SlideShare uma empresa Scribd logo
1 de 54
Baixar para ler offline
Determinants
Prepared by:
Joey F. Valdriz
Matrix
Recall:
Inverse of a
SUB-TOPICS
Determinant of a Square Matrix
Minors and Cofactors
Properties of Determinants
Applications of Determinants
Area of a Triangle
Condition of Collinearity of Three Points
Solution of System of Linear Equations
(Cramer’s Rule)
DETERMINANT
Every square matrix has associated with it a scalar called
its determinant.
Given a matrix A, we use det(A) or |A| to designate its
determinant.
We can also designate the determinant of matrix A by
replacing the brackets by vertical straight lines. For
example,







30
12
A
30
12
)det( A
Definition 1: The determinant of a 11 matrix [a] is the scalar
a.
Definition 2: The determinant of a 22 matrix is the
scalar ad-bc.
For higher order matrices, we will use a recursive procedure to
compute determinants.






dc
ba
Example
4 - 3
Evaluate the determinant :
2 5
 
4 - 3
Solution : = 4×5 - 2× -3 = 20 + 6 = 26
2 5
Solution
The determinant of a 3 × 3 matrix A,
where









333231
232221
131211
aaa
aaa
aaa
A
is a real number defined as
 
  
  
det 11 22 33 12 23 31 13 21 32
31 22 13 32 23 11 33 21 12
A a a a a a a a a a
a a a a a a a a a .
Solution
If A = is a square matrix of order 3, then
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
  
[Expanding along first row]
11 12 13
22 23 21 23 21 22
21 22 23 11 12 13
32 33 31 33 31 32
31 32 33
a a a
a a a a a a
| A |= a a a = a - a + a
a a a a a a
a a a
     11 22 33 32 23 12 21 33 31 23 13 21 32 31 22= a a a - a a - a a a - a a + a a a - a a
   11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22a a a a a a a a a a a a a a a a a a     
Example
2 3 - 5
Evaluate the determinant : 7 1 - 2
-3 4 1
 
2 3 - 5
1 - 2 7 - 2 7 1
7 1 - 2 = 2 - 3 + -5
4 1 -3 1 -3 4
-3 4 1
     = 2 1+ 8 - 3 7 - 6 - 5 28 + 3
= 18 - 3 - 155
= -140
[Expanding along first row]
Solution :
Properties of Determinants
1. The value of a determinant remains unchanged, if its
rows and columns are interchanged.
1 1 1 1 2 3
2 2 2 1 2 3
3 3 3 1 2 3
a b c a a a
a b c = b b b
a b c c c c
i e A A. . '
2. If any two rows (or columns) of a determinant are interchanged,
then the value of the determinant is changed by minus sign.
 
1 1 1 2 2 2
2 2 2 1 1 1 2 1
3 3 3 3 3 3
a b c a b c
a b c = - a b c R R
a b c a b c
Applying 
Properties
3. If all the elements of a row (or column) is multiplied by a
non-zero number k, then the value of the new determinant
is k times the value of the original determinant.
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
ka kb kc a b c
a b c = k a b c
a b c a b c
which also implies
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
a b c ma mb mc
1
a b c = a b c
m
a b c a b c
Properties
4. If each element of any row (or column) consists of
two or more terms, then the determinant can be
expressed as the sum of two or more determinants.
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
a +x b c a b c x b c
a +y b c = a b c + y b c
a +z b c a b c z b c
5. The value of a determinant is unchanged, if any row
(or column) is multiplied by a number and then added
to any other row (or column).
 
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 1 2 3
3 3 3 3 3 3 3 3
a b c a +mb - nc b c
a b c = a +mb - nc b c C C + mC -nC
a b c a +mb - nc b c
Applying 
Properties
6. If any two rows (or columns) of a determinant
are identical, then its value is zero.
2 2 2
3 3 3
0 0 0
a b c = 0
a b c
7. If each element of a row (or column) of a determinant is
zero, then its value is zero.
1 1 1
2 2 2
1 1 1
a b c
a b c = 0
a b c
Properties
 
a 0 0
8 Let A = 0 b 0 be a diagonal matrix, then
0 0 c
 
 
 
  
a 0 0
= 0 b 0
0 0 c
A abc
Copyright © 2011 Pearson Education, Inc. Slide 7.5-14
The Minor of an Element
• The determinant of each 3 × 3 matrix is called
a minor of the associated element.
• The symbol Mij represents the minor when the
ith row and jth column are eliminated.
Copyright © 2011 Pearson Education, Inc. Slide 7.5-15
• To find the determinant of a 3 × 3 or larger square
matrix:
1. Choose any row or column,
2. Multiply the minor of each element in that row or
column by a +1 or –1, depending on whether the
sum of i + j is even or odd,
3. Then, multiply each cofactor by its corresponding
element in the matrix and find the sum of these
products. This sum is the determinant of the
matrix.
The Cofactor of an Element
Let Mij be the minor for element aij in an n × n matrix.
The cofactor of aij, written Aij, is
  .MA ij
ji
ij 

1
Copyright © 2011 Pearson Education, Inc. Slide 7.5-16
Example Evaluate det , expanding
by the second column.
Solution First find the minors of each element in the
second column.
Finding the Determinant











201
341
232
8)2)(1()3(2
31
22det
2)2)(1()2(2
21
22det
5)3)(1()2(1
21
31det
32
22
12





















M
M
M
Copyright © 2011 Pearson Education, Inc. Slide 7.5-17
Now, find the cofactor.
The determinant is found by multiplying each cofactor by its
corresponding element in the matrix and finding the sum of
these products.
Finding the Determinant
8)8()1()1(
2)2()1()1(
5)5()1()1(
5
32
23
32
4
22
22
22
3
12
21
12






MA
MA
MA
23
)8)(0()2)(4()5(3
201
341
232
det 323222221212














AaAaAa
VALUE OF DETERMINANT IN TERMS OF
MINORS AND COFACTORS
11 12 13
21 22 23
31 32 33
a a a
If A = a a a , then
a a a
 
 
 
  
 
3 3
i j
ij ij ij ij
j 1 j 1
A 1 a M a C

 
   
i1 i1 i2 i2 i3 i3= a C +a C +a C , for i=1 or i=2 or i=3
ROW (COLUMN) OPERATIONS
Following are the notations to evaluate a determinant:
Similar notations can be used to denote column
operations by replacing R with C.
(i) Ri to denote ith row
(ii) Ri Rj to denote the interchange of ith and jth
rows.
(iii) Ri Ri + lRj to denote the addition of l times the
elements of jth row to the corresponding elements
of ith row.
(iv) lRi to denote the multiplication of all elements of
ith row by l.


EVALUATION OF DETERMINANTS
If a determinant becomes zero on putting
is the factor of the determinant. x = , then x - 
2
3
x 5 2
For example, if Δ = x 9 4 , then at x =2
x 16 8
, because C1 and C2 are identical at x = 2
Hence, (x – 2) is a factor of determinant .
  0

SIGN SYSTEM FOR EXPANSION OF DETERMINANT
Sign System for order 2 and order 3 are given by
+ – +
+ –
, – + –
– +
+ – +
 
42 1 6 6×7 1 6
i 28 7 4 = 4×7 7 4
14 3 2 2×7 3 2
 1
6 1 6
=7 4 7 4 Taking out 7 common from C
2 3 2
EXAMPLE - 1
6 -3 2
2 -1 2
-10 5 2
42 1 6
28 7 4
14 3 2
Find the value of the following determinants
(i) (ii)
Solution :
1 3= 7×0 C and C are identical
= 0
  
EXAMPLE –1 (II)
6 -3 2
2 -1 2
-10 5 2
(ii)
 
 
 
   
    
 
3 2 3 2
1 2 1 2
5 2 5 2
 
      
     

1
1 2
3 3 2
( 2) 1 1 2 Taking out 2 common from C
5 5 2
( 2) 0 C and C are identical
0
Evaluate the determinant
1 a b+c
1 b c+a
1 c a+b
Solution :
 3 2 3
1 a b+c 1 a a+b+c
1 b c+a = 1 b a+b+c Applying c c +c
1 c a+b 1 c a+b+c

    3
1 a 1
= a+b+c 1 b 1 Taking a+b+c common from C
1 c 1
  
EXAMPLE - 2
  1 3= a+ b + c ×0 C and C are identical
= 0
  
2 2 2
a b c
We have a b c
bc ca ab
 2
1 1 2 2 2 3
(a-b) b-c c
= (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C
-c(a-b) -a(b-c) ab
 
   2
1 2
1 1 c
Taking a-b and b-c common
=(a-b)(b-c) a+b b+c c
from C and C respectively
-c -a ab
 
 
 
EXAMPLE - 3
bc
2 2 2
a b c
a b c
ca ab
Evaluate the determinant:
Solution:
 2
1 1 2
0 1 c
=(a-b)(b-c) -(c-a) b+c c Applying c c -c
-(c-a) -a ab

2
0 1 c
=-(a-b)(b-c)(c-a) 1 b+c c
1 -a ab
 2
2 2 3
0 1 c
= -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R
1 -a ab

Now expanding along C1 , we get
(a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)]
= (a-b) (b-c) (c-a) (ab + bc + ac)
SOLUTION CONT.
Without expanding the determinant,
prove that
3
3x+y 2x x
4x+3y 3x 3x =x
5x+6y 4x 6x
3x+y 2x x 3x 2x x y 2x x
L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x
5x+6y 4x 6x 5x 4x 6x 6y 4x 6x
3 2
3 2 1 1 2 1
= x 4 3 3 +x y 3 3 3
5 4 6 6 4 6
EXAMPLE - 4
Solution :
 3 2
1 2
3 2 1
= x 4 3 3 +x y×0 C and C are identical in II determinant
5 4 6
SOLUTION CONT.
 3
1 1 2
1 2 1
= x 1 3 3 Applying C C -C
1 4 6

 3
2 2 1 3 3 2
1 2 1
= x 0 1 2 ApplyingR R -R and R R -R
0 1 3
 
 3
1
3
= x ×(3-2) Expanding along C
=x =R.H.S.
3
3 2 1
=x 4 3 3
5 4 6
Prove that : = 0 , where w is cube root of unity.
3 5
3 4
5 5
1 ω ω
ω 1 ω
ω ω 1
3 5 3 3 2
3 4 3 3
5 5 3 2 3 2
1 ω ω 1 ω ω .ω
L.H.S= ω 1 ω = ω 1 ω .ω
ω ω 1 ω .ω ω .ω 1
 
2
3
2 2
1 2
1 1 ω
= 1 1 ω ω =1
ω ω 1
=0=R.H.S. C and C are identical
  
EXAMPLE - 5
Solution :
EXAMPLE - 6
2
x+a b c
a x+b c =x (x+a+b+c)
a b x+C
Prove that :
 1 1 2 3
x+a b c x+a+b+c b c
L.H.S= a x+b c = x+a+b+c x+b c
a b x+C x+a+b+c b x+c
Applying C C +C +C
Solution :
 
  1
1 b c
= x+a+b+c 1 x+b c
1 b x+c
Taking x+a+b+c commonfrom C  
SOLUTION CONT.
 2 2 1 3 3 1
1 b c
=(x+a+b+c) 0 x 0
0 0 x
Applying R R -R and R R -R 
Expanding along C1 , we get
(x + a + b + c) [1(x2)] = x2 (x + a + b + c)
= R.H.S
 1 1 2 3
2(a+b+c) 2(a+b+c) 2(a+b+c)
= c+a a+b b+c Applying R R +R +R
a+b b+c c+a

1 1 1
=2(a+b+c) c+a a+b b+c
a+b b+c c+a
EXAMPLE - 7
Solution :
Using properties of determinants, prove that
2 2 2
b+c c+a a+b
c+a a+b b+c =2(a+b+c)(ab+bc+ca-a -b -c ).
a+b b+c c+a
b+c c+a a+b
L.H.S= c+a a+b b+c
a+b b+c c+a
 1 1 2 2 2 3
0 0 1
=2(a+b+c) (c-b) (a-c) b+c Applying C C -C and C C -C
(a-c) (b-a) c+a
 
Now expanding along R1 , we get
2
2(a+b+c) (c-b)(b-a)-(a-c)  
2 2 2
=2(a+b+c) bc-b -ac+ab-(a +c -2ac)  
SOLUTION CONT.
2 2 2
=2(a+b+c) ab+bc+ac-a -b -c
=R.H.S
  
Using properties of determinants prove that
2
x+4 2x 2x
2x x+4 2x =(5x+4)(4-x)
2x 2x x+4
EXAMPLE - 8
1 2x 2x
=(5x+4)1 x+4 2x
1 2x x+4
Solution :
 1 1 2 3
x+4 2x 2x 5x+4 2x 2x
L.H.S= 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C
2x 2x x+4 5x+4 2x x+4

SOLUTION CONT.
 2 2 1 3 3 2
1 2x 2x
=(5x+4) 0 -(x-4) 0 ApplyingR R -R and R R -R
0 x-4 -(x-4)
 
Now expanding along C1 , we get
2
(5x+4) 1(x-4) -0  
2
=(5x+4)(4-x)
=R.H.S
EXAMPLE - 9
Using properties of determinants, prove that
x+9 x x
x x+9 x =243 (x+3)
x x x+9
x+9 x x
L.H.S= x x+9 x
x x x+9
 1 1 2 3
3x+9 x x
= 3x+9 x+9 x Applying C C +C +C
3x+9 x x+9

Solution :
 1=3(x+3) 81 Expanding along C
=243(x+3)
=R.H.S.

1 x x
=(3x+9)1 x+9 x
1 x x+9
SOLUTION CONT.
  2 2 1 3 3 2
1 x x
=3 x+3 0 9 0 Applying R R -R and R R -R
0 -9 9
   
SOLUTION CONT.
 
2
2 2 2
2 2 1 3 3 2
1 a bc
=(a +b +c ) 0 (b-a)(b+a) c(a-b) Applying R R -R and R R -R
0 (c-b)(c+b) a(b-c)
 
 2 2 2 2 2
1=(a +b +c )(a-b)(b-c)(-ab-a +bc+c ) Expanding along C
2 2 2
=(a +b +c )(a-b)(b-c)(c-a)(a+b+c)=R.H.S.
2
2 2 2
1 a bc
=(a +b +c )(a-b)(b-c) 0 -(b+a) c
0 -(b+c) a
    2 2 2
=(a +b +c )(a-b)(b-c) b c-a + c-a c+a  
EXAMPLE - 10
Solution :
2 2 2 2 2
2 2 2 2 2
1 1 3
2 2 2 2 2
(b+c) a bc b +c a bc
L.H.S.= (c+a) b ca = c +a b ca Applying C C -2C
(a+b) c ab a +b c ab
  
 
2 2 2 2
2 2 2 2
1 1 2
2 2 2 2
a +b +c a bc
a +b +c b ca Applying C C +C
a +b +c c ab
 
2
2 2 2 2
2
1 a bc
=(a +b +c )1 b ca
1 c ab
2 2
2 2 2 2 2
2 2
(b+c) a bc
(c+a) b ca =(a +b +c )(a-b)(b-c)(c-a)(a+b+c)
(a+b) c ab
Show that
Applications of Determinants
(Area of a Triangle)
The area of a triangle whose vertices are
is given by the expression1 1 2 2 3 3(x , y ), (x , y ) and (x , y )
1 1
2 2
3 3
x y 1
1
Δ= x y 1
2
x y 1
1 2 3 2 3 1 3 1 2
1
= [x (y - y )+ x (y - y )+ x (y - y )]
2
Example
Find the area of a triangle whose vertices are (-1, 8), (-2, -3)
and (3, 2).
Solution :
1 1
2 2
3 3
x y 1 -1 8 1
1 1
Area of triangle= x y 1 = -2 -3 1
2 2
x y 1 3 2 1
 
1
= -1(-3-2)-8(-2-3)+1(-4+9)
2
 
1
= 5+40+5 =25 sq.units
2
If are three points,
then A, B, C are collinear
1 1 2 2 3 3A (x , y ), B (x , y ) and C (x , y )
1 1 1 1
2 2 2 2
3 3 3 3
Area of triangle ABC = 0
x y 1 x y 1
1
x y 1 = 0 x y 1 = 0
2
x y 1 x y 1

 
Condition of Collinearity of Three Points
If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using
determinants.
Example
Solution :
x -2 1
5 2 1 =0
8 8 1

      x 2-8 - -2 5-8 +1 40-16 =0
-6x-6+24=0
6x=18 x=3 
Since the given points are collinear.
Solution of System of 2 Linear
Equations (Cramer’s Rule)
Let the system of linear equations be
 2 2 2a x+b y = c ... ii
 1 1 1a x+b y = c ... i
1 2D D
Then x = , y = provided D 0,
D D

1 1 1 1 1 1
1 2
2 2 2 2 2 2
a b c b a c
where D = , D = and D =
a b c b a c
Cramer’s Rule
then the system is consistent and has infinitely many
solutions.
  1 22 If D = 0 and D =D = 0,
then the system is inconsistent and has no solution.
 1 If D 0
Note :
,
then the system is consistent and has unique solution.
  1 23 If D=0 and one of D , D 0,
Example
2 -3
D= =2+9=11 0
3 1

1
7 -3
D = =7+15=22
5 1
2
2 7
D = =10-21=-11
3 5
Solution :
1 2
D 0
D D22 -11
By Cramer's Rule x= = =2 and y= = =-1
D 11 D 11


Using Cramer's rule , solve the following
system of equations 2x-3y=7, 3x+y=5
Solution of System of 3 Linear
Equations (Cramer’s Rule)
Let the system of linear equations be
 2 2 2 2a x+b y+c z = d ... ii
 1 1 1 1a x+b y+c z = d ... i
 3 3 3 3a x+b y+c z = d ... iii
31 2 DD D
Then x = , y = z = provided D 0,
D D D
, 
1 1 1 1 1 1 1 1 1
2 2 2 1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
a b c d b c a d c
where D = a b c , D = d b c , D = a d c
a b c d b c a d c
1 1 1
3 2 2 2
3 3 3
a b d
and D = a b d
a b d
Cramer’s Rule
Note:
(1) If D  0, then the system is consistent and has a unique
solution.
(2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite
solutions or no solution.
(3) If D = 0 and one of D1, D2, D3  0, then the system
is inconsistent and has no solution.
(4) If d1 = d2 = d3 = 0, then the system is called the system of
homogeneous linear equations.
(i) If D  0, then the system has only trivial solution x = y = z = 0.
(ii) If D = 0, then the system has infinite solutions.
Example
Using Cramer's rule , solve the following
system of equations
5x - y+ 4z = 5
2x + 3y+ 5z = 2
5x - 2y + 6z = -1
Solution :
5 -1 4
D= 2 3 5
5 -2 6
1
5 -1 4
D = 2 3 5
-1 -2 6
= 5(18+10)+1(12+5)+4(-4 +3)
= 140 +17 –4
= 153
= 5(18+10) + 1(12-25)+4(-4 -15)
= 140 –13 –76 =140 - 89
= 51 0
3
5 -1 5
D = 2 3 2
5 -2 -1
= 5(-3 +4)+1(-2 - 10)+5(-4-15)
= 5 – 12 – 95 = 5 - 107
= - 102
Solution
1 2
3
D 0
D D153 102
By Cramer's Rule x= = =3, y= = =2
D 51 D 51
D -102
and z= = =-2
D 51


2
5 5 4
D = 2 2 5
5 -1 6
= 5(12 +5)+5(12 - 25)+ 4(-2 - 10)
= 85 + 65 – 48 = 150 - 48
= 102
Example
Solve the following system of homogeneous linear equations:
x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0
Solution:
     
1 1 - 1
We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6
3 6 - 5
= 4 + 8 - 12 = 0
 
 
 
  
The systemhas infinitely many solutions.
Putting z = k, in first two equations, we get
x + y = k, x – 2y = -k
1
k 1
D -k - 2 -2k + k k
By Cramer's rule x = = = =
D -2 - 1 31 1
1 - 2

2
1 k
D 1 - k -k - k 2k
y = = = =
D -2 - 1 31 1
1 - 2
k 2k
x = , y = , z = k , where k R
3 3
 
These values of x, y and z = k satisfy (iii) equation.
Seatwork
Find the determinant of each matrix.
42 1 6
28 7 4
14 3 2
6 -3 2
2 -1 2
-10 5 2
2 3 1
0 2 4
2 5 6
 
 
 
  
8 2 1 4
3 5 3 11
0 0 4 0
2 2 7 1
  
  
 
 
 
Thank you

Mais conteúdo relacionado

Mais procurados

Cramers rule
Cramers ruleCramers rule
Cramers rule
mstf mstf
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
itutor
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
swartzje
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
itutor
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
canalculus
 

Mais procurados (20)

System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Coordinate geometry
Coordinate geometry Coordinate geometry
Coordinate geometry
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Matrix Algebra seminar ppt
Matrix Algebra seminar pptMatrix Algebra seminar ppt
Matrix Algebra seminar ppt
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
 
Matrices
MatricesMatrices
Matrices
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
 
Solving absolute values
Solving absolute valuesSolving absolute values
Solving absolute values
 
Inverse matrix
Inverse matrixInverse matrix
Inverse matrix
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
 

Semelhante a Determinants

Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
itutor
 

Semelhante a Determinants (20)

determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Vivek
VivekVivek
Vivek
 
Lemh104
Lemh104Lemh104
Lemh104
 
Algebra unit 9.1
Algebra unit 9.1Algebra unit 9.1
Algebra unit 9.1
 
presentation
presentationpresentation
presentation
 
lemh2sm.pdf
lemh2sm.pdflemh2sm.pdf
lemh2sm.pdf
 
Determinants. Cramer’s Rule
Determinants. Cramer’s RuleDeterminants. Cramer’s Rule
Determinants. Cramer’s Rule
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
 
Advanced algebra
Advanced algebraAdvanced algebra
Advanced algebra
 
Correlation & regression
Correlation & regression Correlation & regression
Correlation & regression
 

Mais de Joey Valdriz

Mais de Joey Valdriz (20)

RA 9155 or Governance of Basic Education Act of 2001
RA 9155 or Governance of Basic Education Act of 2001RA 9155 or Governance of Basic Education Act of 2001
RA 9155 or Governance of Basic Education Act of 2001
 
A Presentation on the Learning Action Cell
A Presentation on the Learning Action CellA Presentation on the Learning Action Cell
A Presentation on the Learning Action Cell
 
A Presentation on the No Collection Policy of DepEd
A Presentation on the No Collection Policy of DepEdA Presentation on the No Collection Policy of DepEd
A Presentation on the No Collection Policy of DepEd
 
Geometric Sequence
Geometric SequenceGeometric Sequence
Geometric Sequence
 
Arithmetic Sequence
Arithmetic SequenceArithmetic Sequence
Arithmetic Sequence
 
Probability
ProbabilityProbability
Probability
 
Combination
CombinationCombination
Combination
 
Permutation
PermutationPermutation
Permutation
 
General Elements of Self-Learning Modules
General Elements of Self-Learning ModulesGeneral Elements of Self-Learning Modules
General Elements of Self-Learning Modules
 
Beyond Hard Skills: Math as Social and Emotional Learning
Beyond Hard Skills: Math as Social and Emotional LearningBeyond Hard Skills: Math as Social and Emotional Learning
Beyond Hard Skills: Math as Social and Emotional Learning
 
Design Thinking
Design ThinkingDesign Thinking
Design Thinking
 
Problems Involving Probabilities of Events (Math 8)
Problems Involving Probabilities of Events (Math 8)Problems Involving Probabilities of Events (Math 8)
Problems Involving Probabilities of Events (Math 8)
 
Conditional Probability
Conditional ProbabilityConditional Probability
Conditional Probability
 
Multiplying Polynomials: Two Binomials
Multiplying Polynomials: Two BinomialsMultiplying Polynomials: Two Binomials
Multiplying Polynomials: Two Binomials
 
Summative Test on Measures of Position
Summative Test on Measures of PositionSummative Test on Measures of Position
Summative Test on Measures of Position
 
Geometric Sequence
Geometric SequenceGeometric Sequence
Geometric Sequence
 
Probability of Simple and Compound Events
Probability of Simple and Compound EventsProbability of Simple and Compound Events
Probability of Simple and Compound Events
 
Plotting of Points on the Coordinate Plane
Plotting of Points on the Coordinate PlanePlotting of Points on the Coordinate Plane
Plotting of Points on the Coordinate Plane
 
Language Strategies in Teaching Mathematics
Language Strategies in Teaching MathematicsLanguage Strategies in Teaching Mathematics
Language Strategies in Teaching Mathematics
 
Philippine National Heroes
Philippine National HeroesPhilippine National Heroes
Philippine National Heroes
 

Último

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Último (20)

Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 

Determinants

  • 3. SUB-TOPICS Determinant of a Square Matrix Minors and Cofactors Properties of Determinants Applications of Determinants Area of a Triangle Condition of Collinearity of Three Points Solution of System of Linear Equations (Cramer’s Rule)
  • 4. DETERMINANT Every square matrix has associated with it a scalar called its determinant. Given a matrix A, we use det(A) or |A| to designate its determinant. We can also designate the determinant of matrix A by replacing the brackets by vertical straight lines. For example,        30 12 A 30 12 )det( A Definition 1: The determinant of a 11 matrix [a] is the scalar a. Definition 2: The determinant of a 22 matrix is the scalar ad-bc. For higher order matrices, we will use a recursive procedure to compute determinants.       dc ba
  • 5. Example 4 - 3 Evaluate the determinant : 2 5   4 - 3 Solution : = 4×5 - 2× -3 = 20 + 6 = 26 2 5
  • 6. Solution The determinant of a 3 × 3 matrix A, where          333231 232221 131211 aaa aaa aaa A is a real number defined as         det 11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12 A a a a a a a a a a a a a a a a a a a .
  • 7. Solution If A = is a square matrix of order 3, then 11 12 13 21 22 23 31 32 33 a a a a a a a a a          [Expanding along first row] 11 12 13 22 23 21 23 21 22 21 22 23 11 12 13 32 33 31 33 31 32 31 32 33 a a a a a a a a a | A |= a a a = a - a + a a a a a a a a a a      11 22 33 32 23 12 21 33 31 23 13 21 32 31 22= a a a - a a - a a a - a a + a a a - a a    11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22a a a a a a a a a a a a a a a a a a     
  • 8. Example 2 3 - 5 Evaluate the determinant : 7 1 - 2 -3 4 1   2 3 - 5 1 - 2 7 - 2 7 1 7 1 - 2 = 2 - 3 + -5 4 1 -3 1 -3 4 -3 4 1      = 2 1+ 8 - 3 7 - 6 - 5 28 + 3 = 18 - 3 - 155 = -140 [Expanding along first row] Solution :
  • 9. Properties of Determinants 1. The value of a determinant remains unchanged, if its rows and columns are interchanged. 1 1 1 1 2 3 2 2 2 1 2 3 3 3 3 1 2 3 a b c a a a a b c = b b b a b c c c c i e A A. . ' 2. If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign.   1 1 1 2 2 2 2 2 2 1 1 1 2 1 3 3 3 3 3 3 a b c a b c a b c = - a b c R R a b c a b c Applying 
  • 10. Properties 3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant. 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ka kb kc a b c a b c = k a b c a b c a b c which also implies 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 a b c ma mb mc 1 a b c = a b c m a b c a b c
  • 11. Properties 4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 a +x b c a b c x b c a +y b c = a b c + y b c a +z b c a b c z b c 5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).   1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 3 3 a b c a +mb - nc b c a b c = a +mb - nc b c C C + mC -nC a b c a +mb - nc b c Applying 
  • 12. Properties 6. If any two rows (or columns) of a determinant are identical, then its value is zero. 2 2 2 3 3 3 0 0 0 a b c = 0 a b c 7. If each element of a row (or column) of a determinant is zero, then its value is zero. 1 1 1 2 2 2 1 1 1 a b c a b c = 0 a b c
  • 13. Properties   a 0 0 8 Let A = 0 b 0 be a diagonal matrix, then 0 0 c          a 0 0 = 0 b 0 0 0 c A abc
  • 14. Copyright © 2011 Pearson Education, Inc. Slide 7.5-14 The Minor of an Element • The determinant of each 3 × 3 matrix is called a minor of the associated element. • The symbol Mij represents the minor when the ith row and jth column are eliminated.
  • 15. Copyright © 2011 Pearson Education, Inc. Slide 7.5-15 • To find the determinant of a 3 × 3 or larger square matrix: 1. Choose any row or column, 2. Multiply the minor of each element in that row or column by a +1 or –1, depending on whether the sum of i + j is even or odd, 3. Then, multiply each cofactor by its corresponding element in the matrix and find the sum of these products. This sum is the determinant of the matrix. The Cofactor of an Element Let Mij be the minor for element aij in an n × n matrix. The cofactor of aij, written Aij, is   .MA ij ji ij   1
  • 16. Copyright © 2011 Pearson Education, Inc. Slide 7.5-16 Example Evaluate det , expanding by the second column. Solution First find the minors of each element in the second column. Finding the Determinant            201 341 232 8)2)(1()3(2 31 22det 2)2)(1()2(2 21 22det 5)3)(1()2(1 21 31det 32 22 12                      M M M
  • 17. Copyright © 2011 Pearson Education, Inc. Slide 7.5-17 Now, find the cofactor. The determinant is found by multiplying each cofactor by its corresponding element in the matrix and finding the sum of these products. Finding the Determinant 8)8()1()1( 2)2()1()1( 5)5()1()1( 5 32 23 32 4 22 22 22 3 12 21 12       MA MA MA 23 )8)(0()2)(4()5(3 201 341 232 det 323222221212               AaAaAa
  • 18. VALUE OF DETERMINANT IN TERMS OF MINORS AND COFACTORS 11 12 13 21 22 23 31 32 33 a a a If A = a a a , then a a a            3 3 i j ij ij ij ij j 1 j 1 A 1 a M a C        i1 i1 i2 i2 i3 i3= a C +a C +a C , for i=1 or i=2 or i=3
  • 19. ROW (COLUMN) OPERATIONS Following are the notations to evaluate a determinant: Similar notations can be used to denote column operations by replacing R with C. (i) Ri to denote ith row (ii) Ri Rj to denote the interchange of ith and jth rows. (iii) Ri Ri + lRj to denote the addition of l times the elements of jth row to the corresponding elements of ith row. (iv) lRi to denote the multiplication of all elements of ith row by l.  
  • 20. EVALUATION OF DETERMINANTS If a determinant becomes zero on putting is the factor of the determinant. x = , then x -  2 3 x 5 2 For example, if Δ = x 9 4 , then at x =2 x 16 8 , because C1 and C2 are identical at x = 2 Hence, (x – 2) is a factor of determinant .   0 
  • 21. SIGN SYSTEM FOR EXPANSION OF DETERMINANT Sign System for order 2 and order 3 are given by + – + + – , – + – – + + – +
  • 22.   42 1 6 6×7 1 6 i 28 7 4 = 4×7 7 4 14 3 2 2×7 3 2  1 6 1 6 =7 4 7 4 Taking out 7 common from C 2 3 2 EXAMPLE - 1 6 -3 2 2 -1 2 -10 5 2 42 1 6 28 7 4 14 3 2 Find the value of the following determinants (i) (ii) Solution : 1 3= 7×0 C and C are identical = 0   
  • 23. EXAMPLE –1 (II) 6 -3 2 2 -1 2 -10 5 2 (ii)                  3 2 3 2 1 2 1 2 5 2 5 2                 1 1 2 3 3 2 ( 2) 1 1 2 Taking out 2 common from C 5 5 2 ( 2) 0 C and C are identical 0
  • 24. Evaluate the determinant 1 a b+c 1 b c+a 1 c a+b Solution :  3 2 3 1 a b+c 1 a a+b+c 1 b c+a = 1 b a+b+c Applying c c +c 1 c a+b 1 c a+b+c      3 1 a 1 = a+b+c 1 b 1 Taking a+b+c common from C 1 c 1    EXAMPLE - 2   1 3= a+ b + c ×0 C and C are identical = 0   
  • 25. 2 2 2 a b c We have a b c bc ca ab  2 1 1 2 2 2 3 (a-b) b-c c = (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C -c(a-b) -a(b-c) ab      2 1 2 1 1 c Taking a-b and b-c common =(a-b)(b-c) a+b b+c c from C and C respectively -c -a ab       EXAMPLE - 3 bc 2 2 2 a b c a b c ca ab Evaluate the determinant: Solution:
  • 26.  2 1 1 2 0 1 c =(a-b)(b-c) -(c-a) b+c c Applying c c -c -(c-a) -a ab  2 0 1 c =-(a-b)(b-c)(c-a) 1 b+c c 1 -a ab  2 2 2 3 0 1 c = -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R 1 -a ab  Now expanding along C1 , we get (a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)] = (a-b) (b-c) (c-a) (ab + bc + ac) SOLUTION CONT.
  • 27. Without expanding the determinant, prove that 3 3x+y 2x x 4x+3y 3x 3x =x 5x+6y 4x 6x 3x+y 2x x 3x 2x x y 2x x L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x 5x+6y 4x 6x 5x 4x 6x 6y 4x 6x 3 2 3 2 1 1 2 1 = x 4 3 3 +x y 3 3 3 5 4 6 6 4 6 EXAMPLE - 4 Solution :  3 2 1 2 3 2 1 = x 4 3 3 +x y×0 C and C are identical in II determinant 5 4 6
  • 28. SOLUTION CONT.  3 1 1 2 1 2 1 = x 1 3 3 Applying C C -C 1 4 6   3 2 2 1 3 3 2 1 2 1 = x 0 1 2 ApplyingR R -R and R R -R 0 1 3    3 1 3 = x ×(3-2) Expanding along C =x =R.H.S. 3 3 2 1 =x 4 3 3 5 4 6
  • 29. Prove that : = 0 , where w is cube root of unity. 3 5 3 4 5 5 1 ω ω ω 1 ω ω ω 1 3 5 3 3 2 3 4 3 3 5 5 3 2 3 2 1 ω ω 1 ω ω .ω L.H.S= ω 1 ω = ω 1 ω .ω ω ω 1 ω .ω ω .ω 1   2 3 2 2 1 2 1 1 ω = 1 1 ω ω =1 ω ω 1 =0=R.H.S. C and C are identical    EXAMPLE - 5 Solution :
  • 30. EXAMPLE - 6 2 x+a b c a x+b c =x (x+a+b+c) a b x+C Prove that :  1 1 2 3 x+a b c x+a+b+c b c L.H.S= a x+b c = x+a+b+c x+b c a b x+C x+a+b+c b x+c Applying C C +C +C Solution :     1 1 b c = x+a+b+c 1 x+b c 1 b x+c Taking x+a+b+c commonfrom C  
  • 31. SOLUTION CONT.  2 2 1 3 3 1 1 b c =(x+a+b+c) 0 x 0 0 0 x Applying R R -R and R R -R  Expanding along C1 , we get (x + a + b + c) [1(x2)] = x2 (x + a + b + c) = R.H.S
  • 32.  1 1 2 3 2(a+b+c) 2(a+b+c) 2(a+b+c) = c+a a+b b+c Applying R R +R +R a+b b+c c+a  1 1 1 =2(a+b+c) c+a a+b b+c a+b b+c c+a EXAMPLE - 7 Solution : Using properties of determinants, prove that 2 2 2 b+c c+a a+b c+a a+b b+c =2(a+b+c)(ab+bc+ca-a -b -c ). a+b b+c c+a b+c c+a a+b L.H.S= c+a a+b b+c a+b b+c c+a
  • 33.  1 1 2 2 2 3 0 0 1 =2(a+b+c) (c-b) (a-c) b+c Applying C C -C and C C -C (a-c) (b-a) c+a   Now expanding along R1 , we get 2 2(a+b+c) (c-b)(b-a)-(a-c)   2 2 2 =2(a+b+c) bc-b -ac+ab-(a +c -2ac)   SOLUTION CONT. 2 2 2 =2(a+b+c) ab+bc+ac-a -b -c =R.H.S   
  • 34. Using properties of determinants prove that 2 x+4 2x 2x 2x x+4 2x =(5x+4)(4-x) 2x 2x x+4 EXAMPLE - 8 1 2x 2x =(5x+4)1 x+4 2x 1 2x x+4 Solution :  1 1 2 3 x+4 2x 2x 5x+4 2x 2x L.H.S= 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C 2x 2x x+4 5x+4 2x x+4 
  • 35. SOLUTION CONT.  2 2 1 3 3 2 1 2x 2x =(5x+4) 0 -(x-4) 0 ApplyingR R -R and R R -R 0 x-4 -(x-4)   Now expanding along C1 , we get 2 (5x+4) 1(x-4) -0   2 =(5x+4)(4-x) =R.H.S
  • 36. EXAMPLE - 9 Using properties of determinants, prove that x+9 x x x x+9 x =243 (x+3) x x x+9 x+9 x x L.H.S= x x+9 x x x x+9  1 1 2 3 3x+9 x x = 3x+9 x+9 x Applying C C +C +C 3x+9 x x+9  Solution :
  • 37.  1=3(x+3) 81 Expanding along C =243(x+3) =R.H.S.  1 x x =(3x+9)1 x+9 x 1 x x+9 SOLUTION CONT.   2 2 1 3 3 2 1 x x =3 x+3 0 9 0 Applying R R -R and R R -R 0 -9 9    
  • 38. SOLUTION CONT.   2 2 2 2 2 2 1 3 3 2 1 a bc =(a +b +c ) 0 (b-a)(b+a) c(a-b) Applying R R -R and R R -R 0 (c-b)(c+b) a(b-c)    2 2 2 2 2 1=(a +b +c )(a-b)(b-c)(-ab-a +bc+c ) Expanding along C 2 2 2 =(a +b +c )(a-b)(b-c)(c-a)(a+b+c)=R.H.S. 2 2 2 2 1 a bc =(a +b +c )(a-b)(b-c) 0 -(b+a) c 0 -(b+c) a     2 2 2 =(a +b +c )(a-b)(b-c) b c-a + c-a c+a  
  • 39. EXAMPLE - 10 Solution : 2 2 2 2 2 2 2 2 2 2 1 1 3 2 2 2 2 2 (b+c) a bc b +c a bc L.H.S.= (c+a) b ca = c +a b ca Applying C C -2C (a+b) c ab a +b c ab      2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 a +b +c a bc a +b +c b ca Applying C C +C a +b +c c ab   2 2 2 2 2 2 1 a bc =(a +b +c )1 b ca 1 c ab 2 2 2 2 2 2 2 2 2 (b+c) a bc (c+a) b ca =(a +b +c )(a-b)(b-c)(c-a)(a+b+c) (a+b) c ab Show that
  • 40. Applications of Determinants (Area of a Triangle) The area of a triangle whose vertices are is given by the expression1 1 2 2 3 3(x , y ), (x , y ) and (x , y ) 1 1 2 2 3 3 x y 1 1 Δ= x y 1 2 x y 1 1 2 3 2 3 1 3 1 2 1 = [x (y - y )+ x (y - y )+ x (y - y )] 2
  • 41. Example Find the area of a triangle whose vertices are (-1, 8), (-2, -3) and (3, 2). Solution : 1 1 2 2 3 3 x y 1 -1 8 1 1 1 Area of triangle= x y 1 = -2 -3 1 2 2 x y 1 3 2 1   1 = -1(-3-2)-8(-2-3)+1(-4+9) 2   1 = 5+40+5 =25 sq.units 2
  • 42. If are three points, then A, B, C are collinear 1 1 2 2 3 3A (x , y ), B (x , y ) and C (x , y ) 1 1 1 1 2 2 2 2 3 3 3 3 Area of triangle ABC = 0 x y 1 x y 1 1 x y 1 = 0 x y 1 = 0 2 x y 1 x y 1    Condition of Collinearity of Three Points
  • 43. If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using determinants. Example Solution : x -2 1 5 2 1 =0 8 8 1        x 2-8 - -2 5-8 +1 40-16 =0 -6x-6+24=0 6x=18 x=3  Since the given points are collinear.
  • 44. Solution of System of 2 Linear Equations (Cramer’s Rule) Let the system of linear equations be  2 2 2a x+b y = c ... ii  1 1 1a x+b y = c ... i 1 2D D Then x = , y = provided D 0, D D  1 1 1 1 1 1 1 2 2 2 2 2 2 2 a b c b a c where D = , D = and D = a b c b a c
  • 45. Cramer’s Rule then the system is consistent and has infinitely many solutions.   1 22 If D = 0 and D =D = 0, then the system is inconsistent and has no solution.  1 If D 0 Note : , then the system is consistent and has unique solution.   1 23 If D=0 and one of D , D 0,
  • 46. Example 2 -3 D= =2+9=11 0 3 1  1 7 -3 D = =7+15=22 5 1 2 2 7 D = =10-21=-11 3 5 Solution : 1 2 D 0 D D22 -11 By Cramer's Rule x= = =2 and y= = =-1 D 11 D 11   Using Cramer's rule , solve the following system of equations 2x-3y=7, 3x+y=5
  • 47. Solution of System of 3 Linear Equations (Cramer’s Rule) Let the system of linear equations be  2 2 2 2a x+b y+c z = d ... ii  1 1 1 1a x+b y+c z = d ... i  3 3 3 3a x+b y+c z = d ... iii 31 2 DD D Then x = , y = z = provided D 0, D D D ,  1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 a b c d b c a d c where D = a b c , D = d b c , D = a d c a b c d b c a d c 1 1 1 3 2 2 2 3 3 3 a b d and D = a b d a b d
  • 48. Cramer’s Rule Note: (1) If D  0, then the system is consistent and has a unique solution. (2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite solutions or no solution. (3) If D = 0 and one of D1, D2, D3  0, then the system is inconsistent and has no solution. (4) If d1 = d2 = d3 = 0, then the system is called the system of homogeneous linear equations. (i) If D  0, then the system has only trivial solution x = y = z = 0. (ii) If D = 0, then the system has infinite solutions.
  • 49. Example Using Cramer's rule , solve the following system of equations 5x - y+ 4z = 5 2x + 3y+ 5z = 2 5x - 2y + 6z = -1 Solution : 5 -1 4 D= 2 3 5 5 -2 6 1 5 -1 4 D = 2 3 5 -1 -2 6 = 5(18+10)+1(12+5)+4(-4 +3) = 140 +17 –4 = 153 = 5(18+10) + 1(12-25)+4(-4 -15) = 140 –13 –76 =140 - 89 = 51 0
  • 50. 3 5 -1 5 D = 2 3 2 5 -2 -1 = 5(-3 +4)+1(-2 - 10)+5(-4-15) = 5 – 12 – 95 = 5 - 107 = - 102 Solution 1 2 3 D 0 D D153 102 By Cramer's Rule x= = =3, y= = =2 D 51 D 51 D -102 and z= = =-2 D 51   2 5 5 4 D = 2 2 5 5 -1 6 = 5(12 +5)+5(12 - 25)+ 4(-2 - 10) = 85 + 65 – 48 = 150 - 48 = 102
  • 51. Example Solve the following system of homogeneous linear equations: x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0 Solution:       1 1 - 1 We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6 3 6 - 5 = 4 + 8 - 12 = 0          The systemhas infinitely many solutions. Putting z = k, in first two equations, we get x + y = k, x – 2y = -k
  • 52. 1 k 1 D -k - 2 -2k + k k By Cramer's rule x = = = = D -2 - 1 31 1 1 - 2  2 1 k D 1 - k -k - k 2k y = = = = D -2 - 1 31 1 1 - 2 k 2k x = , y = , z = k , where k R 3 3   These values of x, y and z = k satisfy (iii) equation.
  • 53. Seatwork Find the determinant of each matrix. 42 1 6 28 7 4 14 3 2 6 -3 2 2 -1 2 -10 5 2 2 3 1 0 2 4 2 5 6          8 2 1 4 3 5 3 11 0 0 4 0 2 2 7 1            