Séries de Fourier
Page 4SEER1-TS
Un signal périodique de période
peut être décomposé en une somme
d’ondes sinusoïdales dont les
fréquences sont multiples de
fréquence
Joseph Fourier
(1768-1830)
fo =
1
T
T
Séries de Fourier
Page 5SEER1-TS
fo =
1
T
Soit xT(t) un signal périodique de période . Son développement en séries
de Fourier est par définition:
xT t( ) = a0 + an
n=1
+∞
∑ cos 2π nf0t( ) + bn
n=1
+∞
∑ sin 2π nf0t( )
Où:
of0 est la fréquence fondamentale du signal.
oa0 est la valeur moyenne ou composante continue du signal .
oak et bk sont les coefficient de Fourier du développement en cosinus et sinus.
T
Calcul des coefficient de Fourier :
Remarque :
•xT(t) pair bn=0
•xT(t) impair an=0
Séries de Fourier
ao =
1
T
xT t( ) dt =xT
−
T
2
T
2
∫
an =
2
T
xT t( ) cos 2πnfot( ) dt
−
T
2
T
2
∫
bn =
2
T
xT t( ) sin 2πnfot( ) dt
−
T
2
T
2
∫ n ≥1
le développement en série de Fourier peut s’écrire:
où
En considérant la relation trigonométrique suivante:
avec
Acos(x)+ Bsin(x) = A2
+ B2
cos(x +φ)
φ = artg(
−B
A
)
xT (t)= A0 + An cos(2π nf0t
1
∞
∑ + αn )
A0 = a0 An = an
2
+ bn
2
αn = arctg(
−bn
an
)
Série de Fourier en cosinus
Séries de Fourier
- La représentation en cosinus est très importante car elle
correspond à la description des signaux en régime sinusoïdal
permanent où l’on représente un courant ou une tension par
son amplitude et sa phase.
- D’un point de vue pratique, cela revient à considérer que le
signal x(t) est créé de manière équivalente par une infinité de
générateur sinusoïdaux.
La représentation spectrale dans ce cas est unilatérale.
Remarques :
Séries de Fourier
Séries de Fourier
formules d’Euler :
xT t( ) = cn
n=−∞
+∞
∑ e
j 2πnfot( )
avec cn =
1
T
xT t( ) e
−j×2πnfot( )
dt
−
T
2
T
2
∫
co = ao
cn =
an − jbn
2
c−n =
an + jbn
2
Notation complexe :
fo =
1
T
la SF peut être transformée en SF complexe :
cos(x) =
ejx
+e− jx
2
, sin(x) =
ejx
−e− jx
2 j
Relation entre les trois formes :
cos-sin cos complexe
0=n 0a 00 aA = 00 ac =
0>n nn b,a
22
nnn baA +=
2
2
nn
n
nn
n
jba
c
jba
c
+
=
−
=
−
Séries de Fourier
La transformée de Fourier est une extension de la décomposition
en série de Fourier pour les signaux non périodiques.
En effet, la passage d’un signal périodique à un autre apériodique
peut se faire en considérant une période qui tend vers l’infini.
Transformée de Fourier
TF x(t){ } = X f( ) = x t( ) e− j2π ft
−∞
+∞
∫ dt
x t( ) = TF−1
X f( ){ } = X f( ) ej×2π ft
−∞
+∞
∫ df
Transformée de Fourier :
Transformée de Fourier inverse :
Transformée de Fourier
Linéarité :Linéarité :
( ) ( ) ( ) ( )fY.bfX.aty.btx.a F
+→←+
Homothétie :Homothétie :
( ) Ravec
1
∈
→← a
a
f
X
a
atx F
PropriétésPropriétés ::
Transformée de Fourier
Décalage en temps et en fréquence :Décalage en temps et en fréquence :
Dérivation :Dérivation :
x t −t0( ) F
¬ → X f( ).e− j2π ft0
et
x t( ).ej2π f0t F
¬ → X f − f0( )
( ) ( ) ( ) ( ) ( ) ( )fXfj
dt
txd
fX.fj
dt
tdx nF
n
n
F
ππ 2et2 →←→←
Propriétés :Propriétés :
Transformée de Fourier
Produit de convolution :Produit de convolution : ( ) ( ) τττ dtyxtyxtytx −== ∫
+∞
∞−
))(*()(*)(
( ) ( ) ( ) ( )fYtyfXtx FF
→←→← et
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )fY*fXty.tx
fY.fXty*tx
F
F
→
→
et
PropriétésPropriétés :
Transformée de Fourier
Transformée de Fourier & Systèmes :
Un SLTI est caractérisé par sa réponse impulsionnelle h(t)
La transformée de Fourier de h(t) donne la réponse en fréquence du système H(f)
et inversement.
h(t)
x(t) y(t)=x(t)*h(t)
H(f)
X(f) Y(f)=X(f) . H(f)
TF TF TF
Transformée de Fourier
Théorème de Parseval :Théorème de Parseval :
Propriétés :Propriétés :
Transformée de Fourier
E = x2
(t)dt
−∞
+∞
∫ = X(f )
2
df
−∞
+∞
∫
Densité Spectrale d ’Energie
)f(TF
δ→1
δ(t) TF
→ 1
ftjTF
e)tt( 02
0
π
δ −
→−
=
)ff(e TFtfj
0
2 0
−→ δπ
[ ])ff()ff()tfcos( TF
000
2
1
2 ++−→ δδπ
[ ])ff()ff(
j
)tfsin( TF
000
2
1
2 +−−→ δδπ
δTe
(t) TF
→
1
Te
δ( f −
n
Te
)
−∞
+∞
∑
Distribution de DiracDistribution de Dirac :
Transformée de Fourier
• Échantillonnage idéal
• Transformée de Fourier
périodisation en fréquence
xe (t) = x(t)δT (t) = x(t) δ(t − kT) = x[kT]δ(t − kT)
k=−∞
+∞
∑
k=−∞
+∞
∑
X f
T
X f f
T
X f
k
Te
T k
( ) ( )* ( ) ( )= = −
=−∞
+∞
∑
1 1
1δ
Échantillonnage temporel <=> périodisation en fréquence
Transformée de Fourier
Analyse spectrale
La transformée de Fourier est l’outil mathématique permettant d’obtenir une
représentation fréquentielle des signaux déterministes.
Elle a pour but de représenter, l’amplitude, la phase, l’énergie ou la puissance
d’un signal en fonction de sa fréquence notée f et permet ainsi son
analyse spectrale ou harmonique.
Remarque : la transformée de Fourier permet d’analyse un signal sous forme
d’une infinité de composantes sinusoïdales.
• Forme exponentielle du développement en série de Fourier d’un signal
périodique xT(t) de période T :
o cn.exp(jnωt) est l’harmonique d’ordre n du signal xT(t)
o l’harmonique d’ordre1 est appelé le fondamental
o l’harmonique d’ordre 0 correspond à la valeur moyenne du signal xT(t).
22
Analyse spectrale
Signaux périodiques
fo =
1
T
xT t( ) = cn
n=−∞
+∞
∑ e
j2π nfot( )
• Transformée de Fourier XT(f) d’un signal périodique xT(t) de période T :
• Le spectre d’un signal périodique est donc un spectre de raies puisque
c’est la
somme d’impulsions de Dirac décalées de 1/T de poids pondérés par les
coefficients cn appelés composantes du spectre.
Si X(f) est la transformée de Fourier du motif x(t) de xT(t), alors :
• X(f) est appelée l’enveloppe complexe de XT(f) 23
Analyse spectrale
Signaux périodiques
XT ( f ) = cnδ( f −
n
T
)
n=−∞
+∞
∑
cn =
1
T
X(
n
T
)
• Forme réelle du développement en série de Fourier d’un signal périodique
xT(t) de période T :
Les coefficients an et bn sont les coefficients réels de la série de Fourier ou
coefficients de Fourier trigonométriques.
- ancos(nωt)+bnsin(nωt) est l’harmonique d’ordre n du signal xT(t).
- l’harmonique d’ordre 1 correspond au fondamental
- l’harmonique d’ordre 0, a0 est la composante continue qui correspond à la
valeur moyenne du signal xT(t).
24
Analyse spectrale
Signaux périodiques
xT t( ) = a0 + an
n=1
+∞
∑ cos 2π nf0t( ) + bn
n=1
+∞
∑ sin 2π nf0t( )
0 1 2 3 4 5 6 7 8 9 10
-1
-0.5
0
0.5
1
temps (sec)
amplitude
Représentation en temps
0 1 2 3 4 5 6 7 8 9 10
0
0.2
0.4
0.6
0.8
1
fréquence (Hz)
amplitude
Représentation en fréquence
Représentation des signaux
Exemples
0 1 2 3 4 5 6 7 8 9 10
0
0.2
0.4
0.6
0.8
1
fréquence (Hz)
amplitude
Représentation en fréquence
0 1 2 3 4 5 6 7 8 9 10
-1
-0.5
0
0.5
1
temps (sec)
amplitude
Représentation en temps
Représentation des signaux
Exemples
0 1 2 3 4 5 6 7 8 9 10
-1
-0.5
0
0.5
1
temps (sec)
amplitude
Représentation en temps
0
0.2
0.4
0.6
0.8
1
fréquence (Hz)
amplitude
Représentation en fréquence
0 5 10 15 20 25 30
Représentation des signaux
Exemples
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
0.5
1
temps (µsec)
amplitude
Repré sentation en temps
0 1 2 3 4 5 6 7 8 9 10
0
0.2
0.4
0.6
0.8
1
fréquence (MHz)
amplitude
Représentation en fréquence
Représentation des signaux
Exemples
On appelle produit de convolution entre deux fonctions x(t) et h(t),
l’opération * (notée également ⊗) définie par :
(x*h)(t) = x(t)*h(t) = x(t)⊗ h(t)
= x(τ ).h(t −τ ).dτ
−∞
+∞
∫ = x(t −τ ).h(τ ).dτ
−∞
+∞
∫
Produit de convolution
Propriétés :
• Le produit de convolution est :
o commutatif: x(t)*h(t)=h(t)*x(t)
o distributif : x(t)*[h(t)+g(t)]=x(t)*h(t)+x(t)*g(t)
o associatif: x(t)*[h(t)*g(t)]=[x(t)*h(t)]*g
• Élément neutre : x(t)*δ(t) = x(t)
Produit de convolution
Expression simplifiée :
Si x(t) et h(t) sont causaux,
Alors :
x τ( ) =0 ∀τ <0
h t −τ( ) =0 ∀τ >t
( )( ) ∫ −=
t
dthxthx
0
)()(* τττ
Produit de convolution
La convolution est une opération fondamentale de traitement du
signal.
Elle indique que la réponse d'un SL à l’instant t est la somme
(intégrale) pondérée des valeurs antérieures de l'excitation x(t).
La fonction de pondération est la réponse impulsionnelle h(t) du SL.
Produit de convolution
Réponse d’un système linéaire :
Considérons l’exemple de x(t) et h(t) ci-dessous :
x(t)
t
h(t)
t
Produit de convolution
Interprétation graphique
h(τ)
τ
h(-τ)
τ
h(t-τ)
τt
Remarque : le signal h(t-τ) est tout simplement
le signal initial h(τ), retourné dans le temps
pour obtenir h(-τ) puis translaté de t .
Produit de convolution
Interprétation graphique
Interprétation graphique
x(τ).h(t-τ)
τt
h(t-τ)
La surface hachurée représente : ∫
+∞
∞−
−= τττ dthxthx ).().())(*(
Remarque : quand t varie de - à + , on obtient la fonction y(t),∝ ∝
convolution de x(t) et h(t). En pratique les fonctions sont non
nulles sur un support fini, donc l’intégrale a des bornes finies.
Produit de convolution
x(τ)
Domaine
temporel
Domaine
fréquentiel
Variable : t Variable : f
Convolution Produit
e(t) → s(t) = ? E(f) → S(f) = ?
T. de Fourier
11
Calculer:S(f)=?
22
TF inverse
33
Le calcul du produit de convolution se fait en 3 étapes
Produit de convolution
Interprétation graphique
x(τ).h(t-τ)
τt
h(t-τ)
La surface hachurée représente : ∫
+∞
∞−
−= τττ dthxthx ).().())(*(
Remarque : quand t varie de - à + , on obtient la fonction y(t),∝ ∝
convolution de x(t) et h(t). En pratique les fonctions sont non
nulles sur un support fini, donc l’intégrale a des bornes finies.
Produit de convolution
x(τ)