SlideShare uma empresa Scribd logo
1 de 64
Baixar para ler offline
Process NMR Associates
High field and Compact Low Field 1H and 13C NMR Applications
for Petroleum and Refinery Stream Analysis, Process Control, and
Reaction Monitoring
Presented By
John Edwards, Ph.D.
Process NMR Associates, LLC
Danbury, Connecticut
May 17, 2013
Petrobras Reseach Center, Rio de Janeiro
TTC Labs, Inc.
Process Engineering Excellence
Process NMR Associates
TopNIR Systems
250+ Analytical NMR Customers
Analytical
Services
And
Consulting
Process NMR Associates
Superconducting NMR Systems
Process NMR Associates
High Resolution FT-NMR – Online / in Process
First Generation NMR – 1998
Elbit-ATI/Foxboro NMR Second Generation NMR – 2003
Qualion
Lab version On-Line version
New magnet design – 30mm bore size
• The amount of magnetic pieces that assemble the magnet reduced from 34 to 10. Reduction in
Mechanical Complexity
• Bore size of the magnet was increased to 30 mm - improved temperature susceptibility
• Improved temperature and shim stability.
New Digital Spectrometer Design - reduces footprint, improves signal processing capabilities
Probe - Improved Probe Q for Higher Sensitivity.
Software – Windows 7 – Improved Chemometric Capabilities
Third Generation NMR – Aspect AI NMR System
NMR Sample System and Placement
Process NMR Associates
Process NMR Associates
NMR Lock - External 7Li Lock @ 22.5 MHz Shim DACs Built into the Magnet Enclosure
Matrix Shimming Performed
by Optimizing FID RMS
Process NMR Associates
p p m1234567
CH3
CH3
CH3
O
OH
A
B
C
D E F
G
H
A
F
B
CG
H
D E
PEG OH
PEG
p p m4 06 08 01 0 01 2 01 4 01 6 0
CH3
CH3
CH3
O
OH
A
B
C
D E F
G
H
I J
H
I
J
D
E
F
A
B
G
C
PEG
CDCl3
FT-13C FT-1H
300 MHz
A
F
B
C
G
H
D E
PEG OH
PEG
58 MHz
60 MHz NMR of Essential Oils
Adhesive Prepolymers
Bio Oils and Hydrotreated Biomass Pyrolysis Products
-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (p pm )
Kior-0 01 -H
Bio-Oil V1 20 91 3- 04 KH D T Liq.Fr ac._D O_ Lo w C on v
1 H N MR in DM SO
JCE-P NA-Merc3 00
60 MHz
300 MHz
Labile OH
Groups
and
Aldehydes
Water
and
Residual
Alcohol/Ether
Aromatics
Olefin
alpha
Protons
Aliphatic
CH2/CH3
TMS
-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1 (ppm)
Kior-004-H_D2O
Sample 1 Bio-Oil
1H NMR in DMSO+D2O +45 Days
JCE-PNA-MVX300
60 MHz
300 MHz
D2O Added to Solution
Deuterium Exchange between D2O and labile protons
OH/NH/SH drastically reduced in intensity
Water Resonance Shifts
Labile OH
Groups
Reduced
Water
Aromatics
Olefin
alpha
Protons
Aliphatic
CH2/CH3
TMS
Ether
Alcohol
-1 .5-1.0-0.50.00.51.01.52.02.53.03.54 .04.55.05.56.06.57.07.58.08.59.09.510 .010.511.01 1.512.0
f1 (p p m )
Kio r-0 0 2 -H
H yd r otr ea te d H e a vy O il Z 13 2 8 00 0 1 20 0 0 pp m
KHD T-A 1 H NM R in CDCl3
JCE -P NA-Merc3 00
60 MHz
300 MHz
TMS
Aliphatic
alpha
CH3
alpha
CH2/CH
Could sharp peak be
cyclohexane
C 3H
-1.5-1.0-0.50.00.51.01 .52.02 .53.03.54.04.55 .05.56 .06.57.07.58.08.59 .09.510.010.511.011 .512.0
f1 (p p m )
Kio r-0 0 3 -H
H yd ro tr e a te d H e a vy O il D r u m #3 KHD T We e k ly F e e d
1 H N M R in DM S O
JCE -P N A-Merc 3 0 0
60 MHz
300 MHz
Labile OH
Groups
Water
and
Residual
Alcohol/Ether
Aromatics
Olefin
alpha
Protons
Aliphatic
CH2/CH3
TMS
Process NMR Associates
ppm12345678
300 MHz
CH3
CH2
CH
a-CH3
a-CH2
Aromatics
Ethanol
Alkenes
60 MHz
Gasoline 1H NMR
Process NMR Associates
Gasoline Parameters:
Octane Numbers
Distillation Properties (T10, T50, T90)
Benzene Content (wt%)
Total Aromatics (Wt%)
Total Olefins (Wt%)
Total Saturates (Wt%)
Oxygenates (Wt%)
Reid Vapor Pressure
Process NMR Associates
Application: Closed Loop Reformer Control - Installed 1998
Reformer Capacity: 34,000 Barrels per Day
Control Strategy: Control on MON and Benzene Content
NMR Analysis: 2 Minute Analysis
NMR PLS Outputs: RON, MON, Benzene (Wt%) Total Aromatics (Wt%)
RON Validation - April 2001 - April 2002
100
101
102
103
104
105
106
107
108
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
NMR
CFR
Process NMR Associates
Application: Steam Cracking Optimization Installed 2000
Cracker Facility Capacity: 600,000 Tonnes per Year
Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization
NMR Analysis: 3-4 Minute Cycle (Single Stream)
NMR PLS Outputs: Naphtha – Detailed PIONA
C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes
Process NMR Associates
Process NMR Associates
Toluene
Actual Toluene (Wt%)
PredictedToluene(Wt%)(F9C1)
1
1
2
3
45
6
7
8
9
10
11
12
1314
15
16
17
18
19
20
21
22
2325
26
2728
29
30
31
32
33
34
35
36
37
383940
41
42
43
44
45
46
49
50
51
53
5456
58
59
62
63
66
68
69
70
71
73
75
76
77
78
79
80
82
83
84
85
86
87
88
90
91
9293
94
95
9697
98
99
101
102
103
104
105
106
108
109
110
111
112
113
114
115
116
117
118
119120
121
122123
124
125126
127
128
129130131132133134135136137
138139140
141142143
144145146
147148149
150151152
156157158
159160161
162163164
165166167168169170
171172173
174175176
177
178179
180181182
183184185
186187188
189190191
192193194
195196197
198199200
201202203
204205206
207208209210211212
213214215
216217218
219220221222223224
225226227
228229230
231232233
234235236
237238
239240241242243244245246247248249250251
252253
254
255256257
258259260261262263
264265266
267268269
270271272
273274275
279280281282
283284285
286287
288
289290291
292293294
295296
297298299300
301302303
304305306
307308309
310311312
313314315
319320321
322323324325326327
328329330
331332333334335336
337338339
340341342343344345
346347348
349350351
352353354
355356357
358359360
361362363
364365366367368369
370371372
373374375
376377378
379380381382383384
385386387
388389390391
392393
394395396
397398399400401402
403404405
406407408
409410411
412413414
427428429 430431432433434435
436437438
439440441
445446447
448449450
451452453454455456
457458
459
460461
462
463464
465
466467
471472473
477478
481482
483484485
489490493494495496
-.5
1
2.5
4
5.5
0 1.5 3 4.5
Spectral Units ( )
BetaCoefficient(F9C1)
-1.5
0
1.5
10 40 70 100 130
-1.5
0
1.5
10 40 70 100 130
Process NMR Associates
Cyclohexane
Beta Coefficients
Spectral Units ( )Spectral Units ( )
BetaCoefficient(F9C1)
-2
-.5
1
2.5
10 40 70 100 130
-2
-.5
1
2.5
10 40 70 100 130
PredictedCyclohexane(F9C1)
1
4
7
10
1 4 7 101 4 7 10
1
23
45
6
7
8
910
11
12
1314
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3132
33
34
35
36
37
38
39
4041
42
43
46
47
48
49
50
51
52
53
54
55
56
58
596067
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
84
85
86
87
88
89
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
108109
110111
112
113
115
116
117118
119120121
122123124
125126127
128129130131132133
134135136
137138139
140
141142
143144145146
147148149150151152
153154
161162163
164165166
167168169170171172173
174
175176177178
179180181
182183184
185186187
191192
193
194195
196
197198
199
200201202
203204205
206207208
209210211
212213214
215216
217
218219220
221
222
223
224225226
227
228229
230231232
233234235
236237238239240241
243244
245
246247
248249
250251
252
253
254255256
257258259
260261262
263264
265
266
267
268
269270271272
273
274275
276277
278
279280281
282283284
285286
287
288289290
291292293
294295296
297298299
300
301
302
303304305
309310311
312313314
315316317
318319320
321322323
324
325326
327328329
330
331332333334335
336337338339340341
342343
345346347
348349350
351352353
354355356357358359
360361362
363364365
366367368
369370371
372373374
375376377
378379380
381382383
384385386
387388389
390391392
393394395396397398
399400401
402403404
405
406407408409410
414415416
417418419
420421422423424425429430431
432433434438439440
441442443
444445
446
447448449
453454455
456457
458459460
464465466
482483
484485
486487488489
1
4
7
10
1 4 7 10
Actual Cyclohexane (Wt%)
Process NMR Associates
Process NMR Associates
Process NMR Associates
Cyclopentane
Date
Wt%
GC
NMR
Process NMR Associates
Process NMR Associates
0
2
4
6
8
10
12
14
16
1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753
iso-C5
iso-C6
iso-C7
iso-C8
iso-C9
96 Hours of NMR Process Output – iso-Paraffin Components
Process NMR Associates
0
0.5
1
1.5
2
2.5
3
3.5
4
1 167 333 499 665 831 997 1163 1329 1495 1661
Benzene
Toluene
Ethyl-Benzene
Xylenes
96 Hours of NMR Process Output – Aromatic Components
Application: Crude Distillation Unit Optimization and Control Installed 2001
Crude Unit Capacity: 180,000 Barrels per Day
Control Strategy: Control on Kero Freeze Point and Crude Tower Optimization
NMR Analysis: 15 Minute Cycle - NMR Results into ROMEO CDU Optimization
NMR PLS Outputs: Naphtha – T10, T50, T90, EP - D86 Distillation
Kero – Freeze, Flash
Crude – API, Sulfur, TBP (38, 105, 165, 365, 565C)
Process NMR Associates
Kero Freeze Lab Vs NMR
-65
-60
-55
-50
-45
-40
2002/05/01
2002/05/03
2002/05/05
2002/05/07
2002/05/09
2002/05/11
2002/05/13
2002/05/15
2002/05/17
2002/05/19
Lab Freeze (DegC)
NMR Freeze (DegC)
Process NMR Associates
Process NMR Associates
Crude Adjustment
0
10
20
30
40
50
60
70
80
90
100
-150 50 250 450 650 850 1050
CutPoint Deg C
WT%Yield
Before
After
NMR
Crude
Reconciliation
Process NMR Associates
20 40 60 80 100 120 140
VI 103
FACTOR1
F
A
C
T
O
R
3
IL
VI 115
VI 103
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Dewaxing
Dearomatization
VI 100
AL
Base Oil Manufacturing – NMR Control
Col 4, line 5-14, “with at least 50% of the oil molecules containing at least one branch, at least half of which are methyl
branches. At least half, and more preferably at least 75% of the remaining branches are ethyl, with less than 25% and
preferably less than 15% of the total number of branches having three or more carbon atoms. The total number of branch
carbon atoms is typically less than 25%, preferably less than 20% and more preferably no more than 15% (e.g., 10-15%) of
the total number of carbon atoms comprising the hydrocarbon molecules.”
Col 4, line 24-29, “Thus, the molecular make up of a base stock of the invention comprises at least 95 wt. % isoparaffins
having a relatively linear molecular structure, with less than half the branches having two or more carbon atoms and less
than 25% of the total number of carbon atoms present in the branches.”
Col 12, Line 4-21, “What is claimed is:
1. A lubricant base stock comprising at least 95 wt. % non-cyclic iso-paraffins having a molecular structure in which less
than 25% of the total number of carbon atoms of the isoparaffin structure are contained in the branches and less than half of
the total iso-paraffin branches contain two or more carbon atoms.
2. A base stock according to claim 1 wherein at least half of the iso-paraffin branches are methyl branches.
3. A base stock according to claim 2 wherein at least half of the remaining, non-methyl branches are ethyl, with less than
25% of the total number of branches having three or more carbon atoms.
4. A base stock according to claim 3 wherein at least 75% of the non-methyl branches are ethyl.
5. A base stock according to claim 4 wherein of the total number of carbon atoms contained in the iso-paraffin molecule, 10-
15% of the carbon atoms are located in the branches.”
Col 2, line 8, “These base stocks are premium
synthetic lubricating oil base stocks of high
purity having a high VI, a low pour point and are
iso-paraffinic, in that they comprise at least 95
wt. % of non-cyclic iso-paraffins having a
molecular structure in which less than 25% of the
total number of carbon atoms are present in the
branches, and less than half the branches have
two or more carbon atoms.”
Process NMR Associates
Quantitative 13C NMR of F-T Wax
p p m1 01 52 02 53 03 54 04 5
Process NMR Associates
1H-13C DEPT NMR of F-T Wax
All Protonated Carbons
CH Carbons
CH2 Carbons
CH3 Carbons
Process NMR Associates Exxon FT-wax Patent
Process NMR Associates
ppm15202530354045505560
b
g
d
e
a' b'
g'
t-et
p-et
p-pr
t-pr
Sub-Me
4-Me
Adj-Me
3-Me
2-Me
t-Bu
p-Bu
Reg1 Reg2 Reg3 Reg4 Reg5 Reg6
a
Peak X
Process NMR Associates
ppm12141618202224262830
d b'
g'
b
t-et
p-et
p-pr
t-pr
Sub-Me
4-Me
Adj-Me
3-Me
2-Me
t-Bu
a
p-Bu
Peak X
Reg6Reg5Reg4Reg3
Process NMR Associates
Process NMR Associates
Residual Catalytic Cracking – Feed-stream Analysis
Analysis – Refractive Index, Distillation, Specific Gravity
Calculation – Watson K-Factor
Outcome: aromatic carbon number
aromatic hydrogen number
total hydrogen content
Proposition: Detailed hydrocarbon analysis for kinetic model development
0
5
10
15
20
25
20 40 60 80 100 120 140
0
.05
.1
.15
.2
.25
30 35 40 45 50 55 60
0
5
10
15
20
85 90 95 100 105 110 115 120 125
Aliphatic Region
CH3
CH2
Aromatic Region
60 MHz Process – 1H NMR Data
50 Samples
Process NMR Associates
0
20
40
60
80
100
120
0 20 40 60 80 100
300 MHz - 1H NMR – RCC Feeds
0
20
40
60
80
100
120
0 20 40 60 80 100
Aromatic Region
15 20 25 30 35
Mono
Di
Tri
0
50
100
150
200
250
55 60 65 70 75 80 85 90 95 100
Aliphatic Region
CH3
CH2
Alpha-Protons
CH+Nap
Process NMR Associates
0
20
40
60
80
0 5 10 15 20
Parameter 1H - Type Analysis
1 Total aromatic
2 Diaromatic+ protons
3 Monoaromatic protons
4 Total olefinic
5 RHC=CH2
6 RHC=CHR
7 RHC=CH2
8 Oxygenates protons
9 Total a protons to aromatics
10 a-CH to aromatics
11 a-CH2 to aromatics
12 a-CH3 to aromatics
13 Saturates
14 Paraffinic CH
15 Paraffinic CH3
16 Paraffinic CH3
17 Substituted aromatic carbon
18 Bridgehead carbons
19 Total aromatics (wt %)
20 Mono aromatics (wt %)
21 Di+ aromatics (wt %)
22 Benzene (wt %)
23 Olefin functions (wt %)
24 Oxygenates (wt %)
25 Saturates (wt %)
H-Type NMR Analysis
Depicted as a “Spectrum”
Process NMR Associates
0
50
100
150
200
0 50 100 150 200
Aromatics
Aliphatics
13C NMR Data
Process NMR Associates
Aromatic Region
40 50 60 70 80 90
140 150 160 170 180 190
Aliphatic Region
Index
Carbon Type Parameters (%C Unless Otherwise
Listed)
1 Ketone carbonyl carbon %c
2 Aldehyde carbonyl carbon
3 Carboxylic acids, esters and amides carbonyl carbon
4 Phenoxy carbon
5 CH2 & CH sub aromatic carbon
6 Naphthenic sub aromatic carbon
7 CH3 sub aromatic carbon
8 Half of internal aromatic carbon
9 Protonated Internal aromatic C+ 1/2 internal aromatic C
10 Protonated aromatic carbon
11 Heteroaromatic other than phenoxy carbon
12 Methine carbon
13 Methylene carbon
14 Methyl carbon
15 Total carbonyl carbon
16 Total aromatic carbon
17 Aliphatic sub aromatic carbon
18 Methyl-substituted aromatic carbon
19 CH2 & CH substituted aromatic carbon
20 Naphthenic substituted aromatic carbon
21 Internal aromatic carbon
22 Peripheral unsubstituted aromatic carbon
23 Total heteroaromatic carbon
24 Total olefinic carbon
25 Total aliphatic carbon
Index
Carbon Type Parameters (%C Unless Otherwise
Listed)
26 Aliphatic methine carbon (CH)
27 Aliphatic methylene carbon (CH2)
28 Aliphatic methyl carbon (CH3)
29 Total paraffinic carbon
30 Paraffinic methine carbon (CH)
31 Paraffinic methylene carbon (CH2)
32 Paraffinic methyl carbon (CH3)
33 Total naphthenic carbon
34 Naphthenic methine carbon (CH)
35 Naphthenic methylene carbon (CH2)
36 Naphthenic methyl carbon (CH3)
37 Reg1
38 a'
39 Reg2
40 g
41 Reg3
42 g'
43 e
44 d
45 Reg4
46 b'
47 Reg5
48 p-Bu
49 t-Bu
50 Peak x
Index Carbon Type Parameters (%C Unless Otherwise Listed)
51 b
52 2-Me
53 Aromatic a methyl carbon
54 All other-Me
55 3-Me
56 Reg7
57 p-Pr
58 t-Pr
59 4-Me
60 a
61 t-Ethyl
62 p-Ethyl
63
Linear Paraffin Structure: % Linear Paraffin/Total
Paraffin
64 Waxiness : % Epsilon C/Total Paraffin
65 Branching Index: %Branching CC/Total Paraffin
66
Total Branching Content: % C Near Branching C/Total
C
67
C in Branched Environment: % 1-linear paraffin
structure
68 Average Straight Chain Length (C No.)
69 Methyl branching index
70 Ethyl branching Index
71 Propyl branching Index
72 Butyl branching Index
73 Total ethyl branching content
74 Total propyl branching content
75 Total butyl branching content
Calculated C-Type Parameters
Process NMR Associates
0
20
40
60
80
0 10 20 30 40 50 60 70
C-Type NMR Parameters
Depicted as a “Spectrum”
Process NMR Associates
Resonance
Frequency
60 MHz Proton 300 MHz Proton 75 MHz Carbon-13
Parameter 1H NMR 0.1 ppm Bin 1H NMR - 0.1 ppm Bin H-Type Spectrum 13C NMR- 1 ppm Bin C-Type Spectrum
Density at 15o
C 0.961 0.983 0.924 0.982 0.974
Viscosity Index - 0.951 - 0.935 -
MCRT 0.940 0.952 0.727 0.931 0.875
SULPHUR 0.931 0.964 0.855 0.979 0.962
Carbon Aromaticity 0.958 0.951 0.926 0.998 0.997
HYDROGEN 0.925 0.914 0.819 0.922 0.862
Total Aromatics 0.936 0.946 0.904 0.965 0.941
Monoaromatics 0.930 0.941 0.912 0.954 0.897
Diaromatics 0.927 0.945 0.866 0.951 0.897
TriAromatics 0.941 0.911 0.862 0.939 0.863
Tetra+ aromatics 0.913 0.921 0.656 0.912 0.934
Summary of RCC Feed NMR Analysis – Correlations to Physical/Chemical Properties
density _13c_calculated.tdf ,5 (R² = 0.980019145)density _13c_calculated.tdf ,5 (R² = 0.980019145)
Actual Concentration ( C1 )Actual Concentration ( C1 )
PredictedConcentration(F6C1)PredictedConcentration(F6C1)
.85
.88
.91
.94
.97
.86 .89 .92 .95 .98
.85
.88
.91
.94
.97
.86 .89 .92 .95 .98
1
2
3
4
5
6
7
8
9
10
12
1415
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
39
4041
42
43
44
46
4748
49
50
51
52
54
55
56
.85
.88
.91
.94
.97
.86 .89 .92 .95 .98
Variable Selection Process
Reduces Number of Variables
Linear Equations that Describe
Density in terms of 13 Carbon
Type Parameters
13C Parameter
1H
NMR
13C
NMR
Total aromatic carbon 0.980 0.996
Aliphatic substituted aromatic carbon 0.962 0.999
Methyl-substituted aromatic carbon 0.970 0.994
CH2 & CH substituted aromatic carbon 0.935 0.996
Naphthenic substituted aromatic carbon 0.973 0.996
Internal aromatic carbon 0.949 0.994
Peripheral unsubstituted aromatic carbon 0.950 0.996
Total heteroaromatic carbon 0.275 0.976
Total aliphatic carbon 0.952 0.997
Aliphatic methine carbon (CH) 0.932 0.999
Aliphatic methylene carbon (CH2) 0.976 1.000
Aliphatic methyl carbon (CH3) 0.610 0.996
Total paraffinic carbon 0.984 0.995
P methine carbon (CH) 0.876 0.940
P methylene carbon (CH2) 0.987 0.998
P methyl carbon (CH3) 0.810 0.960
Total naphthenic carbon 0.964 0.989
N methine carbon (CH) 0.927 0.996
N methylene carbon (CH2) 0.957 0.987
N methyl carbon (CH3) 0.809 0.966
N methine/N methylene ratio 0.085 0.878
Mole fraction of bridgehead aromatic carbon 0.448 0.899
Aromatic carbons per aromatic group 0.697 0.895
13C Parameter
Cluster number (=aromatic group number)
1H
NMR
0.941
13C
NMR
0.995
Aliphatic substitutions per cluster 0.087 0.906
Methyl-substitutions per cluster 0.379 0.909
CH2 & CH substitutions per cluster 0.063 0.899
Naphthenic substitutions per cluster 0.227 0.910
Heteroatoms per cluster 0.032 0.926
Naphthenic CH3 per cluster 0.449 0.906
# of naphthenic ring carbons per cluster 0.524 0.924
Naphthenic rings per cluster 0.317 0.939
# of paraffinic carbons per cluster 0.892 0.934
Average chain length of paraffinic substitutions 0.913 0.932
Linear paraffin structure 0.972 0.976
Waxiness : e/total paraffin 0.977 0.983
Branching index 0.973 0.972
Total branching content 0.964 0.972
Carbons in branched environment 0.972 0.976
Average straight chain length 0.967 0.986
Methyl branching index 0.972 0.962
Ethyl branching Index 0.945 0.945
Propyl branching Index 0.919 0.932
Butyl branching Index 0.919 0.951
Total ethyl branching content 0.946 0.946
Total propyl branching content 0.919 0.933
Total butyl branching content 0.917 0.950
Correlation of 1H and 13C NMR Spectra to 13C Derived Parameters
Process NMR Associates
Carbon AromaticityCorrletaed by1H NMR
5
10
15
20
25
30
5 10 15 20 25 30
Actual Fa (%C)
PredictedFa(%C)
Carbon Aromaticity Correlated to 13C Spectra
5
10
15
20
25
30
5 10 15 20 25 30
Actual Fa (%C)
PredictedFa(%C)
1H and 13C NMR Correlation to Carbon Aromaticity
Process NMR Associates
13C NMR Branching Index - 1H NMR
3
4
5
6
7
8
9
10
11
12
3 4 5 6 7 8 9 10 11 12
Actual Branching Index
PredictedBranchingIndex
13C NMR Branching Index - 13C NMR
3
4
5
6
7
8
9
10
11
12
3 4 5 6 7 8 9 10 11 12
Actual Branching Index
PredictedBranchingIndex
1H and 13C NMR Correlation to Branching Index Branching Carbons/Total Paraffinic Carbons
1H NMR Reaction Monitoring – Esterification of t-butanol with acetic anhydride
CH3
CH3
CH3
O
O
CH3
CH3
CH3
CH3
OH
OH
O
CH3
CH3
O
O
O
CH3
A
B
C
D
E
E
B
D
A
C
2.0 1.5 1.0 ppm
Esterification of t-BuOH
Integral Graph
And Integration Plot
AcAn
Acetic Acid
Ac-Ester
1H NMR Zreaction Monitoring –propanol esterified with acetic anhydride
Sucrose
a-glucose
1H NMR – Sucrose Hydrolysis
Microreactor Process Monitoring – 1H NMR – Reaction: Cyclohexene -- Cyclohexane
At-Line Analyzer
1H NMR Observation of Alkene Saturation
Starting Material and Product
Dissolved in CDCl3
Comparison of 60 MHz and 300 MHz
Process NMR Associates
Process NMR Associates
Process NMR Associates
Process NMR Associates
Acknowledgements
Paul Giammatteo – PNA
Tal Cohen – ASPECT AI and Modcon
Cosa-Xentaur

Mais conteúdo relacionado

Semelhante a Edwards - NMR Presentation

John Edwards Online NMR - 1st PANIC - 10-16-12
John Edwards   Online NMR - 1st PANIC - 10-16-12John Edwards   Online NMR - 1st PANIC - 10-16-12
John Edwards Online NMR - 1st PANIC - 10-16-12John Edwards
 
Edwards cpac - 5-7-12
Edwards   cpac - 5-7-12Edwards   cpac - 5-7-12
Edwards cpac - 5-7-12John Edwards
 
JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15John Edwards
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesChiral Technologies Worldwide
 
NYSAS Seminar LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...
NYSAS Seminar  LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...NYSAS Seminar  LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...
NYSAS Seminar LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...mzhou45
 
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008John Edwards
 
Defense Presentation 6_26_09
Defense Presentation 6_26_09Defense Presentation 6_26_09
Defense Presentation 6_26_09Eric Lynne, P.E.
 
Анализатор LGA 4000
Анализатор LGA 4000Анализатор LGA 4000
Анализатор LGA 4000СокТрейд
 
Further 60 MHz NMR Applications ISMAR 2013
Further 60 MHz NMR Applications   ISMAR 2013Further 60 MHz NMR Applications   ISMAR 2013
Further 60 MHz NMR Applications ISMAR 2013John Edwards
 
Edwards ifpac 2012 - 1-24-12
Edwards   ifpac 2012 - 1-24-12Edwards   ifpac 2012 - 1-24-12
Edwards ifpac 2012 - 1-24-12John Edwards
 
Process Solutions from Wet Chemistry to Near-Infrared Spectroscopy
Process Solutions from Wet Chemistry to Near-Infrared SpectroscopyProcess Solutions from Wet Chemistry to Near-Infrared Spectroscopy
Process Solutions from Wet Chemistry to Near-Infrared SpectroscopyMetrohm USA
 
HHXRF for Car Catalysts
HHXRF for Car CatalystsHHXRF for Car Catalysts
HHXRF for Car CatalystsOlympus IMS
 
Need for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelinesNeed for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelinesManish Srivastava
 
Fei sun chemical presentation 070114 2c [compatibility mode]
Fei sun chemical presentation 070114 2c [compatibility mode]Fei sun chemical presentation 070114 2c [compatibility mode]
Fei sun chemical presentation 070114 2c [compatibility mode]inscore
 
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloTrends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloCPqD
 
MG 2030 CEM Datasheet
MG 2030 CEM DatasheetMG 2030 CEM Datasheet
MG 2030 CEM Datasheetjimbelanger33
 
Introduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdfIntroduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdfssuser50b929
 
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...Gerard B. Hawkins
 

Semelhante a Edwards - NMR Presentation (20)

John Edwards Online NMR - 1st PANIC - 10-16-12
John Edwards   Online NMR - 1st PANIC - 10-16-12John Edwards   Online NMR - 1st PANIC - 10-16-12
John Edwards Online NMR - 1st PANIC - 10-16-12
 
Edwards cpac - 5-7-12
Edwards   cpac - 5-7-12Edwards   cpac - 5-7-12
Edwards cpac - 5-7-12
 
JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15JCE - PNA - PANIC-2015 - Final 3x4 Poster  2-5-15
JCE - PNA - PANIC-2015 - Final 3x4 Poster 2-5-15
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixtures
 
NYSAS Seminar LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...
NYSAS Seminar  LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...NYSAS Seminar  LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...
NYSAS Seminar LC-IR To Characterize Polymeric Excipients In Pharmaceutical F...
 
Specification for en590 (2)
Specification for en590 (2)Specification for en590 (2)
Specification for en590 (2)
 
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking - NMR - ACS August 2008
 
Defense Presentation 6_26_09
Defense Presentation 6_26_09Defense Presentation 6_26_09
Defense Presentation 6_26_09
 
Анализатор LGA 4000
Анализатор LGA 4000Анализатор LGA 4000
Анализатор LGA 4000
 
Further 60 MHz NMR Applications ISMAR 2013
Further 60 MHz NMR Applications   ISMAR 2013Further 60 MHz NMR Applications   ISMAR 2013
Further 60 MHz NMR Applications ISMAR 2013
 
Edwards ifpac 2012 - 1-24-12
Edwards   ifpac 2012 - 1-24-12Edwards   ifpac 2012 - 1-24-12
Edwards ifpac 2012 - 1-24-12
 
Process Solutions from Wet Chemistry to Near-Infrared Spectroscopy
Process Solutions from Wet Chemistry to Near-Infrared SpectroscopyProcess Solutions from Wet Chemistry to Near-Infrared Spectroscopy
Process Solutions from Wet Chemistry to Near-Infrared Spectroscopy
 
HHXRF for Car Catalysts
HHXRF for Car CatalystsHHXRF for Car Catalysts
HHXRF for Car Catalysts
 
Kunal Wazarkar
Kunal WazarkarKunal Wazarkar
Kunal Wazarkar
 
Need for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelinesNeed for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelines
 
Fei sun chemical presentation 070114 2c [compatibility mode]
Fei sun chemical presentation 070114 2c [compatibility mode]Fei sun chemical presentation 070114 2c [compatibility mode]
Fei sun chemical presentation 070114 2c [compatibility mode]
 
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloTrends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
 
MG 2030 CEM Datasheet
MG 2030 CEM DatasheetMG 2030 CEM Datasheet
MG 2030 CEM Datasheet
 
Introduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdfIntroduction of 7200 Q-TOF.pdf
Introduction of 7200 Q-TOF.pdf
 
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
 

Mais de John Edwards

Benchtop nmr herbal_supplement_adulteration
Benchtop nmr herbal_supplement_adulterationBenchtop nmr herbal_supplement_adulteration
Benchtop nmr herbal_supplement_adulterationJohn Edwards
 
Beer and nmr carolina nmr symposium
Beer and nmr   carolina nmr symposiumBeer and nmr   carolina nmr symposium
Beer and nmr carolina nmr symposiumJohn Edwards
 
MR Food Conference 2014 pde5i adulteration of herbal supplements poster - p...
MR Food Conference 2014   pde5i adulteration of herbal supplements poster - p...MR Food Conference 2014   pde5i adulteration of herbal supplements poster - p...
MR Food Conference 2014 pde5i adulteration of herbal supplements poster - p...John Edwards
 
Multinuclear liquid and solid-state NMR of Fructoborate complex
Multinuclear liquid and solid-state NMR of Fructoborate complexMultinuclear liquid and solid-state NMR of Fructoborate complex
Multinuclear liquid and solid-state NMR of Fructoborate complexJohn Edwards
 
Elemin - 27Al qNMR Analysis of a Senonian Trace Mineral Supplement
Elemin - 27Al qNMR Analysis of a Senonian Trace Mineral SupplementElemin - 27Al qNMR Analysis of a Senonian Trace Mineral Supplement
Elemin - 27Al qNMR Analysis of a Senonian Trace Mineral SupplementJohn Edwards
 
pde5i adulteration of herbal supplements
pde5i adulteration of herbal supplementspde5i adulteration of herbal supplements
pde5i adulteration of herbal supplementsJohn Edwards
 
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...John Edwards
 
NMR Analysis of Beer - Particularly Sour Beers
NMR Analysis of Beer - Particularly Sour BeersNMR Analysis of Beer - Particularly Sour Beers
NMR Analysis of Beer - Particularly Sour BeersJohn Edwards
 
Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...
Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...
Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...John Edwards
 
ENC 2014 - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...
ENC 2014  - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...ENC 2014  - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...
ENC 2014 - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...John Edwards
 
PANIC 2014 Poster PNA-MNova - Aloe - Beer - Small Mixture qNMR
PANIC 2014 Poster  PNA-MNova - Aloe - Beer - Small Mixture qNMRPANIC 2014 Poster  PNA-MNova - Aloe - Beer - Small Mixture qNMR
PANIC 2014 Poster PNA-MNova - Aloe - Beer - Small Mixture qNMRJohn Edwards
 
PANIC 2014 - Edwards Presentation - Aloe - ED Herbal - Acacia Gum - 2-3-14
PANIC 2014 - Edwards Presentation -  Aloe - ED Herbal - Acacia Gum - 2-3-14PANIC 2014 - Edwards Presentation -  Aloe - ED Herbal - Acacia Gum - 2-3-14
PANIC 2014 - Edwards Presentation - Aloe - ED Herbal - Acacia Gum - 2-3-14John Edwards
 
PANIC 2014 - PNA - Sour Beer Chemistry Poster
PANIC 2014 - PNA - Sour Beer Chemistry PosterPANIC 2014 - PNA - Sour Beer Chemistry Poster
PANIC 2014 - PNA - Sour Beer Chemistry PosterJohn Edwards
 
Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013
Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013
Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013John Edwards
 
SMASH - NMR of Fish Oil Poster - 9-24-13
SMASH - NMR of Fish Oil Poster - 9-24-13SMASH - NMR of Fish Oil Poster - 9-24-13
SMASH - NMR of Fish Oil Poster - 9-24-13John Edwards
 
John Edwards MNova User Meeting - SMASH - 9-22-13
John Edwards   MNova User Meeting - SMASH  - 9-22-13John Edwards   MNova User Meeting - SMASH  - 9-22-13
John Edwards MNova User Meeting - SMASH - 9-22-13John Edwards
 
ACS NERM 2013 Sour Beer - NMR Talk
ACS NERM 2013   Sour Beer - NMR TalkACS NERM 2013   Sour Beer - NMR Talk
ACS NERM 2013 Sour Beer - NMR TalkJohn Edwards
 
John Edwards ACS NERM 2013 - Fish Oil Analysis -10-22-13
John Edwards   ACS NERM 2013 - Fish Oil Analysis -10-22-13John Edwards   ACS NERM 2013 - Fish Oil Analysis -10-22-13
John Edwards ACS NERM 2013 - Fish Oil Analysis -10-22-13John Edwards
 
John Edwards - NMR Presentation - Aloe Summit - 11-9-12
John Edwards - NMR Presentation - Aloe Summit - 11-9-12John Edwards - NMR Presentation - Aloe Summit - 11-9-12
John Edwards - NMR Presentation - Aloe Summit - 11-9-12John Edwards
 
Edwards - qNMR Prresentation - Aloe Summit - Nov 2012
Edwards - qNMR Prresentation - Aloe Summit - Nov 2012Edwards - qNMR Prresentation - Aloe Summit - Nov 2012
Edwards - qNMR Prresentation - Aloe Summit - Nov 2012John Edwards
 

Mais de John Edwards (20)

Benchtop nmr herbal_supplement_adulteration
Benchtop nmr herbal_supplement_adulterationBenchtop nmr herbal_supplement_adulteration
Benchtop nmr herbal_supplement_adulteration
 
Beer and nmr carolina nmr symposium
Beer and nmr   carolina nmr symposiumBeer and nmr   carolina nmr symposium
Beer and nmr carolina nmr symposium
 
MR Food Conference 2014 pde5i adulteration of herbal supplements poster - p...
MR Food Conference 2014   pde5i adulteration of herbal supplements poster - p...MR Food Conference 2014   pde5i adulteration of herbal supplements poster - p...
MR Food Conference 2014 pde5i adulteration of herbal supplements poster - p...
 
Multinuclear liquid and solid-state NMR of Fructoborate complex
Multinuclear liquid and solid-state NMR of Fructoborate complexMultinuclear liquid and solid-state NMR of Fructoborate complex
Multinuclear liquid and solid-state NMR of Fructoborate complex
 
Elemin - 27Al qNMR Analysis of a Senonian Trace Mineral Supplement
Elemin - 27Al qNMR Analysis of a Senonian Trace Mineral SupplementElemin - 27Al qNMR Analysis of a Senonian Trace Mineral Supplement
Elemin - 27Al qNMR Analysis of a Senonian Trace Mineral Supplement
 
pde5i adulteration of herbal supplements
pde5i adulteration of herbal supplementspde5i adulteration of herbal supplements
pde5i adulteration of herbal supplements
 
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
 
NMR Analysis of Beer - Particularly Sour Beers
NMR Analysis of Beer - Particularly Sour BeersNMR Analysis of Beer - Particularly Sour Beers
NMR Analysis of Beer - Particularly Sour Beers
 
Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...
Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...
Benchtop NMR of Adulterants in Sexual Enhancement and Weight-Loss Supplements...
 
ENC 2014 - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...
ENC 2014  - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...ENC 2014  - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...
ENC 2014 - MNova Users Meeting Presentation Aloe Vera, Beer, PDE5i Adulteran...
 
PANIC 2014 Poster PNA-MNova - Aloe - Beer - Small Mixture qNMR
PANIC 2014 Poster  PNA-MNova - Aloe - Beer - Small Mixture qNMRPANIC 2014 Poster  PNA-MNova - Aloe - Beer - Small Mixture qNMR
PANIC 2014 Poster PNA-MNova - Aloe - Beer - Small Mixture qNMR
 
PANIC 2014 - Edwards Presentation - Aloe - ED Herbal - Acacia Gum - 2-3-14
PANIC 2014 - Edwards Presentation -  Aloe - ED Herbal - Acacia Gum - 2-3-14PANIC 2014 - Edwards Presentation -  Aloe - ED Herbal - Acacia Gum - 2-3-14
PANIC 2014 - Edwards Presentation - Aloe - ED Herbal - Acacia Gum - 2-3-14
 
PANIC 2014 - PNA - Sour Beer Chemistry Poster
PANIC 2014 - PNA - Sour Beer Chemistry PosterPANIC 2014 - PNA - Sour Beer Chemistry Poster
PANIC 2014 - PNA - Sour Beer Chemistry Poster
 
Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013
Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013
Small Molecule Chemistry of Spontaneously Fermented Coolship Ales - NERM 2013
 
SMASH - NMR of Fish Oil Poster - 9-24-13
SMASH - NMR of Fish Oil Poster - 9-24-13SMASH - NMR of Fish Oil Poster - 9-24-13
SMASH - NMR of Fish Oil Poster - 9-24-13
 
John Edwards MNova User Meeting - SMASH - 9-22-13
John Edwards   MNova User Meeting - SMASH  - 9-22-13John Edwards   MNova User Meeting - SMASH  - 9-22-13
John Edwards MNova User Meeting - SMASH - 9-22-13
 
ACS NERM 2013 Sour Beer - NMR Talk
ACS NERM 2013   Sour Beer - NMR TalkACS NERM 2013   Sour Beer - NMR Talk
ACS NERM 2013 Sour Beer - NMR Talk
 
John Edwards ACS NERM 2013 - Fish Oil Analysis -10-22-13
John Edwards   ACS NERM 2013 - Fish Oil Analysis -10-22-13John Edwards   ACS NERM 2013 - Fish Oil Analysis -10-22-13
John Edwards ACS NERM 2013 - Fish Oil Analysis -10-22-13
 
John Edwards - NMR Presentation - Aloe Summit - 11-9-12
John Edwards - NMR Presentation - Aloe Summit - 11-9-12John Edwards - NMR Presentation - Aloe Summit - 11-9-12
John Edwards - NMR Presentation - Aloe Summit - 11-9-12
 
Edwards - qNMR Prresentation - Aloe Summit - Nov 2012
Edwards - qNMR Prresentation - Aloe Summit - Nov 2012Edwards - qNMR Prresentation - Aloe Summit - Nov 2012
Edwards - qNMR Prresentation - Aloe Summit - Nov 2012
 

Último

Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 

Último (20)

Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 

Edwards - NMR Presentation

  • 1. Process NMR Associates High field and Compact Low Field 1H and 13C NMR Applications for Petroleum and Refinery Stream Analysis, Process Control, and Reaction Monitoring Presented By John Edwards, Ph.D. Process NMR Associates, LLC Danbury, Connecticut May 17, 2013 Petrobras Reseach Center, Rio de Janeiro
  • 2. TTC Labs, Inc. Process Engineering Excellence Process NMR Associates TopNIR Systems 250+ Analytical NMR Customers Analytical Services And Consulting
  • 4. Process NMR Associates High Resolution FT-NMR – Online / in Process First Generation NMR – 1998 Elbit-ATI/Foxboro NMR Second Generation NMR – 2003 Qualion
  • 5. Lab version On-Line version New magnet design – 30mm bore size • The amount of magnetic pieces that assemble the magnet reduced from 34 to 10. Reduction in Mechanical Complexity • Bore size of the magnet was increased to 30 mm - improved temperature susceptibility • Improved temperature and shim stability. New Digital Spectrometer Design - reduces footprint, improves signal processing capabilities Probe - Improved Probe Q for Higher Sensitivity. Software – Windows 7 – Improved Chemometric Capabilities Third Generation NMR – Aspect AI NMR System
  • 6. NMR Sample System and Placement Process NMR Associates
  • 7. Process NMR Associates NMR Lock - External 7Li Lock @ 22.5 MHz Shim DACs Built into the Magnet Enclosure Matrix Shimming Performed by Optimizing FID RMS
  • 8. Process NMR Associates p p m1234567 CH3 CH3 CH3 O OH A B C D E F G H A F B CG H D E PEG OH PEG p p m4 06 08 01 0 01 2 01 4 01 6 0 CH3 CH3 CH3 O OH A B C D E F G H I J H I J D E F A B G C PEG CDCl3 FT-13C FT-1H 300 MHz A F B C G H D E PEG OH PEG 58 MHz
  • 9. 60 MHz NMR of Essential Oils
  • 11. Bio Oils and Hydrotreated Biomass Pyrolysis Products -1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0 f1 (p pm ) Kior-0 01 -H Bio-Oil V1 20 91 3- 04 KH D T Liq.Fr ac._D O_ Lo w C on v 1 H N MR in DM SO JCE-P NA-Merc3 00 60 MHz 300 MHz Labile OH Groups and Aldehydes Water and Residual Alcohol/Ether Aromatics Olefin alpha Protons Aliphatic CH2/CH3 TMS -1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0 f1 (ppm) Kior-004-H_D2O Sample 1 Bio-Oil 1H NMR in DMSO+D2O +45 Days JCE-PNA-MVX300 60 MHz 300 MHz D2O Added to Solution Deuterium Exchange between D2O and labile protons OH/NH/SH drastically reduced in intensity Water Resonance Shifts Labile OH Groups Reduced Water Aromatics Olefin alpha Protons Aliphatic CH2/CH3 TMS Ether Alcohol -1 .5-1.0-0.50.00.51.01.52.02.53.03.54 .04.55.05.56.06.57.07.58.08.59.09.510 .010.511.01 1.512.0 f1 (p p m ) Kio r-0 0 2 -H H yd r otr ea te d H e a vy O il Z 13 2 8 00 0 1 20 0 0 pp m KHD T-A 1 H NM R in CDCl3 JCE -P NA-Merc3 00 60 MHz 300 MHz TMS Aliphatic alpha CH3 alpha CH2/CH Could sharp peak be cyclohexane C 3H -1.5-1.0-0.50.00.51.01 .52.02 .53.03.54.04.55 .05.56 .06.57.07.58.08.59 .09.510.010.511.011 .512.0 f1 (p p m ) Kio r-0 0 3 -H H yd ro tr e a te d H e a vy O il D r u m #3 KHD T We e k ly F e e d 1 H N M R in DM S O JCE -P N A-Merc 3 0 0 60 MHz 300 MHz Labile OH Groups Water and Residual Alcohol/Ether Aromatics Olefin alpha Protons Aliphatic CH2/CH3 TMS
  • 12.
  • 13. Process NMR Associates ppm12345678 300 MHz CH3 CH2 CH a-CH3 a-CH2 Aromatics Ethanol Alkenes 60 MHz Gasoline 1H NMR
  • 14. Process NMR Associates Gasoline Parameters: Octane Numbers Distillation Properties (T10, T50, T90) Benzene Content (wt%) Total Aromatics (Wt%) Total Olefins (Wt%) Total Saturates (Wt%) Oxygenates (Wt%) Reid Vapor Pressure
  • 15. Process NMR Associates Application: Closed Loop Reformer Control - Installed 1998 Reformer Capacity: 34,000 Barrels per Day Control Strategy: Control on MON and Benzene Content NMR Analysis: 2 Minute Analysis NMR PLS Outputs: RON, MON, Benzene (Wt%) Total Aromatics (Wt%) RON Validation - April 2001 - April 2002 100 101 102 103 104 105 106 107 108 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 NMR CFR
  • 16. Process NMR Associates Application: Steam Cracking Optimization Installed 2000 Cracker Facility Capacity: 600,000 Tonnes per Year Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization NMR Analysis: 3-4 Minute Cycle (Single Stream) NMR PLS Outputs: Naphtha – Detailed PIONA C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes
  • 18. Process NMR Associates Toluene Actual Toluene (Wt%) PredictedToluene(Wt%)(F9C1) 1 1 2 3 45 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 2325 26 2728 29 30 31 32 33 34 35 36 37 383940 41 42 43 44 45 46 49 50 51 53 5456 58 59 62 63 66 68 69 70 71 73 75 76 77 78 79 80 82 83 84 85 86 87 88 90 91 9293 94 95 9697 98 99 101 102 103 104 105 106 108 109 110 111 112 113 114 115 116 117 118 119120 121 122123 124 125126 127 128 129130131132133134135136137 138139140 141142143 144145146 147148149 150151152 156157158 159160161 162163164 165166167168169170 171172173 174175176 177 178179 180181182 183184185 186187188 189190191 192193194 195196197 198199200 201202203 204205206 207208209210211212 213214215 216217218 219220221222223224 225226227 228229230 231232233 234235236 237238 239240241242243244245246247248249250251 252253 254 255256257 258259260261262263 264265266 267268269 270271272 273274275 279280281282 283284285 286287 288 289290291 292293294 295296 297298299300 301302303 304305306 307308309 310311312 313314315 319320321 322323324325326327 328329330 331332333334335336 337338339 340341342343344345 346347348 349350351 352353354 355356357 358359360 361362363 364365366367368369 370371372 373374375 376377378 379380381382383384 385386387 388389390391 392393 394395396 397398399400401402 403404405 406407408 409410411 412413414 427428429 430431432433434435 436437438 439440441 445446447 448449450 451452453454455456 457458 459 460461 462 463464 465 466467 471472473 477478 481482 483484485 489490493494495496 -.5 1 2.5 4 5.5 0 1.5 3 4.5 Spectral Units ( ) BetaCoefficient(F9C1) -1.5 0 1.5 10 40 70 100 130 -1.5 0 1.5 10 40 70 100 130
  • 19. Process NMR Associates Cyclohexane Beta Coefficients Spectral Units ( )Spectral Units ( ) BetaCoefficient(F9C1) -2 -.5 1 2.5 10 40 70 100 130 -2 -.5 1 2.5 10 40 70 100 130 PredictedCyclohexane(F9C1) 1 4 7 10 1 4 7 101 4 7 10 1 23 45 6 7 8 910 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 4041 42 43 46 47 48 49 50 51 52 53 54 55 56 58 596067 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 108109 110111 112 113 115 116 117118 119120121 122123124 125126127 128129130131132133 134135136 137138139 140 141142 143144145146 147148149150151152 153154 161162163 164165166 167168169170171172173 174 175176177178 179180181 182183184 185186187 191192 193 194195 196 197198 199 200201202 203204205 206207208 209210211 212213214 215216 217 218219220 221 222 223 224225226 227 228229 230231232 233234235 236237238239240241 243244 245 246247 248249 250251 252 253 254255256 257258259 260261262 263264 265 266 267 268 269270271272 273 274275 276277 278 279280281 282283284 285286 287 288289290 291292293 294295296 297298299 300 301 302 303304305 309310311 312313314 315316317 318319320 321322323 324 325326 327328329 330 331332333334335 336337338339340341 342343 345346347 348349350 351352353 354355356357358359 360361362 363364365 366367368 369370371 372373374 375376377 378379380 381382383 384385386 387388389 390391392 393394395396397398 399400401 402403404 405 406407408409410 414415416 417418419 420421422423424425429430431 432433434438439440 441442443 444445 446 447448449 453454455 456457 458459460 464465466 482483 484485 486487488489 1 4 7 10 1 4 7 10 Actual Cyclohexane (Wt%)
  • 24. Process NMR Associates 0 2 4 6 8 10 12 14 16 1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753 iso-C5 iso-C6 iso-C7 iso-C8 iso-C9 96 Hours of NMR Process Output – iso-Paraffin Components
  • 25. Process NMR Associates 0 0.5 1 1.5 2 2.5 3 3.5 4 1 167 333 499 665 831 997 1163 1329 1495 1661 Benzene Toluene Ethyl-Benzene Xylenes 96 Hours of NMR Process Output – Aromatic Components
  • 26. Application: Crude Distillation Unit Optimization and Control Installed 2001 Crude Unit Capacity: 180,000 Barrels per Day Control Strategy: Control on Kero Freeze Point and Crude Tower Optimization NMR Analysis: 15 Minute Cycle - NMR Results into ROMEO CDU Optimization NMR PLS Outputs: Naphtha – T10, T50, T90, EP - D86 Distillation Kero – Freeze, Flash Crude – API, Sulfur, TBP (38, 105, 165, 365, 565C) Process NMR Associates Kero Freeze Lab Vs NMR -65 -60 -55 -50 -45 -40 2002/05/01 2002/05/03 2002/05/05 2002/05/07 2002/05/09 2002/05/11 2002/05/13 2002/05/15 2002/05/17 2002/05/19 Lab Freeze (DegC) NMR Freeze (DegC)
  • 28. Process NMR Associates Crude Adjustment 0 10 20 30 40 50 60 70 80 90 100 -150 50 250 450 650 850 1050 CutPoint Deg C WT%Yield Before After NMR Crude Reconciliation
  • 29. Process NMR Associates 20 40 60 80 100 120 140 VI 103 FACTOR1 F A C T O R 3 IL VI 115 VI 103 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Dewaxing Dearomatization VI 100 AL Base Oil Manufacturing – NMR Control
  • 30. Col 4, line 5-14, “with at least 50% of the oil molecules containing at least one branch, at least half of which are methyl branches. At least half, and more preferably at least 75% of the remaining branches are ethyl, with less than 25% and preferably less than 15% of the total number of branches having three or more carbon atoms. The total number of branch carbon atoms is typically less than 25%, preferably less than 20% and more preferably no more than 15% (e.g., 10-15%) of the total number of carbon atoms comprising the hydrocarbon molecules.” Col 4, line 24-29, “Thus, the molecular make up of a base stock of the invention comprises at least 95 wt. % isoparaffins having a relatively linear molecular structure, with less than half the branches having two or more carbon atoms and less than 25% of the total number of carbon atoms present in the branches.” Col 12, Line 4-21, “What is claimed is: 1. A lubricant base stock comprising at least 95 wt. % non-cyclic iso-paraffins having a molecular structure in which less than 25% of the total number of carbon atoms of the isoparaffin structure are contained in the branches and less than half of the total iso-paraffin branches contain two or more carbon atoms. 2. A base stock according to claim 1 wherein at least half of the iso-paraffin branches are methyl branches. 3. A base stock according to claim 2 wherein at least half of the remaining, non-methyl branches are ethyl, with less than 25% of the total number of branches having three or more carbon atoms. 4. A base stock according to claim 3 wherein at least 75% of the non-methyl branches are ethyl. 5. A base stock according to claim 4 wherein of the total number of carbon atoms contained in the iso-paraffin molecule, 10- 15% of the carbon atoms are located in the branches.” Col 2, line 8, “These base stocks are premium synthetic lubricating oil base stocks of high purity having a high VI, a low pour point and are iso-paraffinic, in that they comprise at least 95 wt. % of non-cyclic iso-paraffins having a molecular structure in which less than 25% of the total number of carbon atoms are present in the branches, and less than half the branches have two or more carbon atoms.”
  • 32. p p m1 01 52 02 53 03 54 04 5 Process NMR Associates 1H-13C DEPT NMR of F-T Wax All Protonated Carbons CH Carbons CH2 Carbons CH3 Carbons
  • 33. Process NMR Associates Exxon FT-wax Patent
  • 34. Process NMR Associates ppm15202530354045505560 b g d e a' b' g' t-et p-et p-pr t-pr Sub-Me 4-Me Adj-Me 3-Me 2-Me t-Bu p-Bu Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 a Peak X
  • 35. Process NMR Associates ppm12141618202224262830 d b' g' b t-et p-et p-pr t-pr Sub-Me 4-Me Adj-Me 3-Me 2-Me t-Bu a p-Bu Peak X Reg6Reg5Reg4Reg3
  • 37.
  • 38. Process NMR Associates Residual Catalytic Cracking – Feed-stream Analysis Analysis – Refractive Index, Distillation, Specific Gravity Calculation – Watson K-Factor Outcome: aromatic carbon number aromatic hydrogen number total hydrogen content Proposition: Detailed hydrocarbon analysis for kinetic model development
  • 39. 0 5 10 15 20 25 20 40 60 80 100 120 140 0 .05 .1 .15 .2 .25 30 35 40 45 50 55 60 0 5 10 15 20 85 90 95 100 105 110 115 120 125 Aliphatic Region CH3 CH2 Aromatic Region 60 MHz Process – 1H NMR Data 50 Samples
  • 40. Process NMR Associates 0 20 40 60 80 100 120 0 20 40 60 80 100 300 MHz - 1H NMR – RCC Feeds 0 20 40 60 80 100 120 0 20 40 60 80 100
  • 41. Aromatic Region 15 20 25 30 35 Mono Di Tri 0 50 100 150 200 250 55 60 65 70 75 80 85 90 95 100 Aliphatic Region CH3 CH2 Alpha-Protons CH+Nap
  • 42. Process NMR Associates 0 20 40 60 80 0 5 10 15 20 Parameter 1H - Type Analysis 1 Total aromatic 2 Diaromatic+ protons 3 Monoaromatic protons 4 Total olefinic 5 RHC=CH2 6 RHC=CHR 7 RHC=CH2 8 Oxygenates protons 9 Total a protons to aromatics 10 a-CH to aromatics 11 a-CH2 to aromatics 12 a-CH3 to aromatics 13 Saturates 14 Paraffinic CH 15 Paraffinic CH3 16 Paraffinic CH3 17 Substituted aromatic carbon 18 Bridgehead carbons 19 Total aromatics (wt %) 20 Mono aromatics (wt %) 21 Di+ aromatics (wt %) 22 Benzene (wt %) 23 Olefin functions (wt %) 24 Oxygenates (wt %) 25 Saturates (wt %) H-Type NMR Analysis Depicted as a “Spectrum”
  • 43. Process NMR Associates 0 50 100 150 200 0 50 100 150 200 Aromatics Aliphatics 13C NMR Data
  • 44. Process NMR Associates Aromatic Region 40 50 60 70 80 90 140 150 160 170 180 190 Aliphatic Region
  • 45. Index Carbon Type Parameters (%C Unless Otherwise Listed) 1 Ketone carbonyl carbon %c 2 Aldehyde carbonyl carbon 3 Carboxylic acids, esters and amides carbonyl carbon 4 Phenoxy carbon 5 CH2 & CH sub aromatic carbon 6 Naphthenic sub aromatic carbon 7 CH3 sub aromatic carbon 8 Half of internal aromatic carbon 9 Protonated Internal aromatic C+ 1/2 internal aromatic C 10 Protonated aromatic carbon 11 Heteroaromatic other than phenoxy carbon 12 Methine carbon 13 Methylene carbon 14 Methyl carbon 15 Total carbonyl carbon 16 Total aromatic carbon 17 Aliphatic sub aromatic carbon 18 Methyl-substituted aromatic carbon 19 CH2 & CH substituted aromatic carbon 20 Naphthenic substituted aromatic carbon 21 Internal aromatic carbon 22 Peripheral unsubstituted aromatic carbon 23 Total heteroaromatic carbon 24 Total olefinic carbon 25 Total aliphatic carbon Index Carbon Type Parameters (%C Unless Otherwise Listed) 26 Aliphatic methine carbon (CH) 27 Aliphatic methylene carbon (CH2) 28 Aliphatic methyl carbon (CH3) 29 Total paraffinic carbon 30 Paraffinic methine carbon (CH) 31 Paraffinic methylene carbon (CH2) 32 Paraffinic methyl carbon (CH3) 33 Total naphthenic carbon 34 Naphthenic methine carbon (CH) 35 Naphthenic methylene carbon (CH2) 36 Naphthenic methyl carbon (CH3) 37 Reg1 38 a' 39 Reg2 40 g 41 Reg3 42 g' 43 e 44 d 45 Reg4 46 b' 47 Reg5 48 p-Bu 49 t-Bu 50 Peak x Index Carbon Type Parameters (%C Unless Otherwise Listed) 51 b 52 2-Me 53 Aromatic a methyl carbon 54 All other-Me 55 3-Me 56 Reg7 57 p-Pr 58 t-Pr 59 4-Me 60 a 61 t-Ethyl 62 p-Ethyl 63 Linear Paraffin Structure: % Linear Paraffin/Total Paraffin 64 Waxiness : % Epsilon C/Total Paraffin 65 Branching Index: %Branching CC/Total Paraffin 66 Total Branching Content: % C Near Branching C/Total C 67 C in Branched Environment: % 1-linear paraffin structure 68 Average Straight Chain Length (C No.) 69 Methyl branching index 70 Ethyl branching Index 71 Propyl branching Index 72 Butyl branching Index 73 Total ethyl branching content 74 Total propyl branching content 75 Total butyl branching content Calculated C-Type Parameters
  • 46. Process NMR Associates 0 20 40 60 80 0 10 20 30 40 50 60 70 C-Type NMR Parameters Depicted as a “Spectrum”
  • 47. Process NMR Associates Resonance Frequency 60 MHz Proton 300 MHz Proton 75 MHz Carbon-13 Parameter 1H NMR 0.1 ppm Bin 1H NMR - 0.1 ppm Bin H-Type Spectrum 13C NMR- 1 ppm Bin C-Type Spectrum Density at 15o C 0.961 0.983 0.924 0.982 0.974 Viscosity Index - 0.951 - 0.935 - MCRT 0.940 0.952 0.727 0.931 0.875 SULPHUR 0.931 0.964 0.855 0.979 0.962 Carbon Aromaticity 0.958 0.951 0.926 0.998 0.997 HYDROGEN 0.925 0.914 0.819 0.922 0.862 Total Aromatics 0.936 0.946 0.904 0.965 0.941 Monoaromatics 0.930 0.941 0.912 0.954 0.897 Diaromatics 0.927 0.945 0.866 0.951 0.897 TriAromatics 0.941 0.911 0.862 0.939 0.863 Tetra+ aromatics 0.913 0.921 0.656 0.912 0.934 Summary of RCC Feed NMR Analysis – Correlations to Physical/Chemical Properties
  • 48. density _13c_calculated.tdf ,5 (R² = 0.980019145)density _13c_calculated.tdf ,5 (R² = 0.980019145) Actual Concentration ( C1 )Actual Concentration ( C1 ) PredictedConcentration(F6C1)PredictedConcentration(F6C1) .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 1 2 3 4 5 6 7 8 9 10 12 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 4041 42 43 44 46 4748 49 50 51 52 54 55 56 .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 Variable Selection Process Reduces Number of Variables Linear Equations that Describe Density in terms of 13 Carbon Type Parameters
  • 49. 13C Parameter 1H NMR 13C NMR Total aromatic carbon 0.980 0.996 Aliphatic substituted aromatic carbon 0.962 0.999 Methyl-substituted aromatic carbon 0.970 0.994 CH2 & CH substituted aromatic carbon 0.935 0.996 Naphthenic substituted aromatic carbon 0.973 0.996 Internal aromatic carbon 0.949 0.994 Peripheral unsubstituted aromatic carbon 0.950 0.996 Total heteroaromatic carbon 0.275 0.976 Total aliphatic carbon 0.952 0.997 Aliphatic methine carbon (CH) 0.932 0.999 Aliphatic methylene carbon (CH2) 0.976 1.000 Aliphatic methyl carbon (CH3) 0.610 0.996 Total paraffinic carbon 0.984 0.995 P methine carbon (CH) 0.876 0.940 P methylene carbon (CH2) 0.987 0.998 P methyl carbon (CH3) 0.810 0.960 Total naphthenic carbon 0.964 0.989 N methine carbon (CH) 0.927 0.996 N methylene carbon (CH2) 0.957 0.987 N methyl carbon (CH3) 0.809 0.966 N methine/N methylene ratio 0.085 0.878 Mole fraction of bridgehead aromatic carbon 0.448 0.899 Aromatic carbons per aromatic group 0.697 0.895 13C Parameter Cluster number (=aromatic group number) 1H NMR 0.941 13C NMR 0.995 Aliphatic substitutions per cluster 0.087 0.906 Methyl-substitutions per cluster 0.379 0.909 CH2 & CH substitutions per cluster 0.063 0.899 Naphthenic substitutions per cluster 0.227 0.910 Heteroatoms per cluster 0.032 0.926 Naphthenic CH3 per cluster 0.449 0.906 # of naphthenic ring carbons per cluster 0.524 0.924 Naphthenic rings per cluster 0.317 0.939 # of paraffinic carbons per cluster 0.892 0.934 Average chain length of paraffinic substitutions 0.913 0.932 Linear paraffin structure 0.972 0.976 Waxiness : e/total paraffin 0.977 0.983 Branching index 0.973 0.972 Total branching content 0.964 0.972 Carbons in branched environment 0.972 0.976 Average straight chain length 0.967 0.986 Methyl branching index 0.972 0.962 Ethyl branching Index 0.945 0.945 Propyl branching Index 0.919 0.932 Butyl branching Index 0.919 0.951 Total ethyl branching content 0.946 0.946 Total propyl branching content 0.919 0.933 Total butyl branching content 0.917 0.950 Correlation of 1H and 13C NMR Spectra to 13C Derived Parameters
  • 50. Process NMR Associates Carbon AromaticityCorrletaed by1H NMR 5 10 15 20 25 30 5 10 15 20 25 30 Actual Fa (%C) PredictedFa(%C) Carbon Aromaticity Correlated to 13C Spectra 5 10 15 20 25 30 5 10 15 20 25 30 Actual Fa (%C) PredictedFa(%C) 1H and 13C NMR Correlation to Carbon Aromaticity
  • 51. Process NMR Associates 13C NMR Branching Index - 1H NMR 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 Actual Branching Index PredictedBranchingIndex 13C NMR Branching Index - 13C NMR 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 Actual Branching Index PredictedBranchingIndex 1H and 13C NMR Correlation to Branching Index Branching Carbons/Total Paraffinic Carbons
  • 52. 1H NMR Reaction Monitoring – Esterification of t-butanol with acetic anhydride
  • 54. 2.0 1.5 1.0 ppm Esterification of t-BuOH Integral Graph And Integration Plot AcAn Acetic Acid Ac-Ester
  • 55. 1H NMR Zreaction Monitoring –propanol esterified with acetic anhydride
  • 56.
  • 57. Sucrose a-glucose 1H NMR – Sucrose Hydrolysis
  • 58. Microreactor Process Monitoring – 1H NMR – Reaction: Cyclohexene -- Cyclohexane
  • 59. At-Line Analyzer 1H NMR Observation of Alkene Saturation Starting Material and Product Dissolved in CDCl3 Comparison of 60 MHz and 300 MHz
  • 60.
  • 64. Process NMR Associates Acknowledgements Paul Giammatteo – PNA Tal Cohen – ASPECT AI and Modcon Cosa-Xentaur