SlideShare uma empresa Scribd logo
1 de 95
Baixar para ler offline
Generalizing
phylogenetics to infer
patterns of shared
evolutionary events
Jamie R. Oaks
Department of Biological Sciences &
Museum of Natural History, Auburn
University
August 23, 2018
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Shared divergences Jamie Oaks – phyletica.org 1/35
Shared divergences Jamie Oaks – phyletica.org 2/35
Shared ancestry is a fundamental
property of life
Shared divergences Jamie Oaks – phyletica.org 2/35
Shared ancestry is a fundamental
property of life
Phylogenetics is rapidly
progressing as the statistical
foundation of comparatve biology
Shared divergences Jamie Oaks – phyletica.org 2/35
Shared ancestry is a fundamental
property of life
Phylogenetics is rapidly
progressing as the statistical
foundation of comparatve biology
“Big data” present exciting
possibilities and computational
challenges
Shared divergences Jamie Oaks – phyletica.org 2/35
Shared ancestry is a fundamental
property of life
Phylogenetics is rapidly
progressing as the statistical
foundation of comparatve biology
“Big data” present exciting
possibilities and computational
challenges
Exciting opportunities to develop
new ways to study biology in the
light of phylogeny
Shared divergences Jamie Oaks – phyletica.org 2/35
Shared divergences Jamie Oaks – phyletica.org 3/35
Assumption: All processes of
diversification affect each lineage
independently and only cause
bifurcating divergences.
Shared divergences Jamie Oaks – phyletica.org 3/35
Violating independent divergences
Shared divergences Jamie Oaks – phyletica.org 4/35
Violating independent divergences
Shared divergences Jamie Oaks – phyletica.org 4/35
Violating independent divergences
Shared divergences Jamie Oaks – phyletica.org 4/35
Biogeography
Environmental changes that
affect whole communities of
species
Shared divergences Jamie Oaks – phyletica.org 5/35
Biogeography
Environmental changes that
affect whole communities of
species
Gene family evolution
Chromosomal duplications
Shared divergences Jamie Oaks – phyletica.org 5/35
Biogeography
Environmental changes that
affect whole communities of
species
Gene family evolution
Chromosomal duplications
Epidemiology
Disease spread via co-infected
individuals
Transmission at social
gatherings
Shared divergences Jamie Oaks – phyletica.org 5/35
Biogeography
Environmental changes that
affect whole communities of
species
Gene family evolution
Chromosomal duplications
Epidemiology
Disease spread via co-infected
individuals
Transmission at social
gatherings
Endosymbiont evolution (e.g.,
parasites, microbiome)
Speciation of the host
Co-colonization of new host
species
Shared divergences Jamie Oaks – phyletica.org 5/35
Why account for shared divergences?
Shared divergences Jamie Oaks – phyletica.org 6/35
Why account for shared divergences?
1. Improve inference
Shared divergences Jamie Oaks – phyletica.org 6/35
True history
τ1τ2τ3
Current tree model
τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8
Shared divergences Jamie Oaks – phyletica.org 6/35
Why account for shared divergences?
1. Improve inference
Shared divergences Jamie Oaks – phyletica.org 7/35
Why account for shared divergences?
1. Improve inference
2. Provide a framework for studying processes of co-diversification
Shared divergences Jamie Oaks – phyletica.org 7/35
Biogeography
Environmental changes that
affect whole communities of
species
Gene family evolution
Chromosomal duplications
Epidemiology
Disease spread via co-infected
individuals
Transmission at social
gatherings
Endosymbiont evolution (e.g.,
parasites, microbiome)
Speciation of the host
Co-colonization of new host
species
Shared divergences Jamie Oaks – phyletica.org 8/35
τ1
Shared divergences Jamie Oaks – phyletica.org 9/35
τ1
Shared divergences Jamie Oaks – phyletica.org 9/35
τ1
Shared divergences Jamie Oaks – phyletica.org 9/35
τ2 τ1
Shared divergences Jamie Oaks – phyletica.org 9/35
τ1τ2
Shared divergences Jamie Oaks – phyletica.org 9/35
τ1τ2
Shared divergences Jamie Oaks – phyletica.org 9/35
τ3 τ1τ2
Shared divergences Jamie Oaks – phyletica.org 9/35
m1 m2 m3 m4 m5
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
m1 m2 m3 m4 m5
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
We want to infer the model and divergence times given DNA alignments
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
We want to infer the model and divergence times given DNA alignments
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
We want to infer the model and divergence times given DNA alignments
p(mi | X) ∝ p(X | mi )p(mi )
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
We want to infer the model and divergence times given DNA alignments
p(mi | X) ∝ p(X | mi )p(mi )
p(X | mi ) =
θ
p(X | θ, mi )p(θ | mi )dθ
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
We want to infer the model and divergence times given DNA alignments
p(mi | X) ∝ p(X | mi )p(mi )
p(X | mi ) =
θ
p(X | θ, mi )p(θ | mi )dθ
Divergence times
Gene trees
Substitution parameters
Demographic parameters
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
Challenges:
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
Challenges:
1. Likelihood is tractable, but gene trees are a pain
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
Challenges:
1. Likelihood is tractable, but gene trees are a pain
2. Sampling over all possible models
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
Challenges:
1. Likelihood is tractable, but gene trees are a pain
2. Sampling over all possible models
5 taxa = 52 models
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
Challenges:
1. Likelihood is tractable, but gene trees are a pain
2. Sampling over all possible models
5 taxa = 52 models
10 taxa = 115,975 models
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2
Challenges:
1. Likelihood is tractable, but gene trees are a pain
2. Sampling over all possible models
5 taxa = 52 models
10 taxa = 115,975 models
20 taxa = 51,724,158,235,372 models!!
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 10/35
Shared divergences Jamie Oaks – phyletica.org 11/35
Shared divergences Jamie Oaks – phyletica.org 12/35
Did repeated
fragmentation of islands
during inter-glacial rises in
sea level promote
diversification?
Shared divergences Jamie Oaks – phyletica.org 12/35
Shared divergences Jamie Oaks – phyletica.org 13/35
Shared divergences Jamie Oaks – phyletica.org 13/35
Shared divergences Jamie Oaks – phyletica.org 13/35
Approach #1
Challenges:
1. Likelihood is tractable, but gene trees are difficult
2. Sampling over all possible models
1
M. J. Hickerson et al. (2006). Evolution 60: 2435–2453
2
W. Huang et al. (2011). BMC Bioinformatics 12: 1
Shared divergences Jamie Oaks – phyletica.org 14/35
Approach #1
Challenges:
1. Likelihood is tractable, but gene trees are difficult
Use an existing method1,2
2. Sampling over all possible models
Use an existing method1,2
1
M. J. Hickerson et al. (2006). Evolution 60: 2435–2453
2
W. Huang et al. (2011). BMC Bioinformatics 12: 1
Shared divergences Jamie Oaks – phyletica.org 14/35
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9
Number of events
Probability
J. R. Oaks et al. (2013). Evolution 67: 991–1010
Shared divergences Jamie Oaks – phyletica.org 15/35
Approach #2
Challenges:
1. Likelihood is tractable, but gene trees are difficult
2. Sampling over all possible models
Shared divergences Jamie Oaks – phyletica.org 16/35
Approach #2
Challenges:
1. Likelihood is tractable, but gene trees are difficult
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
Shared divergences Jamie Oaks – phyletica.org 16/35
Approach #2
Challenges:
1. Likelihood is tractable, but gene trees are difficult
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
Shared divergences Jamie Oaks – phyletica.org 18/35
Approach #2
Challenges:
1. Likelihood is tractable, but gene trees are difficult
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
A “diffuse” Dirichlet process prior (DPP)
Shared divergences Jamie Oaks – phyletica.org 18/35
α
1
1
α
α
2
1
Shared divergences Jamie Oaks – phyletica.org 19/35
α
1
1
α
α
2
1
Shared divergences Jamie Oaks – phyletica.org 19/35
α
1
1
α
α
2
1
Shared divergences Jamie Oaks – phyletica.org 19/35
α
1
1
α
α
2
1
Shared divergences Jamie Oaks – phyletica.org 19/35
α
α+1
α
α+2
α
α
α+1
1
α+2
1
α
α+1
1
α+2
1
α
1
α+1
α
α+2
α
1
α+1
2
α+22
1
Shared divergences Jamie Oaks – phyletica.org 19/35
α = 0.5
α
α+1
α
α+2 = 0.067
α
α
α+1
1
α+2 = 0.133
1
α
α+1
1
α+2 = 0.133
1
α
1
α+1
α
α+2 = 0.133
α
1
α+1
2
α+2 = 0.5332
1
Shared divergences Jamie Oaks – phyletica.org 19/35
α = 10.0
α
α+1
α
α+2 = 0.758
α
α
α+1
1
α+2 = 0.076
1
α
α+1
1
α+2 = 0.076
1
α
1
α+1
α
α+2 = 0.076
α
1
α+1
2
α+2 = 0.0152
1
Shared divergences Jamie Oaks – phyletica.org 19/35
New method: dpp-msbayes
Approximate-likelihood Bayesian approach to inferring models of
shared divergences
Flexible Dirichlet-process prior (DPP) over all possible divergence
models
Flexible priors on parameters to avoid strongly weighted posteriors
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Shared divergences Jamie Oaks – phyletica.org 20/35
0.00
0.05
0.10
0.15
0.20
1 2 3 4 5 6 7 8 9
Number of events
Probability
J. R. Oaks et al. (2013). Evolution 67: 991–1010
Shared divergences Jamie Oaks – phyletica.org 21/35
Insulasaurus
Ptenochirus
Macroglossus
Haplonycteris
Gekko
Dendrolaphis
Cyrtodactylus
Cynopterus
Crocidura
0 5 10 15
Time
Comparison
J. R. Oaks et al. (2013). Evolution 67: 991–1010
Shared divergences Jamie Oaks – phyletica.org 21/35
Approach #3
Challenges:
1. Likelihood is tractable, but gene trees are difficult
2. Sampling over all possible models
A “diffuse” Dirichlet process prior (DPP)
1
D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
Shared divergences Jamie Oaks – phyletica.org 22/35
Approach #3
Challenges:
1. Likelihood is tractable, but gene trees are difficult
Bryant et al.1
introduced a way to integrate over them analytically
2. Sampling over all possible models
A “diffuse” Dirichlet process prior (DPP)
1
D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
Shared divergences Jamie Oaks – phyletica.org 22/35
Ecoevolity: Estimating evolutionary coevality1
1
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
2
R. M. Neal (2000). Journal of Computational and Graphical Statistics 9: 249–265
3
D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
Shared divergences Jamie Oaks – phyletica.org 23/35
Ecoevolity: Estimating evolutionary coevality1
CTMC model of characters evolving along genealogies
Coalescent model of genealogies branching within populations
Dirichlet-process prior across divergence models
Gibbs sampling2 to numerically sample models
Analytically integrate over genealogies3
1
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
2
R. M. Neal (2000). Journal of Computational and Graphical Statistics 9: 249–265
3
D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
Shared divergences Jamie Oaks – phyletica.org 23/35
Ecoevolity: Estimating evolutionary coevality1
CTMC model of characters evolving along genealogies
Coalescent model of genealogies branching within populations
Dirichlet-process prior across divergence models
Gibbs sampling2 to numerically sample models
Analytically integrate over genealogies3
Goal: Fast, full-likelihood Bayesian method to infer patterns of
co-diversification from genome-scale data
1
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
2
R. M. Neal (2000). Journal of Computational and Graphical Statistics 9: 249–265
3
D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
Shared divergences Jamie Oaks – phyletica.org 23/35
Does it work?
Shared divergences Jamie Oaks – phyletica.org 24/35
0.00 0.02 0.04 0.06
True divergence time (τ)
0.00
0.01
0.02
0.03
0.04
0.05
0.06
Estimateddivergencetime(ˆτ)
p(τ ∈ CI) = 0.946 RMSE = 1.02e-04
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
Shared divergences Jamie Oaks – phyletica.org 25/35
True number of events (k)
Estimatednumberofevents(ˆk)
105 5 0
1 266 7
0 2 114
p(ˆk = k) = 0.970 p(k) = 0.980
1
1
2
2
3
3
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
Shared divergences Jamie Oaks – phyletica.org 25/35
“Bake off”
0.00 0.05 0.10 0.15 0.20
0.00
0.05
0.10
0.15
0.20
ecoevolity
p(τ ∈ CI) = 0.915
RMSE = 9.14e-04
dpp-msbayes
p(τ ∈ CI) = 0.989
RMSE = 3.88e-03
msbayes
p(τ ∈ CI) = 0.973
RMSE = 1.25e-02
True divergence time (τ)
Estimateddivergencetime(¯τ)
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
Shared divergences Jamie Oaks – phyletica.org 26/35
“Bake off”
0.000 0.002 0.004 0.006
0.000
0.001
0.002
0.003
0.004
0.005
0.006
ecoevolity
p(Ne µ ∈ CI) = 0.936
RMSE = 2.11e-04
dpp-msbayes
p(Ne µ ∈ CI) = 0.945
RMSE = 9.04e-04
msbayes
p(Ne µ ∈ CI) = 0.751
RMSE = 1.48e-03
True root population size (Neµ)
Estimatedrootpopulationsize(¯Neµ)
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
Shared divergences Jamie Oaks – phyletica.org 26/35
“Bake off”
105 18 0
3 250 19
0 9 96
p(k ∈ 95%CS) = 0.992
p(ˆk = k) = 0.902 pp(k) = 0.942
ecoevolity
1
1
2
2
3
3
125 42 2
0 218 77
0 0 36
p(k ∈ 95%CS) = 0.996
p(ˆk = k) = 0.758 pp(k) = 0.789
dpp-msbayes
165 58 18
0 111 120
0 2 26
p(k ∈ 95%CS) = 0.964
p(ˆk = k) = 0.604 pp(k) = 0.699
msbayes
True number of events (k)
Estimatednumberofevents(ˆk)
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
Shared divergences Jamie Oaks – phyletica.org 26/35
“Bake off”
105 18 0
3 250 19
0 9 96
p(k ∈ 95%CS) = 0.992
p(ˆk = k) = 0.902 pp(k) = 0.942
ecoevolity
1
1
2
2
3
3
125 42 2
0 218 77
0 0 36
p(k ∈ 95%CS) = 0.996
p(ˆk = k) = 0.758 pp(k) = 0.789
dpp-msbayes
165 58 18
0 111 120
0 2 26
p(k ∈ 95%CS) = 0.964
p(ˆk = k) = 0.604 pp(k) = 0.699
msbayes
True number of events (k)
Estimatednumberofevents(ˆk)
Average run time:
33.4 minutes 4.4 days
J. R. Oaks (2018). bioRxiv doi:10.1101/324525
Shared divergences Jamie Oaks – phyletica.org 26/35
More data!
RADseq: 400k–2million bases for 8
pairs of populations
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Bohol
Palawan
Samar
Luzon 1
Luzon 2
Polillo
Panay
Sibuyan
Camiguin Sur
Borneo
Leyte
Babuyan Claro
Camiguin Norte
Luzon 3
Negros
Tablas
Connected?
Yes
Maybe
No
10
15
20
118 120 122 124 126
Shared divergences Jamie Oaks – phyletica.org 27/35
Ecoevolity: Results
0.0
0.2
0.4
0.6
1 2 3 4 5 6 7 8
Number of events
Probability
J. R. Oaks et al. (2018). bioRxiv doi:10.1101/395434
Shared divergences Jamie Oaks – phyletica.org 28/35
Ecoevolity: Results
Sibuyan | Tablas
Panay | Negros
Polillo | Luzon 3
Luzon 2 | Camiguin Norte
Luzon 1 | Babuyan Claro
Samar | Leyte
Palawan | Kinabalu
Bohol | Camiguin Sur
0.0000 0.0025 0.0050 0.0075 0.0100
Time
Comparison
J. R. Oaks et al. (2018). bioRxiv doi:10.1101/395434
Shared divergences Jamie Oaks – phyletica.org 28/35
Ecoevolity: Results
The results are very different
than the ABC methods
Shared divergences Jamie Oaks – phyletica.org 29/35
Ecoevolity: Results
The results are very different
than the ABC methods
But, these are different data
Shared divergences Jamie Oaks – phyletica.org 29/35
Ecoevolity: Results
The results are very different
than the ABC methods
But, these are different data
For a direct comparison, we
applied full-likelihood and ABC
methods to random subset of
RADseq data
200 loci from 3 pairs of gecko
populations
Shared divergences Jamie Oaks – phyletica.org 29/35
A B
<0.000624
0.00533
553
0.0
0.3
0.6
0.9
1 2 3
Number of events
Probability
Camiguin Norte | Dalupiri
Maestre De Campo | Masbate
Babuyan Claro | Calayan
0.000 0.003 0.006 0.009 0.012
Divergence time
Ecoevolity
C D
18.9
0.151
0.0119
0.00
0.25
0.50
0.75
1 2 3
Number of events
Probability
Camiguin Norte | Dalupiri
Maestre De Campo | Masbate
Babuyan Claro | Calayan
0.000 0.003 0.006 0.009 0.012
Divergence time
dpp-msbayes
J. R. Oaks et al. (2018). bioRxiv doi:10.1101/395434
Shared divergences Jamie Oaks – phyletica.org 30/35
Our journey
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9
Number of events
Probability
Shared divergences Jamie Oaks – phyletica.org 31/35
Our journey
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9
Number of events
Probability
0.00
0.05
0.10
0.15
0.20
1 2 3 4 5 6 7 8 9
Number of events
Probability
Shared divergences Jamie Oaks – phyletica.org 31/35
Our journey
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9
Number of events
Probability
0.00
0.05
0.10
0.15
0.20
1 2 3 4 5 6 7 8 9
Number of events
Probability
0.0
0.2
0.4
0.6
1 2 3 4 5 6 7 8
Number of events
Probability
Shared divergences Jamie Oaks – phyletica.org 31/35
Our journey
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9
Number of events
Probability
0.00
0.05
0.10
0.15
0.20
1 2 3 4 5 6 7 8 9
Number of events
Probability
0.0
0.2
0.4
0.6
1 2 3 4 5 6 7 8
Number of events
Probability
Conclusions?
Shared divergences Jamie Oaks – phyletica.org 31/35
Next step: A general framework
Develop a framework for
inferring shared divergences
across phylogenies τ1τ2
Shared divergences Jamie Oaks – phyletica.org 32/35
Next step: A general framework
Develop a framework for
inferring shared divergences
across phylogenies τ1τ2
Shared divergences Jamie Oaks – phyletica.org 32/35
Next step: A general framework
Develop a framework for
inferring shared divergences
across phylogenies
Generalize Bayesian
phylogenetics to incorporate
shared divergences
τ1τ2
Shared divergences Jamie Oaks – phyletica.org 32/35
Next step: A general framework
Develop a framework for
inferring shared divergences
across phylogenies
Generalize Bayesian
phylogenetics to incorporate
shared divergences
Sample models numerically via
reversible-jump Markov chain
Monte Carlo
τ1τ2
Shared divergences Jamie Oaks – phyletica.org 32/35
Next step: A general framework
Develop a framework for
inferring shared divergences
across phylogenies
Generalize Bayesian
phylogenetics to incorporate
shared divergences
Sample models numerically via
reversible-jump Markov chain
Monte Carlo
Benefits:
Improve phylogenetic inference
Framework for studying
processes of co-diversification
τ1τ2
Shared divergences Jamie Oaks – phyletica.org 32/35
Everything is on GitHub. . .
Software:
Ecoevolity: https://github.com/phyletica/ecoevolity
PyMsBayes: https://joaks1.github.io/PyMsBayes
dpp-msbayes: https://github.com/joaks1/dpp-msbayes
ABACUS: Approximate BAyesian C UtilitieS.
https://github.com/joaks1/abacus
Open-Science Notebooks:
Ecoevolity experiments:
https://github.com/phyletica/ecoevolity-experiments
msBayes experiments:
https://github.com/joaks1/msbayes-experiments
Gecko RADseq: https://github.com/phyletica/gekgo
Shared divergences Jamie Oaks – phyletica.org 33/35
Acknowledgments
Ideas and feedback:
Phyletica Lab (the Phyleticians)
Mark Holder
Leach´e Lab
Minin Lab
Tracy Heath
Michael Landis
Computation:
Funding:
Photo credits:
Rafe Brown, Cam Siler, Jesse
Grismer, & Jake Esselstyn
FMNH Philippine Mammal
Website:
D.S. Balete, M.R.M. Duya, &
J. Holden
PhyloPic!
Shared divergences Jamie Oaks – phyletica.org 34/35
Questions?
joaks@auburn.edu
phyletica.org
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Shared divergences Jamie Oaks – phyletica.org 35/35

Mais conteúdo relacionado

Mais procurados

Krakauer_CV_20160219
Krakauer_CV_20160219Krakauer_CV_20160219
Krakauer_CV_20160219
Alan Krakauer
 
scienceposterday2015_kkeeley_direwolfv6
scienceposterday2015_kkeeley_direwolfv6scienceposterday2015_kkeeley_direwolfv6
scienceposterday2015_kkeeley_direwolfv6
Kate
 
Role Of Behavior In Evolution 1
Role Of  Behavior In  Evolution 1Role Of  Behavior In  Evolution 1
Role Of Behavior In Evolution 1
naeempr
 

Mais procurados (20)

Understanding the basic principles of population genetics and its application
Understanding the basic principles of population genetics and its applicationUnderstanding the basic principles of population genetics and its application
Understanding the basic principles of population genetics and its application
 
Variation and causes of variation
 Variation and causes of variation Variation and causes of variation
Variation and causes of variation
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary events
 
Matthew Pennell - Young Investigator Prize Talk
Matthew Pennell - Young Investigator Prize TalkMatthew Pennell - Young Investigator Prize Talk
Matthew Pennell - Young Investigator Prize Talk
 
Gene sharing in microbes: good for the individual, good for the community?
Gene sharing in microbes: good for the individual, good for the community?Gene sharing in microbes: good for the individual, good for the community?
Gene sharing in microbes: good for the individual, good for the community?
 
Krakauer_CV_20160219
Krakauer_CV_20160219Krakauer_CV_20160219
Krakauer_CV_20160219
 
Pennell defense-talk
Pennell defense-talkPennell defense-talk
Pennell defense-talk
 
Beiko cms final
Beiko cms finalBeiko cms final
Beiko cms final
 
Is microbial ecology driven by roaming genes?
Is microbial ecology driven by roaming genes?Is microbial ecology driven by roaming genes?
Is microbial ecology driven by roaming genes?
 
Molecular clock, Neutral hypothesis
Molecular clock, Neutral hypothesisMolecular clock, Neutral hypothesis
Molecular clock, Neutral hypothesis
 
Mettler_and_Spellman_2009
Mettler_and_Spellman_2009Mettler_and_Spellman_2009
Mettler_and_Spellman_2009
 
scienceposterday2015_kkeeley_direwolfv6
scienceposterday2015_kkeeley_direwolfv6scienceposterday2015_kkeeley_direwolfv6
scienceposterday2015_kkeeley_direwolfv6
 
Role Of Behavior In Evolution 1
Role Of  Behavior In  Evolution 1Role Of  Behavior In  Evolution 1
Role Of Behavior In Evolution 1
 
Correlación Eficacia vs Heterosigosidad
Correlación Eficacia vs HeterosigosidadCorrelación Eficacia vs Heterosigosidad
Correlación Eficacia vs Heterosigosidad
 
Neutral theory of evolution
Neutral theory of evolutionNeutral theory of evolution
Neutral theory of evolution
 
Molecular evolution
Molecular evolutionMolecular evolution
Molecular evolution
 
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
 
Winnetal
WinnetalWinnetal
Winnetal
 
Beiko dcsi2013
Beiko dcsi2013Beiko dcsi2013
Beiko dcsi2013
 
Peterschmidt_Final_Paper
Peterschmidt_Final_PaperPeterschmidt_Final_Paper
Peterschmidt_Final_Paper
 

Semelhante a Generalizing phylogenetics to infer patterns of shared evolutionary events

Why is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdfWhy is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdf
arrowmobile
 
Science aug-2005-cardillo-et-al
Science aug-2005-cardillo-et-alScience aug-2005-cardillo-et-al
Science aug-2005-cardillo-et-al
Samiullah Hamdard
 
Chapter1
Chapter1Chapter1
Chapter1
saeco44
 

Semelhante a Generalizing phylogenetics to infer patterns of shared evolutionary events (20)

Marine Host-Microbiome Interactions: Challenges and Opportunities
Marine Host-Microbiome Interactions: Challenges and OpportunitiesMarine Host-Microbiome Interactions: Challenges and Opportunities
Marine Host-Microbiome Interactions: Challenges and Opportunities
 
Why is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdfWhy is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdf
 
joaks-evolution-2014
joaks-evolution-2014joaks-evolution-2014
joaks-evolution-2014
 
Cave animals at the dawn of speleogenomics
Cave animals at the dawn of speleogenomicsCave animals at the dawn of speleogenomics
Cave animals at the dawn of speleogenomics
 
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
 
EcoMaths - The Numbers of Life (and Death)
EcoMaths - The Numbers of Life (and Death)EcoMaths - The Numbers of Life (and Death)
EcoMaths - The Numbers of Life (and Death)
 
Genotype-By-Environment Interaction (VG X E) wth Examples
Genotype-By-Environment Interaction (VG X E)  wth ExamplesGenotype-By-Environment Interaction (VG X E)  wth Examples
Genotype-By-Environment Interaction (VG X E) wth Examples
 
EVE 161 Lecture 4
EVE 161 Lecture 4EVE 161 Lecture 4
EVE 161 Lecture 4
 
EVOLUTION AND MECHANISM OF EVOLUTION
 EVOLUTION AND MECHANISM OF EVOLUTION EVOLUTION AND MECHANISM OF EVOLUTION
EVOLUTION AND MECHANISM OF EVOLUTION
 
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E..."Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
 
19011714-013 Tania Afzal zoo-532.pptx
19011714-013 Tania Afzal zoo-532.pptx19011714-013 Tania Afzal zoo-532.pptx
19011714-013 Tania Afzal zoo-532.pptx
 
Science aug-2005-cardillo-et-al
Science aug-2005-cardillo-et-alScience aug-2005-cardillo-et-al
Science aug-2005-cardillo-et-al
 
McAllister et al
McAllister et alMcAllister et al
McAllister et al
 
مشروووووع الوراثه
مشروووووع الوراثهمشروووووع الوراثه
مشروووووع الوراثه
 
Evolutionary Genetics by: Kim Jim F. Raborar, RN, MAEd(ue)
Evolutionary Genetics by: Kim Jim F. Raborar, RN, MAEd(ue)Evolutionary Genetics by: Kim Jim F. Raborar, RN, MAEd(ue)
Evolutionary Genetics by: Kim Jim F. Raborar, RN, MAEd(ue)
 
Nutley HS Bio EOC Review
Nutley HS Bio EOC ReviewNutley HS Bio EOC Review
Nutley HS Bio EOC Review
 
Chapter1
Chapter1Chapter1
Chapter1
 
Intro to aDNA and bioarchaeology
Intro to aDNA and bioarchaeologyIntro to aDNA and bioarchaeology
Intro to aDNA and bioarchaeology
 
Natural Selection
Natural SelectionNatural Selection
Natural Selection
 
Evolution
EvolutionEvolution
Evolution
 

Mais de Jamie Oaks (6)

Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...
 
SSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography WorkshopSSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography Workshop
 
Inferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic dataInferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic data
 
Approximate-rejection sampler
Approximate-rejection samplerApproximate-rejection sampler
Approximate-rejection sampler
 
Dirichlet-process probability tree
Dirichlet-process probability treeDirichlet-process probability tree
Dirichlet-process probability tree
 
Islands and Integrals
Islands and IntegralsIslands and Integrals
Islands and Integrals
 

Último

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
RohitNehra6
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
University of Hertfordshire
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 

Último (20)

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 

Generalizing phylogenetics to infer patterns of shared evolutionary events

  • 1. Generalizing phylogenetics to infer patterns of shared evolutionary events Jamie R. Oaks Department of Biological Sciences & Museum of Natural History, Auburn University August 23, 2018 c 2007 Boris Kulikov boris-kulikov.blogspot.com Shared divergences Jamie Oaks – phyletica.org 1/35
  • 2. Shared divergences Jamie Oaks – phyletica.org 2/35
  • 3. Shared ancestry is a fundamental property of life Shared divergences Jamie Oaks – phyletica.org 2/35
  • 4. Shared ancestry is a fundamental property of life Phylogenetics is rapidly progressing as the statistical foundation of comparatve biology Shared divergences Jamie Oaks – phyletica.org 2/35
  • 5. Shared ancestry is a fundamental property of life Phylogenetics is rapidly progressing as the statistical foundation of comparatve biology “Big data” present exciting possibilities and computational challenges Shared divergences Jamie Oaks – phyletica.org 2/35
  • 6. Shared ancestry is a fundamental property of life Phylogenetics is rapidly progressing as the statistical foundation of comparatve biology “Big data” present exciting possibilities and computational challenges Exciting opportunities to develop new ways to study biology in the light of phylogeny Shared divergences Jamie Oaks – phyletica.org 2/35
  • 7. Shared divergences Jamie Oaks – phyletica.org 3/35
  • 8. Assumption: All processes of diversification affect each lineage independently and only cause bifurcating divergences. Shared divergences Jamie Oaks – phyletica.org 3/35
  • 9. Violating independent divergences Shared divergences Jamie Oaks – phyletica.org 4/35
  • 10. Violating independent divergences Shared divergences Jamie Oaks – phyletica.org 4/35
  • 11. Violating independent divergences Shared divergences Jamie Oaks – phyletica.org 4/35
  • 12. Biogeography Environmental changes that affect whole communities of species Shared divergences Jamie Oaks – phyletica.org 5/35
  • 13. Biogeography Environmental changes that affect whole communities of species Gene family evolution Chromosomal duplications Shared divergences Jamie Oaks – phyletica.org 5/35
  • 14. Biogeography Environmental changes that affect whole communities of species Gene family evolution Chromosomal duplications Epidemiology Disease spread via co-infected individuals Transmission at social gatherings Shared divergences Jamie Oaks – phyletica.org 5/35
  • 15. Biogeography Environmental changes that affect whole communities of species Gene family evolution Chromosomal duplications Epidemiology Disease spread via co-infected individuals Transmission at social gatherings Endosymbiont evolution (e.g., parasites, microbiome) Speciation of the host Co-colonization of new host species Shared divergences Jamie Oaks – phyletica.org 5/35
  • 16. Why account for shared divergences? Shared divergences Jamie Oaks – phyletica.org 6/35
  • 17. Why account for shared divergences? 1. Improve inference Shared divergences Jamie Oaks – phyletica.org 6/35
  • 18. True history τ1τ2τ3 Current tree model τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8 Shared divergences Jamie Oaks – phyletica.org 6/35
  • 19. Why account for shared divergences? 1. Improve inference Shared divergences Jamie Oaks – phyletica.org 7/35
  • 20. Why account for shared divergences? 1. Improve inference 2. Provide a framework for studying processes of co-diversification Shared divergences Jamie Oaks – phyletica.org 7/35
  • 21. Biogeography Environmental changes that affect whole communities of species Gene family evolution Chromosomal duplications Epidemiology Disease spread via co-infected individuals Transmission at social gatherings Endosymbiont evolution (e.g., parasites, microbiome) Speciation of the host Co-colonization of new host species Shared divergences Jamie Oaks – phyletica.org 8/35
  • 22. τ1 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 23. τ1 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 24. τ1 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 25. τ2 τ1 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 26. τ1τ2 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 27. τ1τ2 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 28. τ3 τ1τ2 Shared divergences Jamie Oaks – phyletica.org 9/35
  • 29. m1 m2 m3 m4 m5 τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 30. m1 m2 m3 m4 m5 τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 We want to infer the model and divergence times given DNA alignments J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 31. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 We want to infer the model and divergence times given DNA alignments J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 32. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 We want to infer the model and divergence times given DNA alignments p(mi | X) ∝ p(X | mi )p(mi ) J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 33. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 We want to infer the model and divergence times given DNA alignments p(mi | X) ∝ p(X | mi )p(mi ) p(X | mi ) = θ p(X | θ, mi )p(θ | mi )dθ J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 34. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 We want to infer the model and divergence times given DNA alignments p(mi | X) ∝ p(X | mi )p(mi ) p(X | mi ) = θ p(X | θ, mi )p(θ | mi )dθ Divergence times Gene trees Substitution parameters Demographic parameters J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 35. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 Challenges: J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 36. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 Challenges: 1. Likelihood is tractable, but gene trees are a pain J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 37. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 Challenges: 1. Likelihood is tractable, but gene trees are a pain 2. Sampling over all possible models J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 38. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 Challenges: 1. Likelihood is tractable, but gene trees are a pain 2. Sampling over all possible models 5 taxa = 52 models J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 39. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 Challenges: 1. Likelihood is tractable, but gene trees are a pain 2. Sampling over all possible models 5 taxa = 52 models 10 taxa = 115,975 models J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 40. p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 τ2 τ1 τ1τ2 τ1τ2 τ3 τ1τ2 Challenges: 1. Likelihood is tractable, but gene trees are a pain 2. Sampling over all possible models 5 taxa = 52 models 10 taxa = 115,975 models 20 taxa = 51,724,158,235,372 models!! J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 10/35
  • 41. Shared divergences Jamie Oaks – phyletica.org 11/35
  • 42. Shared divergences Jamie Oaks – phyletica.org 12/35
  • 43. Did repeated fragmentation of islands during inter-glacial rises in sea level promote diversification? Shared divergences Jamie Oaks – phyletica.org 12/35
  • 44. Shared divergences Jamie Oaks – phyletica.org 13/35
  • 45. Shared divergences Jamie Oaks – phyletica.org 13/35
  • 46. Shared divergences Jamie Oaks – phyletica.org 13/35
  • 47. Approach #1 Challenges: 1. Likelihood is tractable, but gene trees are difficult 2. Sampling over all possible models 1 M. J. Hickerson et al. (2006). Evolution 60: 2435–2453 2 W. Huang et al. (2011). BMC Bioinformatics 12: 1 Shared divergences Jamie Oaks – phyletica.org 14/35
  • 48. Approach #1 Challenges: 1. Likelihood is tractable, but gene trees are difficult Use an existing method1,2 2. Sampling over all possible models Use an existing method1,2 1 M. J. Hickerson et al. (2006). Evolution 60: 2435–2453 2 W. Huang et al. (2011). BMC Bioinformatics 12: 1 Shared divergences Jamie Oaks – phyletica.org 14/35
  • 49. 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 Number of events Probability J. R. Oaks et al. (2013). Evolution 67: 991–1010 Shared divergences Jamie Oaks – phyletica.org 15/35
  • 50. Approach #2 Challenges: 1. Likelihood is tractable, but gene trees are difficult 2. Sampling over all possible models Shared divergences Jamie Oaks – phyletica.org 16/35
  • 51. Approach #2 Challenges: 1. Likelihood is tractable, but gene trees are difficult Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models Shared divergences Jamie Oaks – phyletica.org 16/35
  • 52.
  • 53. Approach #2 Challenges: 1. Likelihood is tractable, but gene trees are difficult Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models Shared divergences Jamie Oaks – phyletica.org 18/35
  • 54. Approach #2 Challenges: 1. Likelihood is tractable, but gene trees are difficult Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models A “diffuse” Dirichlet process prior (DPP) Shared divergences Jamie Oaks – phyletica.org 18/35
  • 55. α 1 1 α α 2 1 Shared divergences Jamie Oaks – phyletica.org 19/35
  • 56. α 1 1 α α 2 1 Shared divergences Jamie Oaks – phyletica.org 19/35
  • 57. α 1 1 α α 2 1 Shared divergences Jamie Oaks – phyletica.org 19/35
  • 58. α 1 1 α α 2 1 Shared divergences Jamie Oaks – phyletica.org 19/35
  • 60. α = 0.5 α α+1 α α+2 = 0.067 α α α+1 1 α+2 = 0.133 1 α α+1 1 α+2 = 0.133 1 α 1 α+1 α α+2 = 0.133 α 1 α+1 2 α+2 = 0.5332 1 Shared divergences Jamie Oaks – phyletica.org 19/35
  • 61. α = 10.0 α α+1 α α+2 = 0.758 α α α+1 1 α+2 = 0.076 1 α α+1 1 α+2 = 0.076 1 α 1 α+1 α α+2 = 0.076 α 1 α+1 2 α+2 = 0.0152 1 Shared divergences Jamie Oaks – phyletica.org 19/35
  • 62. New method: dpp-msbayes Approximate-likelihood Bayesian approach to inferring models of shared divergences Flexible Dirichlet-process prior (DPP) over all possible divergence models Flexible priors on parameters to avoid strongly weighted posteriors J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Shared divergences Jamie Oaks – phyletica.org 20/35
  • 63. 0.00 0.05 0.10 0.15 0.20 1 2 3 4 5 6 7 8 9 Number of events Probability J. R. Oaks et al. (2013). Evolution 67: 991–1010 Shared divergences Jamie Oaks – phyletica.org 21/35
  • 64. Insulasaurus Ptenochirus Macroglossus Haplonycteris Gekko Dendrolaphis Cyrtodactylus Cynopterus Crocidura 0 5 10 15 Time Comparison J. R. Oaks et al. (2013). Evolution 67: 991–1010 Shared divergences Jamie Oaks – phyletica.org 21/35
  • 65. Approach #3 Challenges: 1. Likelihood is tractable, but gene trees are difficult 2. Sampling over all possible models A “diffuse” Dirichlet process prior (DPP) 1 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932 Shared divergences Jamie Oaks – phyletica.org 22/35
  • 66. Approach #3 Challenges: 1. Likelihood is tractable, but gene trees are difficult Bryant et al.1 introduced a way to integrate over them analytically 2. Sampling over all possible models A “diffuse” Dirichlet process prior (DPP) 1 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932 Shared divergences Jamie Oaks – phyletica.org 22/35
  • 67. Ecoevolity: Estimating evolutionary coevality1 1 J. R. Oaks (2018). bioRxiv doi:10.1101/324525 2 R. M. Neal (2000). Journal of Computational and Graphical Statistics 9: 249–265 3 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932 Shared divergences Jamie Oaks – phyletica.org 23/35
  • 68. Ecoevolity: Estimating evolutionary coevality1 CTMC model of characters evolving along genealogies Coalescent model of genealogies branching within populations Dirichlet-process prior across divergence models Gibbs sampling2 to numerically sample models Analytically integrate over genealogies3 1 J. R. Oaks (2018). bioRxiv doi:10.1101/324525 2 R. M. Neal (2000). Journal of Computational and Graphical Statistics 9: 249–265 3 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932 Shared divergences Jamie Oaks – phyletica.org 23/35
  • 69. Ecoevolity: Estimating evolutionary coevality1 CTMC model of characters evolving along genealogies Coalescent model of genealogies branching within populations Dirichlet-process prior across divergence models Gibbs sampling2 to numerically sample models Analytically integrate over genealogies3 Goal: Fast, full-likelihood Bayesian method to infer patterns of co-diversification from genome-scale data 1 J. R. Oaks (2018). bioRxiv doi:10.1101/324525 2 R. M. Neal (2000). Journal of Computational and Graphical Statistics 9: 249–265 3 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932 Shared divergences Jamie Oaks – phyletica.org 23/35
  • 70. Does it work? Shared divergences Jamie Oaks – phyletica.org 24/35
  • 71. 0.00 0.02 0.04 0.06 True divergence time (τ) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 Estimateddivergencetime(ˆτ) p(τ ∈ CI) = 0.946 RMSE = 1.02e-04 J. R. Oaks (2018). bioRxiv doi:10.1101/324525 Shared divergences Jamie Oaks – phyletica.org 25/35
  • 72. True number of events (k) Estimatednumberofevents(ˆk) 105 5 0 1 266 7 0 2 114 p(ˆk = k) = 0.970 p(k) = 0.980 1 1 2 2 3 3 J. R. Oaks (2018). bioRxiv doi:10.1101/324525 Shared divergences Jamie Oaks – phyletica.org 25/35
  • 73. “Bake off” 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 ecoevolity p(τ ∈ CI) = 0.915 RMSE = 9.14e-04 dpp-msbayes p(τ ∈ CI) = 0.989 RMSE = 3.88e-03 msbayes p(τ ∈ CI) = 0.973 RMSE = 1.25e-02 True divergence time (τ) Estimateddivergencetime(¯τ) J. R. Oaks (2018). bioRxiv doi:10.1101/324525 Shared divergences Jamie Oaks – phyletica.org 26/35
  • 74. “Bake off” 0.000 0.002 0.004 0.006 0.000 0.001 0.002 0.003 0.004 0.005 0.006 ecoevolity p(Ne µ ∈ CI) = 0.936 RMSE = 2.11e-04 dpp-msbayes p(Ne µ ∈ CI) = 0.945 RMSE = 9.04e-04 msbayes p(Ne µ ∈ CI) = 0.751 RMSE = 1.48e-03 True root population size (Neµ) Estimatedrootpopulationsize(¯Neµ) J. R. Oaks (2018). bioRxiv doi:10.1101/324525 Shared divergences Jamie Oaks – phyletica.org 26/35
  • 75. “Bake off” 105 18 0 3 250 19 0 9 96 p(k ∈ 95%CS) = 0.992 p(ˆk = k) = 0.902 pp(k) = 0.942 ecoevolity 1 1 2 2 3 3 125 42 2 0 218 77 0 0 36 p(k ∈ 95%CS) = 0.996 p(ˆk = k) = 0.758 pp(k) = 0.789 dpp-msbayes 165 58 18 0 111 120 0 2 26 p(k ∈ 95%CS) = 0.964 p(ˆk = k) = 0.604 pp(k) = 0.699 msbayes True number of events (k) Estimatednumberofevents(ˆk) J. R. Oaks (2018). bioRxiv doi:10.1101/324525 Shared divergences Jamie Oaks – phyletica.org 26/35
  • 76. “Bake off” 105 18 0 3 250 19 0 9 96 p(k ∈ 95%CS) = 0.992 p(ˆk = k) = 0.902 pp(k) = 0.942 ecoevolity 1 1 2 2 3 3 125 42 2 0 218 77 0 0 36 p(k ∈ 95%CS) = 0.996 p(ˆk = k) = 0.758 pp(k) = 0.789 dpp-msbayes 165 58 18 0 111 120 0 2 26 p(k ∈ 95%CS) = 0.964 p(ˆk = k) = 0.604 pp(k) = 0.699 msbayes True number of events (k) Estimatednumberofevents(ˆk) Average run time: 33.4 minutes 4.4 days J. R. Oaks (2018). bioRxiv doi:10.1101/324525 Shared divergences Jamie Oaks – phyletica.org 26/35
  • 77. More data! RADseq: 400k–2million bases for 8 pairs of populations q q q q q q q q q q q q q q q q Bohol Palawan Samar Luzon 1 Luzon 2 Polillo Panay Sibuyan Camiguin Sur Borneo Leyte Babuyan Claro Camiguin Norte Luzon 3 Negros Tablas Connected? Yes Maybe No 10 15 20 118 120 122 124 126 Shared divergences Jamie Oaks – phyletica.org 27/35
  • 78. Ecoevolity: Results 0.0 0.2 0.4 0.6 1 2 3 4 5 6 7 8 Number of events Probability J. R. Oaks et al. (2018). bioRxiv doi:10.1101/395434 Shared divergences Jamie Oaks – phyletica.org 28/35
  • 79. Ecoevolity: Results Sibuyan | Tablas Panay | Negros Polillo | Luzon 3 Luzon 2 | Camiguin Norte Luzon 1 | Babuyan Claro Samar | Leyte Palawan | Kinabalu Bohol | Camiguin Sur 0.0000 0.0025 0.0050 0.0075 0.0100 Time Comparison J. R. Oaks et al. (2018). bioRxiv doi:10.1101/395434 Shared divergences Jamie Oaks – phyletica.org 28/35
  • 80. Ecoevolity: Results The results are very different than the ABC methods Shared divergences Jamie Oaks – phyletica.org 29/35
  • 81. Ecoevolity: Results The results are very different than the ABC methods But, these are different data Shared divergences Jamie Oaks – phyletica.org 29/35
  • 82. Ecoevolity: Results The results are very different than the ABC methods But, these are different data For a direct comparison, we applied full-likelihood and ABC methods to random subset of RADseq data 200 loci from 3 pairs of gecko populations Shared divergences Jamie Oaks – phyletica.org 29/35
  • 83. A B <0.000624 0.00533 553 0.0 0.3 0.6 0.9 1 2 3 Number of events Probability Camiguin Norte | Dalupiri Maestre De Campo | Masbate Babuyan Claro | Calayan 0.000 0.003 0.006 0.009 0.012 Divergence time Ecoevolity C D 18.9 0.151 0.0119 0.00 0.25 0.50 0.75 1 2 3 Number of events Probability Camiguin Norte | Dalupiri Maestre De Campo | Masbate Babuyan Claro | Calayan 0.000 0.003 0.006 0.009 0.012 Divergence time dpp-msbayes J. R. Oaks et al. (2018). bioRxiv doi:10.1101/395434 Shared divergences Jamie Oaks – phyletica.org 30/35
  • 84. Our journey 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 Number of events Probability Shared divergences Jamie Oaks – phyletica.org 31/35
  • 85. Our journey 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 Number of events Probability 0.00 0.05 0.10 0.15 0.20 1 2 3 4 5 6 7 8 9 Number of events Probability Shared divergences Jamie Oaks – phyletica.org 31/35
  • 86. Our journey 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 Number of events Probability 0.00 0.05 0.10 0.15 0.20 1 2 3 4 5 6 7 8 9 Number of events Probability 0.0 0.2 0.4 0.6 1 2 3 4 5 6 7 8 Number of events Probability Shared divergences Jamie Oaks – phyletica.org 31/35
  • 87. Our journey 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 Number of events Probability 0.00 0.05 0.10 0.15 0.20 1 2 3 4 5 6 7 8 9 Number of events Probability 0.0 0.2 0.4 0.6 1 2 3 4 5 6 7 8 Number of events Probability Conclusions? Shared divergences Jamie Oaks – phyletica.org 31/35
  • 88. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies τ1τ2 Shared divergences Jamie Oaks – phyletica.org 32/35
  • 89. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies τ1τ2 Shared divergences Jamie Oaks – phyletica.org 32/35
  • 90. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies Generalize Bayesian phylogenetics to incorporate shared divergences τ1τ2 Shared divergences Jamie Oaks – phyletica.org 32/35
  • 91. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies Generalize Bayesian phylogenetics to incorporate shared divergences Sample models numerically via reversible-jump Markov chain Monte Carlo τ1τ2 Shared divergences Jamie Oaks – phyletica.org 32/35
  • 92. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies Generalize Bayesian phylogenetics to incorporate shared divergences Sample models numerically via reversible-jump Markov chain Monte Carlo Benefits: Improve phylogenetic inference Framework for studying processes of co-diversification τ1τ2 Shared divergences Jamie Oaks – phyletica.org 32/35
  • 93. Everything is on GitHub. . . Software: Ecoevolity: https://github.com/phyletica/ecoevolity PyMsBayes: https://joaks1.github.io/PyMsBayes dpp-msbayes: https://github.com/joaks1/dpp-msbayes ABACUS: Approximate BAyesian C UtilitieS. https://github.com/joaks1/abacus Open-Science Notebooks: Ecoevolity experiments: https://github.com/phyletica/ecoevolity-experiments msBayes experiments: https://github.com/joaks1/msbayes-experiments Gecko RADseq: https://github.com/phyletica/gekgo Shared divergences Jamie Oaks – phyletica.org 33/35
  • 94. Acknowledgments Ideas and feedback: Phyletica Lab (the Phyleticians) Mark Holder Leach´e Lab Minin Lab Tracy Heath Michael Landis Computation: Funding: Photo credits: Rafe Brown, Cam Siler, Jesse Grismer, & Jake Esselstyn FMNH Philippine Mammal Website: D.S. Balete, M.R.M. Duya, & J. Holden PhyloPic! Shared divergences Jamie Oaks – phyletica.org 34/35
  • 95. Questions? joaks@auburn.edu phyletica.org c 2007 Boris Kulikov boris-kulikov.blogspot.com Shared divergences Jamie Oaks – phyletica.org 35/35