SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
http://www.maths.net.au/                                                            2010 Mathematics HSC Solutions



                   2010 Mathematics HSC Solutions 
 Question 1                                           (b)        x 2  x  12  0
 (a)                                                        ( x  4)( x  3)  0
        x2  4x  0
                                                                       y
       x( x  4)  0
       x  0 or x  4  0
                                                             –3                4
                     x4                                                            x


 (b)      1    52   52
                                                          3  x  4
         52   52   54
                            2 5                     (c) y  ln  3x 
                                                            dy 3
       a  2       and b  1                                 
                                                            dx 3x
 (c) ( x  1) 2  ( y  2) 2  25                               1
                                                              
                                                                x
 (d) 2 x  3  9                                                                1
                                                            at x  2, m 
                                                                                2
       2x  3  9     or    (2 x  3)  9
                                                                               2 3
                                                      (d) (i)  5 x  1 dx        5  5 x  1 2 dx
                                                                                                   1

           2x  6               2 x  3  9                  
                                                                            3 5 2
              x3                   2 x  12                                 2
                                                                                  5 x  1  c
                                                                                           3
                                                                           
                                      x  6                                 15

       d 2                                                           x        1      2x
 (e)      x tan x  tan x (2 x)  x 2 (sec 2 x)             (ii) 
                                                                         dx            dx
       dx                                                         4 x 2
                                                                              2  4  x2
                   x(2 tan x  x sec2 x)                                     1
                                                                              ln  4  x 2   c
                                                                              2
             a
 (f) s 
                                                      (e)    6
            1 r
             1
                                                              x  k  dx  30
                                                             0
                                                              x2     
                                                                           6
            1 1
               3
                                                               2  kx   30
              3                                                       0
          
              2                                                    62
                                                                       6k  30
                                                                   2
 (g) x  8                                                              6k  12
 Question 2                                                              k 2
                                                      Question 3
       d cos x x( sin x)  cos x(1)
 (a)                                                              2  12 4  6 
       dx x                x2                         (a) (i) M          ,       
                 x sin x  cos x                                  2         2 
                                                                 5, 1
                        x2


                                                  1
http://www.maths.net.au/                                                                          2010 Mathematics HSC Solutions


                     86                                                   3                   1
      (ii) mBC                                                               ln x dx           0  2 ln 2  ln 3
                     6  12                                             1                      2
                       1                                                                      1.24 (2 d.p.)
                    
                       3
                                                                (iii) The approximation using the
                   2 1                                               trapezoidal rule is less than the
      (iii) mMN 
                   25                                                actual value of the integral, because
                    1                                                 the shaded area of the trapeziums,
                 
                     3                                                is less than the actual area below
            since mBC  mMN ,                                         the curve.
             BC || MN
                                                                                   y
             Corresponding angles on parallel                                  2
             lines are equal, so
             ACB  ANM                                                       1
             ABC  AMN
              ABC ||| AMN (equiangular)
                                                                                              1        2    3     4 x
                          1
      (iv)       y  2    x  2
                          3                                                 -1
                3y  6  x  2
                                                            Question 4
             x  3y  8  0
                                                            (a) (i) Forms an AP, a  1 , d  0.75
                                                                    Tn  1  (n  1)  0.75
                        12  6    6  8
                                    2             2
      (v) BC 
                                                                      Tn  0.25  0.75n
                  2 10
                                                                      T9  0.25  0.75  9
                 1                                                    T9  7 km
      (vi) Area  bh
                 2                                                    Susannah runs 7 km in the 9th week
                 1                                              (ii) Tn  0.25  0.75n
             44  2 10h
                 2                                                    10  0.25  0.75n
                 22 10                                                n  13
              h
                   5                                                  In the 13th week.

 (b) (i)            y
                                                                (iii) S 26            26
                                                                                        2    2 1   26  1  0.75
                3                                                                269.75 km
                2                                                                  2
                                                                       
                1                                           (b) Area    e 2 x  e x  dx
                                                                       0
               -1       1       2       3   4    5 x                                               2
               -2                                                        e2 x        
                                                                              e x 
               -3                                                        2           0
               -4
               -5                                                         e4        e0    
                                                                          e 2     e0 
      (ii)      x           1         2           3                      2         2      
                            0       ln(2)       ln(3)                           2
               f(x)                                                      e  2e  3
                                                                           4
                                                                       
                                                                              2

                                                        2
http://www.maths.net.au/                                                              2010 Mathematics HSC Solutions



 (c) (i) P (2 mint) 
                              4 3                                     4 r 3  20  0
                                
                             12 11                                     r3  5  0
                              1
                                                                               5
                             11                                       r    3
                                                                                
                              1 1 1
      (ii) P (2same)                                               d2A        60
                             11 11 11                                       4  3
                                                                         2
                              3                                       dr          r
                           
                             11                                                  5
                                                                      when r  3 ,
                                                                                     
                                         3                              2
                                                                      d A
      (iii) P (2 different)  1                                            16  0,  c.c.up,
                                        11                            dr 2
                                   8                                                                           5
                                                                      local minimum at r              3
                                   11                                                                        




 (d) f  x   f   x   1  e x 1  e  x 

                            1  e x  e x  1                                                     1      1 sin x
                                         x                  (b) (i) sec2 x  sec x tan x               
                           2e e x
                                                                                                 cos 2 x cos x cos x
       f  x   f   x   1  e x   1  e  x                                          
                                                                                                 1  sin x
                                                                                                  cos 2 x
                            2  e x  e x

                                                                                                 1  sin x
 Question 5                                                      (ii) sec2 x  sec x tan x 
                                                                                                  cos 2 x
                                                                                                 1  sin x
 (a) (i)    V   r 2h                                                                         
                                                                                                 1  sin 2 x
            10   r 2 h                                                                                1  sin x
                                                                                               
                  10                                                                             1  sin x 1  sin x 
             h 2
                 r                                                                                    1
                                                                                               
                                                                                                   1  sin x
            A  2 r 2  2 rh
                                10 
                2 r 2  2 r  2                                             
                                                                                  1
                                                                 (iii) I  
                                                                             4

                               r                                                    dx
                                                                           0 1  sin x
                          20
                2 r 2 
                                                                                
                                                                          4
                           r                                               sec 2 x  sec x tan x  dx
                                                                          0
                                                                          tan x  sec x 0
                                                                                           
      (ii) dA          20                                                                  4

                4 r  2
            dr         r                                                                             
               dA                                                         tan  sec    tan 0  sec 0 
           let     0 to find stationary points                               4     4                  
               dr
                                                                         1 2 1
                                                                         2

                                                         3
http://www.maths.net.au/                                                      2010 Mathematics HSC Solutions


                    1 1
                                                        (iii)
            A1   dx
 (c)                                                                              y
                 
                 a x
             1   ln x a
                          1
                                                                             8
             1  ln 1  ln  a 
                                                                       –2
       ln  a   1                                                                         x
                  1
            a
                  e                                 (b) (i) l  r
                                                            9  5
                  b
                    1
           A2   dx
                                                                 1.8
                1 x
             1   ln x 1
                          b                             (ii) In OPT and OQT
                                                             OP = OQ (equal radii of 5 cm)
             1  ln  b   ln 1                           OPT = OQT (both right angles)
       ln  b   1                                          OT is a common line
                                                             OPT  OQT (RHS)
            be
                                                        (iii) POT  1 POQ
 Question 6                                                          2

                                                                        0.9
 (a) (i)     f ( x)  ( x  2)( x  4)
                                  2
                                                                           PT
                                                                tan(0.9) 
             f ( x)  x3  2 x 2  4 x  8                                  5
                                                                PT  5 tan(0.9)
             f ( x)  3 x 2  4 x  4                       PT  6.3 cm (1 d.p.)
                                                                       
                                                        (iv) PTQ    1.8  2
            Consider the discriminate,                                2 2
              42  4(3)(4)                                  (angle sum of a quadrilateral is 2 )
               32
                                                                PTQ  1.34
            Therefore there are no zeros, and                         1
                                                                Area  (6.3) 2 sin(1.34)
            hence, no stationary points. (the                         2
            derivative function is positive                               1                       
            definite)                                                     (5) 2 (1.8  sin(1.8)) 
                                                                          2                       
       (ii) f ( x )  6 x  4                                         9 cm 2

                                                    Question 7
            The graph is concave down when
            6x  4  0
                                                    (a) (i) x   4 cos 2t dt
                                                            
                 2
            x
                 3                                                 2sin 2t  c
            The graph is concave up when
                 2                                              when t = 0, x  1 ,
                                                                             
            x                                                 1  2sin 2(0)  c
                 3
                                                                c 1

                                                                 x  2sin 2t  1
                                                                  


                                                4
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (ii) at x  0
                                                                                    1     
           0  2sin 2t  1                                           T is the point  , 2  .
                                                                                     2     
                      1                                             mBT  4
           sin 2t  
                      2                                             Eqn BT: y  4  4( x  2)
                                                                            y  4x  4
              2t  
                       6
                     13                                           Since this line is not vertical, if there
              t          ,
                    12 12                                           is one simultaneous solution between
                                                                    this line and the parabola, it is a
              Therefore, the first time it will be at               tangent. So, sub y  4 x  4 into
                             13                                     y  x2
              rest is at t =      3.4 s
                              12                                    4 x  4  x2
      (iii) x  2sin 2t  1 dt                                       x2  4 x  4  0
               
                                                                     x  2
                                                                               2
                                                                                   0
                  cos 2t  t  c
                                                                    x2
              at t = 0, x = 0                                        BT is a tangent to the parabola
              0   cos 2(0)  0  c
         c 1
         x   cos 2t  t  1
          dy                                                Question 8
 (b) (i)      2x
          dx
         at x = –1, m = –2                                  (a) P  Ae kt
                                                                P  102e kt
              y  1  2( x  1)
                                                                when t = 75, P = 200 000 000
              2x  y 1  0                                     200000000  102e 75 k
                                                                k  0.22
      (ii) M   , 
                   1 5
                       
                 2 2                                          P  102e0.22t
            mAB  1
                                                                P  102e0.22(100)
           so, to find the x-value on the curve,
           where the tangent is 1, let 2x = 1.                  P  539 311 817 787
                                     1 1                       P  539 billion
           Therefore the point C is  ,  .
                                     2 4                  (b) P ( HH )  0.36
           Since the x-values of M and C are                     P ( H )  0.6
           the same, then the line MC will be                    P (T )  0.4
           vertical.
                                                                 P (TT )  0.16
              x–coordinate of T is 0.5.                     (c) (i) A  4 (amplitude)
      (iii)
              2x  y 1  0                                            2
                                                                (ii) T 
                 1                                                      b
              2  y 1  0                                            2
                 2                                                  
              y  2                                                    b
                                                                    b2

                                                        5
http://www.maths.net.au/                                                                    2010 Mathematics HSC Solutions


      (iii)        y                                         (ii)1      A1  P (1  0.005)1  2000
                                                                                P (1.005)1  2000
               4
               3                                                        A2  A1 (1.005)1  2000
               2                                                                 P (1.005)1  2000  (1.005)1  2000
                                                                                                    
               1
                                                                                P (1.005) 2  2000(1  1.005)
                                                 x                      A3  A2 (1.005)1  2000
              -1                          
              -2                    2                                            P (1.005) 2  2000(1  1.005)  (1.005)1  2000
                                                                                                                
              -3
                                                                                P (1.005)3  2000(1  1.005  1.0052 )
              -4
                                                                               
 (d) f  x   x3  3 x 2  kx  8                                      An  P (1.005) n  2000(1  1.005    1.005n 1 )

       f   x   3x 2  6 x  k                                               P (1.005n )  2000 
                                                                                                     1(1.005n  1)
                                                                                                       1.005  1
                                                                                P (1.005n )  400 000  (1.005n  1)
      For an increasing function f   x   0 ,                                P (1.005n )  400 000 1.005n  400 000
                                                                                ( P  400 000) 1.005n  400 000
      i.e. 3 x 2  6 x  k  0

      Consider the graph of y  3 x 2  6 x with                   2           An  ( P  400 000) 1.005n  400 000
                                                                            0  (232 175.55  400 000) 1.005n  400 000
      x-intercepts at 0 and 2. Vertex at x = 1,                                  400 000
                                                                       1.005n 
      y = –3.  if k  3 , f   x  is positive                                167824.45
                                                                            n  log1.005 (2.38)
      definite and hence f  x  is an                                                log10 2.38
                                                                                n
                                                                                     log10 1.005
      increasing function.
                                                                                n  174.1
 Question 9

 (a) (i) A1  500(1  0.005) 240                                       Thus there will be money in the
                                                                       account for the next 175 months
           A2  500(1  0.005) 239
          .                                              (b) (i)       0 x2
          .
          .                                                  (ii) The maximum occurs at x = 2,
                                                                           2
           A240  500(1  0.005)1
                                                                              f   x  dx  4
                                                                        0

                                                                       f  2  f  0  4
           A  A1  A2    A240
                                                                       f  2  4
               500(1.005  1.0052  
                                                                       The maximum value is f  x   4
                        1.005239  1.005240 )
                   1.005(1.005240  1)                       (iii) f  6   f  4 
               500
                        1.005  1                                          4
               $232 175.55                                                   f   x  dx  4
                                                                        2

                                                                       f  4   f  2   4
                                                                       f  4   4  4
                                                                       f  4  0
                                                                       The gradient is –3, so f  6   6




                                                     6
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (iv)     4
                                                            y  a (1  2 cos  )
                                                             y  a (1  2(1))
                            2    4           6               y  3a
                                                                      OA
                                                     (b) (i) sin  
                                                                       r
                                                             OA  r sin 
             –6                                                     r
                                                            V             y 2 dx
                                                                   r sin 

 Question 10
                                                                             r        x 2  dx
                                                                    r
                                                                               2
                                                                   r sin 

 (a) (i)In ACD, DAC and DCA =                                         x3 
                                                                                         r

                                                                r 2 x  
        90  1  ( sum of )
             2                                                           3  r sin 
                                                                         r3               r 3 sin 3       
        CDB = 180   (suppl. angles)                           r 3     r 3 sin                     
                                                                         3                     3           
        DBC = 90  1  (ABC is isosc.)
                    2
                                                                r 3
        DCB = 90  3  ( sum of )
                     2                                        
                                                                 3
                                                                      2  3sin   sin 3  
        ACB = DCB + DCA = 
                                                     (ii) 1 Initial depth = r. So, find  , to give
        In ABC and ACD,                                   depth 1 r. From the diagram,
        ACB = ADC (both  )
                                                                    2

                                                                            r
        DAC = DBC (both 90  1  )
                               2                            OA  r sin  
                                                                            2
         ABC ||| ACD (equiangular)                                 1
                                                            sin  
                   AD DC a                                            2
        also note                                               30
                   AC CB x
     (ii) orresponding sides of similar
        C
        triangles are in the same proportion.                                  r3 
                                                                                3 1
                                                                          2  
            AD AC                                                       3      2 8
                                                       2 Fraction 
            AC AB                                                           2 r 3
         a     x                                                              3
           
         x a y                                                        5
                                                                    
         a (a  y )  x 2                                             16
         x 2  a 2  ay

     (iii n ACD, by the cosine rule
        I
         x 2  a 2  a 2  2a 2 cos 
         a 2  ay  a 2  a 2  2a 2 cos 
         ay  a 2  2a 2 cos 
         y  a  2a cos 
        y  a (1  2 cos  )
     (ivTo get the maximum value of y, cos 
        must take its minimum value, of –1.

                                                 7

Mais conteúdo relacionado

Semelhante a 2010 mathematics hsc solutions

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equationspaufong
 
BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4Richard Ng
 
Solving volumes using cross sectional areas
Solving volumes using cross sectional areasSolving volumes using cross sectional areas
Solving volumes using cross sectional areasgregcross22
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivativeNigel Simmons
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HWnechamkin
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5BLinda Horst
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsSook Yen Wong
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomialsErik Tjersland
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 

Semelhante a 2010 mathematics hsc solutions (20)

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
 
BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4
 
Solving volumes using cross sectional areas
Solving volumes using cross sectional areasSolving volumes using cross sectional areas
Solving volumes using cross sectional areas
 
Mathematics
MathematicsMathematics
Mathematics
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 
Alg.Pr10.4 B
Alg.Pr10.4 BAlg.Pr10.4 B
Alg.Pr10.4 B
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5B
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic Fractions
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 

Mais de jharnwell

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lessonjharnwell
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematicsjharnwell
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachersjharnwell
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic tripjharnwell
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabusjharnwell
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentationjharnwell
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutionsjharnwell
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutionsjharnwell
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutionsjharnwell
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011jharnwell
 

Mais de jharnwell (10)

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lesson
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematics
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachers
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabus
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentation
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutions
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011
 

Último

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 

Último (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 

2010 mathematics hsc solutions

  • 1. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 2010 Mathematics HSC Solutions  Question 1 (b) x 2  x  12  0 (a) ( x  4)( x  3)  0 x2  4x  0 y x( x  4)  0 x  0 or x  4  0 –3 4 x4 x (b) 1 52 52   3  x  4 52 52 54  2 5 (c) y  ln  3x  dy 3 a  2 and b  1  dx 3x (c) ( x  1) 2  ( y  2) 2  25 1  x (d) 2 x  3  9 1 at x  2, m  2 2x  3  9 or (2 x  3)  9 2 3 (d) (i)  5 x  1 dx    5  5 x  1 2 dx 1 2x  6 2 x  3  9   3 5 2 x3 2 x  12 2  5 x  1  c 3  x  6 15 d 2 x 1 2x (e) x tan x  tan x (2 x)  x 2 (sec 2 x) (ii)   dx   dx dx  4 x 2 2  4  x2  x(2 tan x  x sec2 x) 1  ln  4  x 2   c 2 a (f) s  (e) 6 1 r 1   x  k  dx  30 0   x2  6 1 1 3  2  kx   30 3  0  2 62  6k  30 2 (g) x  8 6k  12 Question 2 k 2 Question 3 d cos x x( sin x)  cos x(1) (a)   2  12 4  6  dx x x2 (a) (i) M   ,   x sin x  cos x  2 2     5, 1 x2 1
  • 2. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 86 3 1 (ii) mBC   ln x dx   0  2 ln 2  ln 3 6  12 1 2 1  1.24 (2 d.p.)  3 (iii) The approximation using the 2 1 trapezoidal rule is less than the (iii) mMN  25 actual value of the integral, because 1 the shaded area of the trapeziums,  3 is less than the actual area below since mBC  mMN , the curve. BC || MN y Corresponding angles on parallel 2 lines are equal, so ACB  ANM 1 ABC  AMN  ABC ||| AMN (equiangular) 1 2 3 4 x 1 (iv) y  2    x  2 3 -1 3y  6  x  2 Question 4 x  3y  8  0 (a) (i) Forms an AP, a  1 , d  0.75 Tn  1  (n  1)  0.75 12  6    6  8 2 2 (v) BC  Tn  0.25  0.75n  2 10 T9  0.25  0.75  9 1 T9  7 km (vi) Area  bh 2 Susannah runs 7 km in the 9th week 1 (ii) Tn  0.25  0.75n 44  2 10h 2 10  0.25  0.75n 22 10 n  13 h 5 In the 13th week. (b) (i) y (iii) S 26  26 2  2 1   26  1  0.75 3  269.75 km 2 2  1 (b) Area    e 2 x  e x  dx 0 -1 1 2 3 4 5 x 2 -2  e2 x    e x  -3  2 0 -4 -5  e4   e0     e 2     e0  (ii) x 1 2 3 2  2  0 ln(2) ln(3) 2 f(x) e  2e  3 4  2 2
  • 3. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (c) (i) P (2 mint)  4 3 4 r 3  20  0  12 11  r3  5  0 1  5 11 r 3  1 1 1 (ii) P (2same)    d2A 60 11 11 11  4  3 2 3 dr r  11 5 when r  3 ,  3 2 d A (iii) P (2 different)  1   16  0,  c.c.up, 11 dr 2 8 5   local minimum at r  3 11  (d) f  x   f   x   1  e x 1  e  x   1  e x  e x  1 1 1 sin x x (b) (i) sec2 x  sec x tan x    2e e x cos 2 x cos x cos x f  x   f   x   1  e x   1  e  x   1  sin x cos 2 x  2  e x  e x 1  sin x Question 5 (ii) sec2 x  sec x tan x  cos 2 x 1  sin x (a) (i) V   r 2h  1  sin 2 x 10   r 2 h 1  sin x  10 1  sin x 1  sin x  h 2 r 1  1  sin x A  2 r 2  2 rh  10   2 r 2  2 r  2   1 (iii) I   4 r   dx 0 1  sin x 20  2 r 2   4 r    sec 2 x  sec x tan x  dx 0   tan x  sec x 0  (ii) dA 20 4  4 r  2 dr r      dA   tan  sec    tan 0  sec 0  let  0 to find stationary points  4 4   dr  1 2 1  2 3
  • 4. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 1 1 (iii) A1   dx (c) y  a x 1   ln x a 1 8 1  ln 1  ln  a  –2 ln  a   1 x 1 a e (b) (i) l  r 9  5 b 1 A2   dx    1.8 1 x 1   ln x 1 b (ii) In OPT and OQT OP = OQ (equal radii of 5 cm) 1  ln  b   ln 1 OPT = OQT (both right angles) ln  b   1 OT is a common line OPT  OQT (RHS) be (iii) POT  1 POQ Question 6 2  0.9 (a) (i) f ( x)  ( x  2)( x  4) 2 PT tan(0.9)  f ( x)  x3  2 x 2  4 x  8 5 PT  5 tan(0.9) f ( x)  3 x 2  4 x  4 PT  6.3 cm (1 d.p.)   (iv) PTQ    1.8  2 Consider the discriminate, 2 2   42  4(3)(4) (angle sum of a quadrilateral is 2 )  32 PTQ  1.34 Therefore there are no zeros, and 1 Area  (6.3) 2 sin(1.34) hence, no stationary points. (the 2 derivative function is positive 1  definite)   (5) 2 (1.8  sin(1.8))  2  (ii) f ( x )  6 x  4  9 cm 2 Question 7 The graph is concave down when 6x  4  0 (a) (i) x   4 cos 2t dt  2 x 3  2sin 2t  c The graph is concave up when 2 when t = 0, x  1 ,  x 1  2sin 2(0)  c 3 c 1  x  2sin 2t  1  4
  • 5. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (ii) at x  0  1  0  2sin 2t  1  T is the point  , 2  . 2  1 mBT  4 sin 2t   2 Eqn BT: y  4  4( x  2)  y  4x  4 2t   6  13 Since this line is not vertical, if there t , 12 12 is one simultaneous solution between this line and the parabola, it is a Therefore, the first time it will be at tangent. So, sub y  4 x  4 into 13 y  x2 rest is at t =  3.4 s 12 4 x  4  x2 (iii) x  2sin 2t  1 dt x2  4 x  4  0   x  2 2 0   cos 2t  t  c x2 at t = 0, x = 0  BT is a tangent to the parabola 0   cos 2(0)  0  c c 1 x   cos 2t  t  1 dy Question 8 (b) (i)  2x dx at x = –1, m = –2 (a) P  Ae kt P  102e kt y  1  2( x  1) when t = 75, P = 200 000 000 2x  y 1  0 200000000  102e 75 k k  0.22 (ii) M   ,  1 5   2 2 P  102e0.22t mAB  1 P  102e0.22(100) so, to find the x-value on the curve, where the tangent is 1, let 2x = 1. P  539 311 817 787 1 1 P  539 billion Therefore the point C is  ,  . 2 4 (b) P ( HH )  0.36 Since the x-values of M and C are P ( H )  0.6 the same, then the line MC will be P (T )  0.4 vertical. P (TT )  0.16 x–coordinate of T is 0.5. (c) (i) A  4 (amplitude) (iii) 2x  y 1  0 2 (ii) T  1 b 2  y 1  0 2 2  y  2 b b2 5
  • 6. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iii) y (ii)1 A1  P (1  0.005)1  2000  P (1.005)1  2000 4 3 A2  A1 (1.005)1  2000 2   P (1.005)1  2000  (1.005)1  2000   1  P (1.005) 2  2000(1  1.005) x A3  A2 (1.005)1  2000 -1   -2 2   P (1.005) 2  2000(1  1.005)  (1.005)1  2000   -3  P (1.005)3  2000(1  1.005  1.0052 ) -4  (d) f  x   x3  3 x 2  kx  8 An  P (1.005) n  2000(1  1.005    1.005n 1 ) f   x   3x 2  6 x  k  P (1.005n )  2000  1(1.005n  1) 1.005  1  P (1.005n )  400 000  (1.005n  1) For an increasing function f   x   0 ,  P (1.005n )  400 000 1.005n  400 000  ( P  400 000) 1.005n  400 000 i.e. 3 x 2  6 x  k  0 Consider the graph of y  3 x 2  6 x with 2 An  ( P  400 000) 1.005n  400 000 0  (232 175.55  400 000) 1.005n  400 000 x-intercepts at 0 and 2. Vertex at x = 1, 400 000 1.005n  y = –3.  if k  3 , f   x  is positive 167824.45 n  log1.005 (2.38) definite and hence f  x  is an log10 2.38 n log10 1.005 increasing function. n  174.1 Question 9 (a) (i) A1  500(1  0.005) 240 Thus there will be money in the account for the next 175 months A2  500(1  0.005) 239 . (b) (i) 0 x2 . . (ii) The maximum occurs at x = 2, 2 A240  500(1  0.005)1  f   x  dx  4 0 f  2  f  0  4 A  A1  A2    A240 f  2  4  500(1.005  1.0052   The maximum value is f  x   4  1.005239  1.005240 ) 1.005(1.005240  1) (iii) f  6   f  4   500 1.005  1 4  $232 175.55  f   x  dx  4 2 f  4   f  2   4 f  4   4  4 f  4  0 The gradient is –3, so f  6   6 6
  • 7. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iv) 4 y  a (1  2 cos  ) y  a (1  2(1)) 2 4 6 y  3a OA (b) (i) sin   r OA  r sin  –6 r V  y 2 dx r sin  Question 10 r  x 2  dx r  2 r sin  (a) (i)In ACD, DAC and DCA =  x3  r   r 2 x   90  1  ( sum of ) 2  3  r sin   r3   r 3 sin 3   CDB = 180   (suppl. angles)    r 3     r 3 sin     3  3  DBC = 90  1  (ABC is isosc.) 2 r 3 DCB = 90  3  ( sum of ) 2  3  2  3sin   sin 3   ACB = DCB + DCA =  (ii) 1 Initial depth = r. So, find  , to give In ABC and ACD, depth 1 r. From the diagram, ACB = ADC (both  ) 2 r DAC = DBC (both 90  1  ) 2 OA  r sin   2  ABC ||| ACD (equiangular) 1 sin   AD DC a 2 also note     30 AC CB x (ii) orresponding sides of similar C triangles are in the same proportion.  r3  3 1 2   AD AC 3  2 8   2 Fraction  AC AB 2 r 3 a x 3  x a y 5  a (a  y )  x 2 16 x 2  a 2  ay (iii n ACD, by the cosine rule I x 2  a 2  a 2  2a 2 cos  a 2  ay  a 2  a 2  2a 2 cos  ay  a 2  2a 2 cos  y  a  2a cos  y  a (1  2 cos  ) (ivTo get the maximum value of y, cos  must take its minimum value, of –1. 7