Methods
Variational-Virtual Work Method
Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium
Weighted Residual Method
Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This
method is particularly suited for problems that have no variational statement. For
stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that
found by variational methods.
Direct Method
Based on physical reasoning and limited to simple cases, this method is
worth studying because it enhances physical understanding of the process
Simple Element Equation Example
Direct Stiffness Derivation
1 2
k
u1 u2
F1 F2
}
{
}
]{
[
rm
Matrix Fo
in
or
2
Node
at
m
Equilibriu
1
Node
at
m
Equilibriu
2
1
2
1
2
1
2
2
1
1
F
u
K
F
F
u
u
k
k
k
k
ku
ku
F
ku
ku
F





























Stiffness Matrix Nodal Force Vector
Common Approximation Schemes
One-Dimensional Examples
Linear Quadratic Cubic
Polynomial Approximation
Most often polynomials are used to construct approximation
functions for each element. Depending on the order of
approximation, different numbers of element parameters are
needed to construct the appropriate function.
Special Approximation
For some cases (e.g. infinite elements, crack or other singular
elements) the approximation function is chosen to have special
properties as determined from theoretical considerations
One-Dimensional Bar Element






 
 

udV
f
u
P
u
P
edV j
j
i
i
}
]{
[
:
Law
Strain
-
Stress
}
]{
[
}
{
]
[
)
(
:
Strain
}
{
]
[
)
(
:
ion
Approximat
d
B
d
B
d
N
d
N
E
Ee
dx
d
u
x
dx
d
dx
du
e
u
x
u
k
k
k
k
k
k





















 

L
T
T
j
i
T
L
T
T
fdx
A
P
P
dx
E
A
0
0
]
[
}
{
}
{
}
{
]
[
]
[
}
{ N
δd
δd
d
B
B
δd

 

L
T
L
T
fdx
A
dx
E
A
0
0
]
[
}
{
}
{
]
[
]
[ N
P
d
B
B
Vector
ent
Displacem
Nodal
}
{
Vector
Loading
]
[
}
{
Matrix
Stiffness
]
[
]
[
]
[
0
0





















j
i
L
T
j
i
L
T
u
u
fdx
A
P
P
dx
E
A
K
d
N
F
B
B
}
{
}
]{
[ F
d
K 
One-Dimensional Bar Element
A = Cross-sectional Area
E = Elastic Modulus
f(x) = Distributed Loading
dV
u
F
dS
u
T
dV
e i
V
i
S
i
n
i
ij
V
ij
t





 


Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
For One-Dimensional Case

 






 udV
f
u
P
u
P
edV j
j
i
i

(i) (j)
Axial Deformation of an Elastic Bar
Typical Bar Element
dx
du
AE
P i
i 

dx
du
AE
P
j
j 

i
u j
u
L
x
(Two Degrees of Freedom)
Linear Approximation Scheme
 
Vector
ent
Displacem
Nodal
}
{
Matrix
Function
ion
Approximat
]
[
}
]{
[
1
)
(
)
(
1
2
1
2
1
2
1
2
2
1
1
2
1
1
2
1
2
1
2
1
1
2
1























































d
N
d
N
nt
Displaceme
Elastic
e
Approximat
u
u
L
x
L
x
u
u
u
u
x
u
x
u
L
x
u
L
x
x
L
u
u
u
u
L
a
a
u
a
u
x
a
a
u
x (local coordinate system)
(1) (2)
i
u j
u
L
x
(1) (2)
u(x)
x
(1) (2)
1(x) 2(x)
1
k(x) – Lagrange Interpolation Functions
Element Equation
Linear Approximation Scheme, Constant Properties
Vector
ent
Displacem
Nodal
}
{
1
1
2
]
[
}
{
1
1
1
1
1
1
1
1
]
[
]
[
]
[
]
[
]
[
2
1
2
1
0
2
1
0
2
1
0
0



















































































u
u
L
Af
P
P
dx
L
x
L
x
Af
P
P
fdx
A
P
P
L
AE
L
L
L
L
L
AE
dx
AE
dx
E
A
K
o
L
o
L
T
L
T
L
T
d
N
F
B
B
B
B






























1
1
2
1
1
1
1
}
{
}
]{
[
2
1
2
1 L
Af
P
P
u
u
L
AE o
F
d
K
Quadratic Approximation Scheme
  }
]{
[
)
(
)
(
)
(
4
2
3
2
1
3
2
1
3
3
2
2
1
1
2
3
2
1
3
2
3
2
1
2
1
1
2
3
2
1
d
N
nt
Displaceme
Elastic
e
Approximat
































u
u
u
u
u
x
u
x
u
x
u
L
a
L
a
a
u
L
a
L
a
a
u
a
u
x
a
x
a
a
u
x
(1) (3)
1
u 3
u
(2)
2
u
L
u(x)
x
(1) (3)
(2)
x
(1) (3)
(2)
1
1(x) 3(x)
2(x)



































3
2
1
3
2
1
7
8
1
8
16
8
1
8
7
3
F
F
F
u
u
u
L
AE
Equation
Element
Lagrange Interpolation Functions
Using Natural or Normalized Coordinates
1
1 




(1) (2)
)
1
(
2
1
)
1
(
2
1
2
1








)
1
(
2
1
)
1
)(
1
(
)
1
(
2
1
3
2
1

















)
1
)(
3
1
)(
3
1
(
16
9
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
3
1
)(
1
(
16
9
4
3
2
1



































(1) (2) (3)

(1) (2) (3) (4)








j
i
j
i
j
i
,
0
,
1
)
(
Simple Example
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2

































0
0
0
0
0
1
1
0
1
1
1
Element
Equation
Global
)
1
(
2
)
1
(
1
3
2
1
1
1
1
P
P
U
U
U
L
E
A

































)
2
(
2
)
2
(
1
3
2
1
2
2
2
0
1
1
0
1
1
0
0
0
0
2
Element
Equation
Global
P
P
U
U
U
L
E
A
























































3
2
1
)
2
(
2
)
2
(
1
)
1
(
2
)
1
(
1
3
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
0
0
Equation
System
Global
Assembled
P
P
P
P
P
P
P
U
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
Loading
ed
Distribut
Zero
Take

f
Simple Example Continued
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2
0
0
Conditions
Boundary
)
2
(
1
)
1
(
2
)
2
(
2
1




P
P
P
P
U












































P
P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
0
0
0
Equation
System
Global
Reduced
)
1
(
1
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1




























P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
L
E
A ,
,
Properties
m
For Unifor





















P
U
U
L
AE 0
1
1
1
2
3
2
P
P
AE
PL
U
AE
PL
U 



 )
1
(
1
3
2 ,
2
,
Solving
One-Dimensional Beam Element
Deflection of an Elastic Beam
2
2
4
2
3
1
1
2
1
1
2
2
2
4
2
2
2
3
1
2
2
2
1
2
2
1
,
,
,
,
,
dx
dw
u
w
u
dx
dw
u
w
u
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q


q




q








































I = Section Moment of Inertia
E = Elastic Modulus
f(x) = Distributed Loading

(1) (2)
Typical Beam Element
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
x
Virtual Strain Energy = Virtual Work Done by Surface and Body Forces








 
 

wdV
f
w
Q
u
Q
u
Q
u
Q
edV 4
4
3
3
2
2
1
1

 




L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T
(Four Degrees of Freedom)
Beam Approximation Functions
To approximate deflection and slope at each
node requires approximation of the form
3
4
2
3
2
1
)
( x
c
x
c
x
c
c
x
w 



Evaluating deflection and slope at each node
allows the determination of ci thus leading to
Functions
ion
Approximat
Cubic
Hermite
the
are
where
,
)
(
)
(
)
(
)
(
)
( 4
4
3
3
2
2
1
1
i
u
x
u
x
u
x
u
x
x
w
f
f

f

f

f

Beam Element Equation

 




L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T















4
3
2
1
}
{
u
u
u
u
d ]
[
]
[
]
[ 4
3
2
1
dx
d
dx
d
dx
d
dx
d
dx
d f
f
f
f


N
B



















 
2
2
2
2
3
0
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
]
[
]
[
]
[
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
dx
EI
L
B
B
K T































































L
L
fL
Q
Q
Q
Q
u
u
u
u
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
6
6
12
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
4
3
2
1
4
3
2
1
2
2
2
2
3






























f
f
f
f
 

L
L
fL
dx
f
dx
f
L
L
T
6
6
12
]
[
0
4
3
2
1
0
N
FEA Beam Problem
f
a b
Uniform EI
































































































0
0
0
0
6
6
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
2 )
1
(
4
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
EI
1
Element







































































)
2
(
4
)
2
(
3
)
2
(
2
)
2
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
Q
Q
Q
Q
U
U
U
U
U
U
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
EI
2
Element
(1) (3)
(2)
1 2
FEA Beam Problem



















































































































)
2
(
4
)
2
(
3
)
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
3
2
2
3
2
2
3
3
2
2
3
2
3
0
0
6
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
0
0
/
1
/
3
/
2
0
0
/
3
/
6
/
3
/
6
2
Q
Q
Q
Q
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
a
a
a
a
a
a
a
EI
System
Assembled
Global
0
,
0
,
0 )
2
(
4
)
2
(
3
)
1
(
1
2
)
1
(
1
1 


q


 Q
Q
U
w
U
Conditions
Boundary
0
,
0 )
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3 


 Q
Q
Q
Q
Conditions
Matching






































































0
0
0
0
0
0
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
2
4
3
2
1
2
3
2
3
3
2
2
3
3
a
fa
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
EI
System
Reduced
Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4
Nodal Forces Q1 and Q2 Can Then Be Determined
(1) (3)
(2)
1 2
Special Features of Beam FEA
Analytical Solution Gives
Cubic Deflection Curve
Analytical Solution Gives
Quartic Deflection Curve
FEA Using Hermit Cubic Interpolation
Will Yield Results That Match Exactly
With Cubic Analytical Solutions
Truss Element
Generalization of Bar Element With Arbitrary Orientation
x
y
k=AE/L
q

q
 cos
,
sin c
s
Frame Element
Generalization of Bar and Beam Element with Arbitrary Orientation

(1) (2)
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
2
P
1
P
1
u 2
u





































q
q






































4
3
2
2
1
1
2
2
2
1
1
1
2
2
2
3
2
3
2
2
2
3
2
3
4
6
0
2
6
0
6
12
0
6
12
0
0
0
0
0
2
6
0
4
6
0
6
12
0
6
12
0
0
0
0
0
Q
Q
P
Q
Q
P
w
u
w
u
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
Some Standard FEA References
Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995.
Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993
Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990.
Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987.
Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002.
Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley,
1989.
Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979.
Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001.
Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986.
Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994.
Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993.
Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992.
Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003.
Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992.
Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986.
Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998.
Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993.
Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993.
Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985.
Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

FEM
FEMFEM
FEM
 
Introduction to FEA and applications
Introduction to FEA and applicationsIntroduction to FEA and applications
Introduction to FEA and applications
 
Galerkin method
Galerkin methodGalerkin method
Galerkin method
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Introduction of Finite Element Analysis
Introduction of Finite Element AnalysisIntroduction of Finite Element Analysis
Introduction of Finite Element Analysis
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521
 
Finite Element Method
Finite Element MethodFinite Element Method
Finite Element Method
 
Prof.N.B.HUI Lecture of solid mechanics
Prof.N.B.HUI Lecture of solid mechanicsProf.N.B.HUI Lecture of solid mechanics
Prof.N.B.HUI Lecture of solid mechanics
 
Application of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferApplication of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat Transfer
 
ME 570 Finite Element Methods
ME 570 Finite Element MethodsME 570 Finite Element Methods
ME 570 Finite Element Methods
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
 
Non linear analysis
Non linear analysisNon linear analysis
Non linear analysis
 
PPT on laminated composite
PPT  on laminated compositePPT  on laminated composite
PPT on laminated composite
 
Shape functions
Shape functionsShape functions
Shape functions
 
Finite Element Methods
Finite Element  MethodsFinite Element  Methods
Finite Element Methods
 

Semelhante a FEM Lecture.ppt

Introduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfIntroduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdf
MustafaELALAMI
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1
ssuser2209b4
 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notes
Amit Ghongade
 
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxChapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
tiffanyd4
 

Semelhante a FEM Lecture.ppt (20)

Fem lecture
Fem lectureFem lecture
Fem lecture
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Finite element method
Finite element methodFinite element method
Finite element method
 
tuttuturtCH 1 and 2 FEM ppt finite el.pptx
tuttuturtCH 1 and 2 FEM ppt finite el.pptxtuttuturtCH 1 and 2 FEM ppt finite el.pptx
tuttuturtCH 1 and 2 FEM ppt finite el.pptx
 
Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element method
 
ED7201 FEMMD_notes
ED7201 FEMMD_notesED7201 FEMMD_notes
ED7201 FEMMD_notes
 
Fem notes
Fem notesFem notes
Fem notes
 
Introduction to Finite Elements
Introduction to Finite ElementsIntroduction to Finite Elements
Introduction to Finite Elements
 
Fem utkarsh
Fem utkarshFem utkarsh
Fem utkarsh
 
Introduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfIntroduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdf
 
Lecture on Introduction to finite element methods & its contents
Lecture on Introduction  to  finite element methods  & its  contentsLecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction to finite element methods & its contents
 
Finite Element Method.pptx
Finite Element Method.pptxFinite Element Method.pptx
Finite Element Method.pptx
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1
 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notes
 
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptUnit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
 
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxChapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
 
FEA_Theory.ppt
FEA_Theory.pptFEA_Theory.ppt
FEA_Theory.ppt
 
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
 
Fea theory
Fea theoryFea theory
Fea theory
 
Introduction to fem
Introduction to femIntroduction to fem
Introduction to fem
 

Último

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Último (20)

Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 

FEM Lecture.ppt

  • 1. MCE 565 Wave Motion & Vibration in Continuous Media Spring 2005 Professor M. H. Sadd Introduction to Finite Element Methods
  • 2. Need for Computational Methods • Solutions Using Either Strength of Materials or Theory of Elasticity Are Normally Accomplished for Regions and Loadings With Relatively Simple Geometry • Many Applicaitons Involve Cases with Complex Shape, Boundary Conditions and Material Behavior • Therefore a Gap Exists Between What Is Needed in Applications and What Can Be Solved by Analytical Closed- form Methods • This Has Lead to the Development of Several Numerical/Computational Schemes Including: Finite Difference, Finite Element and Boundary Element Methods
  • 3. Introduction to Finite Element Analysis The finite element method is a computational scheme to solve field problems in engineering and science. The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc. The fundamental concept involves dividing the body under study into a finite number of pieces (subdomains) called elements (see Figure). Particular assumptions are then made on the variation of the unknown dependent variable(s) across each element using so-called interpolation or approximation functions. This approximated variation is quantified in terms of solution values at special element locations called nodes. Through this discretization process, the method sets up an algebraic system of equations for unknown nodal values which approximate the continuous solution. Because element size, shape and approximating scheme can be varied to suit the problem, the method can accurately simulate solutions to problems of complex geometry and loading and thus this technique has become a very useful and practical tool.
  • 4. Advantages of Finite Element Analysis - Models Bodies of Complex Shape - Can Handle General Loading/Boundary Conditions - Models Bodies Composed of Composite and Multiphase Materials - Model is Easily Refined for Improved Accuracy by Varying Element Size and Type (Approximation Scheme) - Time Dependent and Dynamic Effects Can Be Included - Can Handle a Variety Nonlinear Effects Including Material Behavior, Large Deformations, Boundary Conditions, Etc.
  • 5. Basic Concept of the Finite Element Method Any continuous solution field such as stress, displacement, temperature, pressure, etc. can be approximated by a discrete model composed of a set of piecewise continuous functions defined over a finite number of subdomains. Exact Analytical Solution x T Approximate Piecewise Linear Solution x T One-Dimensional Temperature Distribution
  • 7. Discretization Concepts x T Exact Temperature Distribution, T(x) Finite Element Discretization Linear Interpolation Model (Four Elements) Quadratic Interpolation Model (Two Elements) T1 T2 T2 T3 T3 T4 T4 T5 T1 T2 T3 T4 T5 Piecewise Linear Approximation T x T1 T2 T3 T3 T4 T5 T T1 T2 T3 T4 T5 Piecewise Quadratic Approximation x Temperature Continuous but with Discontinuous Temperature Gradients Temperature and Temperature Gradients Continuous
  • 8. Common Types of Elements One-Dimensional Elements Line Rods, Beams, Trusses, Frames Two-Dimensional Elements Triangular, Quadrilateral Plates, Shells, 2-D Continua Three-Dimensional Elements Tetrahedral, Rectangular Prism (Brick) 3-D Continua
  • 10. Basic Steps in the Finite Element Method Time Independent Problems - Domain Discretization - Select Element Type (Shape and Approximation) - Derive Element Equations (Variational and Energy Methods) - Assemble Element Equations to Form Global System [K]{U} = {F} [K] = Stiffness or Property Matrix {U} = Nodal Displacement Vector {F} = Nodal Force Vector - Incorporate Boundary and Initial Conditions - Solve Assembled System of Equations for Unknown Nodal Displacements and Secondary Unknowns of Stress and Strain Values
  • 11. Common Sources of Error in FEA • Domain Approximation • Element Interpolation/Approximation • Numerical Integration Errors (Including Spatial and Time Integration) • Computer Errors (Round-Off, Etc., )
  • 12. Measures of Accuracy in FEA Accuracy Error = |(Exact Solution)-(FEM Solution)| Convergence Limit of Error as: Number of Elements (h-convergence) or Approximation Order (p-convergence) Increases Ideally, Error  0 as Number of Elements or Approximation Order  
  • 13. Two-Dimensional Discretization Refinement (Discretization with 228 Elements) (Discretization with 912 Elements) (Triangular Element) (Node)   
  • 14. One Dimensional Examples Static Case 1 2 u1 u2 Bar Element Uniaxial Deformation of Bars Using Strength of Materials Theory Beam Element Deflection of Elastic Beams Using Euler-Bernouli Theory 1 2 w1 w2 q2 q1 dx du a u q cu au dx d , : ion Specificat Condtions Boundary 0 ) ( : Equation al Differenti     ) ( , , , : ion Specificat Condtions Boundary ) ( ) ( : Equation al Differenti 2 2 2 2 2 2 2 2 dx w d b dx d dx w d b dx dw w x f dx w d b dx d  
  • 15. Two Dimensional Examples u1 u2 1 2 3 u3 v1 v2 v3 1 2 3 f1 f2 f3 Triangular Element Scalar-Valued, Two-Dimensional Field Problems Triangular Element Vector/Tensor-Valued, Two- Dimensional Field Problems y x n y n x dn d y x f y x  f    f   f f   f    f  , : ion Specificat Condtions Boundary ) , ( : Equation ial Different Example 2 2 2 2 y x y y x x y x n y v C x u C n x v y u C T n x v y u C n y v C x u C T F y v x u y E v F y v x u x E u                                                                                                     22 12 66 66 12 11 2 2 Conditons Boundary 0 ) 1 ( 2 0 ) 1 ( 2 ents Displacem of Terms in Equations Field Elasticity
  • 16. Development of Finite Element Equation • The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem • For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from Either Strength of Materials or Theory of Elasticity • FEM Equations are Commonly Developed Using Direct, Variational- Virtual Work or Weighted Residual Methods Variational-Virtual Work Method Based on the concept of virtual displacements, leads to relations between internal and external virtual work and to minimization of system potential energy for equilibrium Weighted Residual Method Starting with the governing differential equation, special mathematical operations develop the “weak form” that can be incorporated into a FEM equation. This method is particularly suited for problems that have no variational statement. For stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that found by variational methods. Direct Method Based on physical reasoning and limited to simple cases, this method is worth studying because it enhances physical understanding of the process
  • 17. Simple Element Equation Example Direct Stiffness Derivation 1 2 k u1 u2 F1 F2 } { } ]{ [ rm Matrix Fo in or 2 Node at m Equilibriu 1 Node at m Equilibriu 2 1 2 1 2 1 2 2 1 1 F u K F F u u k k k k ku ku F ku ku F                              Stiffness Matrix Nodal Force Vector
  • 18. Common Approximation Schemes One-Dimensional Examples Linear Quadratic Cubic Polynomial Approximation Most often polynomials are used to construct approximation functions for each element. Depending on the order of approximation, different numbers of element parameters are needed to construct the appropriate function. Special Approximation For some cases (e.g. infinite elements, crack or other singular elements) the approximation function is chosen to have special properties as determined from theoretical considerations
  • 19. One-Dimensional Bar Element            udV f u P u P edV j j i i } ]{ [ : Law Strain - Stress } ]{ [ } { ] [ ) ( : Strain } { ] [ ) ( : ion Approximat d B d B d N d N E Ee dx d u x dx d dx du e u x u k k k k k k                         L T T j i T L T T fdx A P P dx E A 0 0 ] [ } { } { } { ] [ ] [ } { N δd δd d B B δd     L T L T fdx A dx E A 0 0 ] [ } { } { ] [ ] [ N P d B B Vector ent Displacem Nodal } { Vector Loading ] [ } { Matrix Stiffness ] [ ] [ ] [ 0 0                      j i L T j i L T u u fdx A P P dx E A K d N F B B } { } ]{ [ F d K 
  • 20. One-Dimensional Bar Element A = Cross-sectional Area E = Elastic Modulus f(x) = Distributed Loading dV u F dS u T dV e i V i S i n i ij V ij t          Virtual Strain Energy = Virtual Work Done by Surface and Body Forces For One-Dimensional Case           udV f u P u P edV j j i i  (i) (j) Axial Deformation of an Elastic Bar Typical Bar Element dx du AE P i i   dx du AE P j j   i u j u L x (Two Degrees of Freedom)
  • 21. Linear Approximation Scheme   Vector ent Displacem Nodal } { Matrix Function ion Approximat ] [ } ]{ [ 1 ) ( ) ( 1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1                                                        d N d N nt Displaceme Elastic e Approximat u u L x L x u u u u x u x u L x u L x x L u u u u L a a u a u x a a u x (local coordinate system) (1) (2) i u j u L x (1) (2) u(x) x (1) (2) 1(x) 2(x) 1 k(x) – Lagrange Interpolation Functions
  • 22. Element Equation Linear Approximation Scheme, Constant Properties Vector ent Displacem Nodal } { 1 1 2 ] [ } { 1 1 1 1 1 1 1 1 ] [ ] [ ] [ ] [ ] [ 2 1 2 1 0 2 1 0 2 1 0 0                                                                                    u u L Af P P dx L x L x Af P P fdx A P P L AE L L L L L AE dx AE dx E A K o L o L T L T L T d N F B B B B                               1 1 2 1 1 1 1 } { } ]{ [ 2 1 2 1 L Af P P u u L AE o F d K
  • 23. Quadratic Approximation Scheme   } ]{ [ ) ( ) ( ) ( 4 2 3 2 1 3 2 1 3 3 2 2 1 1 2 3 2 1 3 2 3 2 1 2 1 1 2 3 2 1 d N nt Displaceme Elastic e Approximat                                 u u u u u x u x u x u L a L a a u L a L a a u a u x a x a a u x (1) (3) 1 u 3 u (2) 2 u L u(x) x (1) (3) (2) x (1) (3) (2) 1 1(x) 3(x) 2(x)                                    3 2 1 3 2 1 7 8 1 8 16 8 1 8 7 3 F F F u u u L AE Equation Element
  • 24. Lagrange Interpolation Functions Using Natural or Normalized Coordinates 1 1      (1) (2) ) 1 ( 2 1 ) 1 ( 2 1 2 1         ) 1 ( 2 1 ) 1 )( 1 ( ) 1 ( 2 1 3 2 1                  ) 1 )( 3 1 )( 3 1 ( 16 9 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 3 1 )( 1 ( 16 9 4 3 2 1                                    (1) (2) (3)  (1) (2) (3) (4)         j i j i j i , 0 , 1 ) (
  • 25. Simple Example P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2                                  0 0 0 0 0 1 1 0 1 1 1 Element Equation Global ) 1 ( 2 ) 1 ( 1 3 2 1 1 1 1 P P U U U L E A                                  ) 2 ( 2 ) 2 ( 1 3 2 1 2 2 2 0 1 1 0 1 1 0 0 0 0 2 Element Equation Global P P U U U L E A                                                         3 2 1 ) 2 ( 2 ) 2 ( 1 ) 1 ( 2 ) 1 ( 1 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Equation System Global Assembled P P P P P P P U U U L E A L E A L E A L E A L E A L E A L E A L E A 0 Loading ed Distribut Zero Take  f
  • 26. Simple Example Continued P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2 0 0 Conditions Boundary ) 2 ( 1 ) 1 ( 2 ) 2 ( 2 1     P P P P U                                             P P U U L E A L E A L E A L E A L E A L E A L E A L E A 0 0 0 0 Equation System Global Reduced ) 1 ( 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1                             P U U L E A L E A L E A L E A L E A 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 L E A , , Properties m For Unifor                      P U U L AE 0 1 1 1 2 3 2 P P AE PL U AE PL U      ) 1 ( 1 3 2 , 2 , Solving
  • 27. One-Dimensional Beam Element Deflection of an Elastic Beam 2 2 4 2 3 1 1 2 1 1 2 2 2 4 2 2 2 3 1 2 2 2 1 2 2 1 , , , , , dx dw u w u dx dw u w u dx w d EI Q dx w d EI dx d Q dx w d EI Q dx w d EI dx d Q   q     q                                         I = Section Moment of Inertia E = Elastic Modulus f(x) = Distributed Loading  (1) (2) Typical Beam Element 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V x Virtual Strain Energy = Virtual Work Done by Surface and Body Forces              wdV f w Q u Q u Q u Q edV 4 4 3 3 2 2 1 1        L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T (Four Degrees of Freedom)
  • 28. Beam Approximation Functions To approximate deflection and slope at each node requires approximation of the form 3 4 2 3 2 1 ) ( x c x c x c c x w     Evaluating deflection and slope at each node allows the determination of ci thus leading to Functions ion Approximat Cubic Hermite the are where , ) ( ) ( ) ( ) ( ) ( 4 4 3 3 2 2 1 1 i u x u x u x u x x w f f  f  f  f 
  • 29. Beam Element Equation        L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T                4 3 2 1 } { u u u u d ] [ ] [ ] [ 4 3 2 1 dx d dx d dx d dx d dx d f f f f   N B                      2 2 2 2 3 0 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 ] [ ] [ ] [ L L L L L L L L L L L L L EI dx EI L B B K T                                                                L L fL Q Q Q Q u u u u L L L L L L L L L L L L L EI 6 6 12 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 4 3 2 1 4 3 2 1 2 2 2 2 3                               f f f f    L L fL dx f dx f L L T 6 6 12 ] [ 0 4 3 2 1 0 N
  • 30. FEA Beam Problem f a b Uniform EI                                                                                                 0 0 0 0 6 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 2 ) 1 ( 4 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 Q Q Q Q a a fa U U U U U U a a a a a a a a a a a a a a a a EI 1 Element                                                                        ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 2 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 Q Q Q Q U U U U U U b b b b b b b b b b b b b b b b EI 2 Element (1) (3) (2) 1 2
  • 31. FEA Beam Problem                                                                                                                    ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 3 2 2 3 2 2 3 3 2 2 3 2 3 0 0 6 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 0 0 / 1 / 3 / 2 0 0 / 3 / 6 / 3 / 6 2 Q Q Q Q Q Q Q Q a a fa U U U U U U a a a a a b a a a b a b a a a a a a a a EI System Assembled Global 0 , 0 , 0 ) 2 ( 4 ) 2 ( 3 ) 1 ( 1 2 ) 1 ( 1 1    q    Q Q U w U Conditions Boundary 0 , 0 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3     Q Q Q Q Conditions Matching                                                                       0 0 0 0 0 0 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 2 4 3 2 1 2 3 2 3 3 2 2 3 3 a fa U U U U a a a a a b a a a b a b a EI System Reduced Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4 Nodal Forces Q1 and Q2 Can Then Be Determined (1) (3) (2) 1 2
  • 32. Special Features of Beam FEA Analytical Solution Gives Cubic Deflection Curve Analytical Solution Gives Quartic Deflection Curve FEA Using Hermit Cubic Interpolation Will Yield Results That Match Exactly With Cubic Analytical Solutions
  • 33. Truss Element Generalization of Bar Element With Arbitrary Orientation x y k=AE/L q  q  cos , sin c s
  • 34. Frame Element Generalization of Bar and Beam Element with Arbitrary Orientation  (1) (2) 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V 2 P 1 P 1 u 2 u                                      q q                                       4 3 2 2 1 1 2 2 2 1 1 1 2 2 2 3 2 3 2 2 2 3 2 3 4 6 0 2 6 0 6 12 0 6 12 0 0 0 0 0 2 6 0 4 6 0 6 12 0 6 12 0 0 0 0 0 Q Q P Q Q P w u w u L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
  • 35. Some Standard FEA References Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995. Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993 Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990. Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987. Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002. Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley, 1989. Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979. Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001. Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986. Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994. Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993. Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992. Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003. Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992. Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986. Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993. Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993. Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.