SlideShare uma empresa Scribd logo
1 de 10
•Dopaje de
Semiconductores



Elaborado por Juan Martin Challanca Ramos
Semiconductores
Intrínsecos
 Semiconductor es un elemento que se comporta como un
 conductor o como aislante dependiendo de diversos factores,
 como por ejemplo el campo eléctrico o magnético, la presión, la
 radiación que le incide, o la temperatura del ambiente en el que
 se encuentre. Los elementos químicos semiconductores de la
 tabla periódica se indican en la tabla adjunta.




   http://es.wikipedia.org/wiki/Semiconductor
Semiconductores
Intrínsecos
El elemento semiconductor más usado es el silicio, el segundo el
germanio, aunque idéntico comportamiento presentan las
combinaciones de elementos de los grupos 12 y 13 con los de los
grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y
SCd). Posteriormente se ha comenzado a emplear también el
azufre. La característica común a todos ellos es que son
tetravalentes, teniendo el silicio una configuración electrónica s²p².


Tipos de semiconductores



      http://es.wikipedia.org/wiki/Semiconductor
Semiconductores
 Intrínsecos
Semiconductores intrínsecos
Es un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante
enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal
se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la
banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a
temperatura ambiente, son de 1,1 eV y 0,7 eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado
energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A
este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de
creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y
huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la
concentración de huecos (cargas positivas), se cumple que:


ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de
elemento.
Ejemplos de valores de ni a temperatura ambiente (27ºc):
ni(Si) = 1.5 1010cm-3 ni(Ge) = 2.5 1013cm-3 Los electrones y los huecos reciben el nombre de portadores. En los
semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal
a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los
electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la
banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4
capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la
banda de conducción.

             http://es.wikipedia.org/wiki/Semiconductor
Semiconductores
Intrínsecos
Semiconductores extrínsecos
Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es
decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está
dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al
correspondiente átomo de silicio. Hoy en dia se han logrado añadir impurezas de una parte por cada 10
millones, logrando con ello una modificación del material.




   http://es.wikipedia.org/wiki/Semiconductor
Dopaje de
Semiconductores
En la producción de semiconductores, se denomina dopaje al proceso
intencional de agregar impurezas en un semiconductor extremadamente
puro (también referido como intrínseco) con el fin de cambiar sus
propiedades eléctricas. Las impurezas utilizadas dependen del tipo de
semiconductores a dopar. A los semiconductores con dopajes ligeros y
moderados se los conoce como extrínsecos. Un semiconductor
altamente dopado, que actúa más como un conductor que como un
semiconductor, es llamado degenerado.
El número de átomos dopantes necesitados para crear una diferencia en
las capacidades conductoras de un semiconductor es muy pequeña.
Cuando se agregan un pequeño número de átomos dopantes (en el
orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje
es bajo o ligero. Cuando se agregan muchos más átomos (en el orden
de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o
pesado. Este dopaje pesado se representa con la nomenclatura N+ para
material de tipo N, o P+ para material de tipo P.

http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Dopaje de
Semiconductores
Elementos dopantes
Semiconductores de Grupo IV
Para los semiconductores del Grupo IV como Silicio, Germanio y Carburo de silicio,
los dopantes más comunes son elementos del Grupo III o del Grupo V. Boro,
Arsénico, Fósforo, y ocasionalmente Galio, son utilizados para dopar al Silicio.
Tipos de materiales dopantes
TIPO N
Se llama material tipo N al que posee átomos de impurezas que permiten
la aparición de electrones sin huecos asociados a los mismos. Los átomos
de este tipo se llaman donantes ya que "donan" o entregan electrones.
Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta
forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo
introducido al semiconductor es neutro, pero posee un electrón no ligado,
a diferencia de los átomos que conforman la estructura original, por lo que
la energía necesaria para separarlo del átomo será menor que la
necesitada para romper una ligadura en el cristal de silicio (o del
semiconductor original). Finalmente, existirán más electrones que huecos,
por lo que los primeros serán los portadores mayoritarios y los últimos los
minoritarios. La cantidad de portadores mayoritarios será función directa
de la cantidad de átomos de impurezas introducidos.

      http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N).
En el caso del Fósforo, se dona un electrón.




               http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Dopaje de
  Semiconductores
Tipo de Materiales Dopantes: Tipo P
Se llama así al material que tiene átomos de impurezas que permiten la formación
de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al
romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que
"aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el
Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no
modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres
electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá
a tomar electrones de los átomos próximos, generando finalmente más huecos que
electrones, por lo que los primeros serán los portadores mayoritarios y los
segundos los minoritarios. Al igual que en el material tipo N, la cantidad de
portadores mayoritarios será función directa de la cantidad de átomos de
impurezas introducidos.
El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso
del boro le falta un electrón y, por tanto, es donado un hueco de electrón.




                  http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Dopaje de
Semiconductores




     http://es.wikipedia.org/wiki/Dopaje_(semiconductores)

Mais conteúdo relacionado

Mais procurados

Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosRj69Vc19
 
Diodos semiconductores
Diodos semiconductoresDiodos semiconductores
Diodos semiconductoresTensor
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosFederico Froebel
 
Semiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listoSemiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listoeny3ll
 
Semiconductores
 Semiconductores Semiconductores
Semiconductoresjuan medina
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosBasTH
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)rafael1414
 
Semiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSSemiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSOscar Cruz
 

Mais procurados (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Diodos semiconductores
Diodos semiconductoresDiodos semiconductores
Diodos semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listoSemiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listo
 
Semiconductores
 Semiconductores Semiconductores
Semiconductores
 
Tarea semiconductores
Tarea semiconductoresTarea semiconductores
Tarea semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecos
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSSemiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOS
 
-Semiconductores-
-Semiconductores- -Semiconductores-
-Semiconductores-
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Semelhante a Dopaje de semiconductores: agregar impurezas para cambiar propiedades eléctricas

Semelhante a Dopaje de semiconductores: agregar impurezas para cambiar propiedades eléctricas (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..
 
Semiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopadosSemiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Wilson s turpo condori
Wilson s turpo condoriWilson s turpo condori
Wilson s turpo condori
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductoresss
SemiconductoresssSemiconductoresss
Semiconductoresss
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 

Último

ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoJosDanielEstradaHern
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxdkmeza
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 

Último (20)

ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 

Dopaje de semiconductores: agregar impurezas para cambiar propiedades eléctricas

  • 1. •Dopaje de Semiconductores Elaborado por Juan Martin Challanca Ramos
  • 2. Semiconductores Intrínsecos Semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta. http://es.wikipedia.org/wiki/Semiconductor
  • 3. Semiconductores Intrínsecos El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p². Tipos de semiconductores http://es.wikipedia.org/wiki/Semiconductor
  • 4. Semiconductores Intrínsecos Semiconductores intrínsecos Es un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 1,1 eV y 0,7 eV para el silicio y el germanio respectivamente. Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (27ºc): ni(Si) = 1.5 1010cm-3 ni(Ge) = 2.5 1013cm-3 Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción. http://es.wikipedia.org/wiki/Semiconductor
  • 5. Semiconductores Intrínsecos Semiconductores extrínsecos Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio. Hoy en dia se han logrado añadir impurezas de una parte por cada 10 millones, logrando con ello una modificación del material. http://es.wikipedia.org/wiki/Semiconductor
  • 6. Dopaje de Semiconductores En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. A los semiconductores con dopajes ligeros y moderados se los conoce como extrínsecos. Un semiconductor altamente dopado, que actúa más como un conductor que como un semiconductor, es llamado degenerado. El número de átomos dopantes necesitados para crear una diferencia en las capacidades conductoras de un semiconductor es muy pequeña. Cuando se agregan un pequeño número de átomos dopantes (en el orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje es bajo o ligero. Cuando se agregan muchos más átomos (en el orden de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o pesado. Este dopaje pesado se representa con la nomenclatura N+ para material de tipo N, o P+ para material de tipo P. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 7. Dopaje de Semiconductores Elementos dopantes Semiconductores de Grupo IV Para los semiconductores del Grupo IV como Silicio, Germanio y Carburo de silicio, los dopantes más comunes son elementos del Grupo III o del Grupo V. Boro, Arsénico, Fósforo, y ocasionalmente Galio, son utilizados para dopar al Silicio. Tipos de materiales dopantes TIPO N Se llama material tipo N al que posee átomos de impurezas que permiten la aparición de electrones sin huecos asociados a los mismos. Los átomos de este tipo se llaman donantes ya que "donan" o entregan electrones. Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo introducido al semiconductor es neutro, pero posee un electrón no ligado, a diferencia de los átomos que conforman la estructura original, por lo que la energía necesaria para separarlo del átomo será menor que la necesitada para romper una ligadura en el cristal de silicio (o del semiconductor original). Finalmente, existirán más electrones que huecos, por lo que los primeros serán los portadores mayoritarios y los últimos los minoritarios. La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 8. El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N). En el caso del Fósforo, se dona un electrón. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 9. Dopaje de Semiconductores Tipo de Materiales Dopantes: Tipo P Se llama así al material que tiene átomos de impurezas que permiten la formación de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá a tomar electrones de los átomos próximos, generando finalmente más huecos que electrones, por lo que los primeros serán los portadores mayoritarios y los segundos los minoritarios. Al igual que en el material tipo N, la cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 10. Dopaje de Semiconductores http://es.wikipedia.org/wiki/Dopaje_(semiconductores)