SlideShare uma empresa Scribd logo
1 de 111
Baixar para ler offline
Islands and Integrals
Processes of Diversification in an Island Archipelago and
Bayesian Methods of Comparative Phylogeographical Model
Choice
Jamie R. Oaks1
1Department of Ecology and Evolutionary Biology, University of Kansas
October 16, 2013
Islands and Integrals J. Oaks, University of Kansas 1/53
Southeast Asia
Islands and Integrals J. Oaks, University of Kansas 2/53
Southeast Asia
Islands and Integrals J. Oaks, University of Kansas 3/53
Philippine Archipelago
Islands and Integrals J. Oaks, University of Kansas 4/53
Philippine Archipelago
Islands and Integrals J. Oaks, University of Kansas 4/53
Climate-driven diversification model
Repeated coalescence and
fragmentation of island
complexes
Islands and Integrals J. Oaks, University of Kansas 5/53
Climate-driven diversification model
Repeated coalescence and
fragmentation of island
complexes
Prominent paradigm for
explaining Philippine
biodiversity
Islands and Integrals J. Oaks, University of Kansas 5/53
Climate-driven diversification model
Repeated coalescence and
fragmentation of island
complexes
Prominent paradigm for
explaining Philippine
biodiversity
Proposed as model of
diversification
Islands and Integrals J. Oaks, University of Kansas 5/53
Testing climate-driven diversification
Did repeated fragmentation of
islands during inter-glacial
rises in sea level promote
diversification?
Islands and Integrals J. Oaks, University of Kansas 6/53
Testing climate-driven diversification
Did repeated fragmentation of
islands during inter-glacial
rises in sea level promote
diversification?
Model has testable prediction:
Temporally clustered
divergences among taxa
co-distributed across
fragmented islands
Islands and Integrals J. Oaks, University of Kansas 6/53
Climate-driven model: Prediction
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 7/53
Climate-driven model: Prediction
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 7/53
Climate-driven model: Prediction
T2
T3
T5
τ2 τ1
T1
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 7/53
Divergence model choice
T2
T3
T5
τ2 τ1
T1
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, T3, T4, T5)
τ = {τ1, τ2}
|τ| = 2
T2
T3
T5
τ2 τ1
T1
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (330, 330, 125, 125, 125)
τ = {125, 330}
|τ| = 2
T2
T3
T5
τ2 τ1
T1
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (330, 330, 125, 330, 125)
τ = {125, 330}
|τ| = 2
T2
T3
T5
τ2 τ1
T1
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (375, 330, 125, 330, 125)
τ = {125, 330, 375}
|τ| = 3
T2
T3
T5
τ2 τ1
T1
τ3
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, T3, T4, T5)
τ = {τ1, τ2, τ3}
|τ| = 3
T2
T3
T5
τ2 τ1
T1
τ3
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, . . . , TY)
τ = {τ1, . . . , τ|τ|}
|τ|
T2
T3
T5
τ2 τ1
T1
τ3
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, . . . , TY)
τ = {τ1, . . . , τ|τ|}
|τ|
We want to infer T given DNA
sequence alignments X
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, . . . , TY)
τ = {τ1, . . . , τ|τ|}
|τ|
We want to infer T given DNA
sequence alignments X
p(T | X) =
p(X | T)p(T)
p(X)
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, . . . , TY)
τ = {τ1, . . . , τ|τ|}
|τ|
We want to infer T given DNA
sequence alignments X
p(T | X) =
p(X | T)p(T)
p(X)
This approach implemented in
msBayes
Islands and Integrals J. Oaks, University of Kansas 8/53
Divergence model choice
T = (T1, T2, . . . , TY)
τ = {τ1, . . . , τ|τ|}
|τ|
We want to infer T given DNA
sequence alignments X
p(T | X) =
p(X | T)p(T)
p(X)
This approach implemented in
msBayes
Not that simple
Islands and Integrals J. Oaks, University of Kansas 8/53
The msBayes model
T2
T3
T5
τ2 τ1
T1
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 9/53
The msBayes model
T1
T2
τ2
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 9/53
The msBayes model
T1
T2
τ2
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 9/53
The msBayes model
T1
T2
τ2
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 10/53
The msBayes model
X Sequence alignments
G Gene trees
T Divergence times
Θ Demographic
parameters
T1
T2
τ2
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 10/53
The msBayes model
X Sequence alignments
G Gene trees
T Divergence times
Θ Demographic parameters
Islands and Integrals J. Oaks, University of Kansas 11/53
The msBayes model
Full Model:
p(G, T, Θ | X) =
p(X | G, T, Θ)p(G, T, Θ)
p(X)
X Sequence alignments
G Gene trees
T Divergence times
Θ Demographic parameters
Islands and Integrals J. Oaks, University of Kansas 11/53
The msBayes model
Full Model:
p(G, T, Θ | X) =
p(X | G, T, Θ)p(G, T, Θ)
p(X)
p(G, T, θA, θD1, θD2, τB, ζD1, ζD2, m, α, υ | X, φ, ρ, ν)
=
1
p(X)
p(T)f (α)
Y
i=1
p(θA,i )p(θD1,i , θD2,i )p(τB,i )p(ζD1,i )f (ζD2,i )p(mi )
ki
j=1
p(Xi,j | Gi,j , φi,j )p(Gi,j | Ti , θA,i , θD1,i , θD2,i , ρi,j , νi,j , υj , τB,i , ζD1,i , ζD2,i , mi )
K
j=1
f (υj | α)
Islands and Integrals J. Oaks, University of Kansas 11/53
The msBayes model
Full Model:
p(G, T, Θ | X) =
p(X | G, T, Θ)p(G, T, Θ)
p(X)
Approximate Bayesian computation (ABC)
X → S∗
→ B (S∗
)
Islands and Integrals J. Oaks, University of Kansas 11/53
The msBayes model
Full Model:
p(G, T, Θ | X) =
p(X | G, T, Θ)p(G, T, Θ)
p(X)
Approximate Bayesian computation (ABC)
X → S∗
→ B (S∗
)
Approximate Model:
p(G, T, Θ | B (S∗
)) =
p(X | G, T, Θ)p(G, T, Θ)
p(B (S∗
))
Islands and Integrals J. Oaks, University of Kansas 11/53
The msBayes model
Full Model:
p(G, T, Θ | X) =
p(X | G, T, Θ)p(G, T, Θ)
p(X)
T Vector of divergence times across pairs of populations
|τ| Number of divergence parameters
DT The variance of T
Islands and Integrals J. Oaks, University of Kansas 11/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 12/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 13/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 13/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 13/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 13/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 13/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 13/53
Empirical results
Strong support for
simultaneous divergence of
all 22 taxon pairs
pp > 0.96
∼100,000–250,000 years ago
Islands and Integrals J. Oaks, University of Kansas 14/53
Simulation-based power analyses
What is “simultaneous”?
Islands and Integrals J. Oaks, University of Kansas 15/53
Simulation-based power analyses
What is “simultaneous”?
Simulate datasets in which all 22 divergence times are random
Islands and Integrals J. Oaks, University of Kansas 15/53
Simulation-based power analyses
What is “simultaneous”?
Simulate datasets in which all 22 divergence times are random
τ ∼ U(0, 0.5 MGA)
τ ∼ U(0, 1.5 MGA)
τ ∼ U(0, 2.5 MGA)
τ ∼ U(0, 5.0 MGA)
MGA = Millions of Generations Ago
Islands and Integrals J. Oaks, University of Kansas 15/53
Simulation-based power analyses
What is “simultaneous”?
Simulate datasets in which all 22 divergence times are random
τ ∼ U(0, 0.5 MGA)
τ ∼ U(0, 1.5 MGA)
τ ∼ U(0, 2.5 MGA)
τ ∼ U(0, 5.0 MGA)
MGA = Millions of Generations Ago
Simulate 1000 datasets for each τ distribution
Analyze all 4000 datasets as we did the empirical data
Islands and Integrals J. Oaks, University of Kansas 15/53
Simulation-based power analyses: Results
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 0.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 1.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 2.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 5.0 MGA)
Estimated number of divergence events (mode)
Density
Islands and Integrals J. Oaks, University of Kansas 16/53
Simulation-based power analyses: Results
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 0.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 1.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 2.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 5.0 MGA)
Estimated number of divergence events (mode)
Density
0.05 0.25 0.45 0.65 0.850
5
10
15
20
0.05 0.25 0.45 0.65 0.850
5
10
15
20
0.05 0.25 0.45 0.65 0.850
2
4
6
8
10
12
0.05 0.25 0.45 0.65 0.850
2
4
6
8
10
Posterior probability of one divergence
Density
Islands and Integrals J. Oaks, University of Kansas 16/53
Simulation-based power analyses: Results
Strong support for highly clustered divergences when divergence
times are random over 5 million generations
Our empirical results are likely spurious
Islands and Integrals J. Oaks, University of Kansas 17/53
Why the bias?
Potential causes of the bias:
1. The prior on divergence models
2. Broad uniform priors on many of the model’s parameters,
including divergence times
Islands and Integrals J. Oaks, University of Kansas 18/53
Causes of bias: Prior on divergence models
T = (375, 330, 125, 330, 125)
τ = {125, 330, 375}
|τ| = 3
T2
T3
T5
τ2 τ1
T1
τ3
T4
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 19/53
Causes of bias: Prior on divergence models
msBayes uses a discrete uniform prior on the number of
divergence events, |τ|
#ofdivergencemodels
020406080100120
1 3 5 7 9 11 13 15 17 19 21
A
p(M|τ|,i)
0.000.010.020.030.04
1 3 5 7 9 11 13 15 17 19 21
B
# of divergence events, |τ|
Islands and Integrals J. Oaks, University of Kansas 20/53
Causes of bias: Broad priors
msBayes uses uniform priors on most model parameters,
including divergence times
Islands and Integrals J. Oaks, University of Kansas 21/53
Causes of bias: Broad priors
msBayes uses uniform priors on most model parameters,
including divergence times
This requires the use of broad priors
Islands and Integrals J. Oaks, University of Kansas 21/53
Causes of bias: Broad priors
msBayes uses uniform priors on most model parameters,
including divergence times
This requires the use of broad priors
Models with more divergence-time parameters have much
greater parameter space, much of it with low likelihood
Islands and Integrals J. Oaks, University of Kansas 21/53
Causes of bias: Broad priors
msBayes uses uniform priors on most model parameters,
including divergence times
This requires the use of broad priors
Models with more divergence-time parameters have much
greater parameter space, much of it with low likelihood
This vast space can cause problems with Bayesian model
choice
Reduced marginal likelihoods
Islands and Integrals J. Oaks, University of Kansas 21/53
Causes of bias: Marginal likelihoods
p(X) =
θ
p(X | θ)p(θ)dθ
Islands and Integrals J. Oaks, University of Kansas 22/53
Causes of bias: Marginal likelihoods
p(X) =
θ
p(X | θ)p(θ)dθ
0.0 0.2 0.4 0.6 0.8 1.0
θ
0
5
10
15
20
25
30
Density
p(X| θ)
Islands and Integrals J. Oaks, University of Kansas 22/53
Causes of bias: Marginal likelihoods
p(X) =
θ
p(X | θ)p(θ)dθ
0.0 0.2 0.4 0.6 0.8 1.0
θ
0
5
10
15
20
25
30
Density
p(X| θ)
p(θ)
Islands and Integrals J. Oaks, University of Kansas 22/53
Causes of bias: Marginal likelihoods
Islands and Integrals J. Oaks, University of Kansas 23/53
Causes of bias: Marginal likelihoods
Islands and Integrals J. Oaks, University of Kansas 23/53
Causes of bias: Marginal likelihoods
Islands and Integrals J. Oaks, University of Kansas 23/53
Causes of bias: Marginal likelihoods
p(θ | X) =
p(X | θ)p(θ)
p(X)
p(X) =
θ
p(X | θ)p(θ)dθ
Islands and Integrals J. Oaks, University of Kansas 24/53
Causes of bias: Marginal likelihoods
p(θ1 | X, M1) =
p(X | θ1, M1)p(θ1 | M1)
p(X | M1)
p(X | M1) =
θ1
p(X | θ1, M1)p(θ | M1)dθ1
Islands and Integrals J. Oaks, University of Kansas 24/53
Causes of bias: Marginal likelihoods
p(θ1 | X, M1) =
p(X | θ1, M1)p(θ1 | M1)
p(X | M1)
p(X | M1) =
θ1
p(X | θ1, M1)p(θ | M1)dθ1
p(M1 | X) =
p(X | M1)p(M1)
p(X | M1)p(M1) + p(X | M2)p(M2)
Islands and Integrals J. Oaks, University of Kansas 24/53
Causes of bias: Marginal likelihoods
Predictions:
Posterior estimates should be sensitive to priors
As prior converges to distribution underlying the data, the
bias should disappear
Islands and Integrals J. Oaks, University of Kansas 25/53
Causes of bias: Marginal likelihoods
Predictions:
Posterior estimates should be sensitive to priors
As prior converges to distribution underlying the data, the
bias should disappear
Testing prior sensitivity:
Islands and Integrals J. Oaks, University of Kansas 25/53
Causes of bias: Marginal likelihoods
Predictions:
Posterior estimates should be sensitive to priors
As prior converges to distribution underlying the data, the
bias should disappear
Testing prior sensitivity:
1. Analyze empirical data under several different prior settings
Results are very sensitive
Islands and Integrals J. Oaks, University of Kansas 25/53
Causes of bias: Marginal likelihoods
Predictions:
Posterior estimates should be sensitive to priors
As prior converges to distribution underlying the data, the
bias should disappear
Testing prior sensitivity:
1. Analyze empirical data under several different prior settings
Results are very sensitive
2. Use simulations to assess behavior when priors are correct
Islands and Integrals J. Oaks, University of Kansas 25/53
Simulation results: Performance when priors are correct
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
Posterior probability of one divergence
Trueprobabilityofonedivergence
msBayes performs well when all assumptions are met
Islands and Integrals J. Oaks, University of Kansas 26/53
Causes of bias: Marginal likelihoods
Predictions:
Posterior estimates should be sensitive to priors
As prior converges to distribution underlying the data, the
bias should disappear
Testing prior sensitivity:
1. Analyze empirical data under several different prior settings
Results are very sensitive
2. Use simulations to assess behavior when priors are correct
Islands and Integrals J. Oaks, University of Kansas 27/53
Causes of bias: Marginal likelihoods
Predictions:
Posterior estimates should be sensitive to priors
As prior converges to distribution underlying the data, the
bias should disappear
Testing prior sensitivity:
1. Analyze empirical data under several different prior settings
Results are very sensitive
2. Use simulations to assess behavior when priors are correct
3. Use simulations to assess behavior under “ideal” real-world
priors
Islands and Integrals J. Oaks, University of Kansas 27/53
Simulation results: Power with informed priors
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 0.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 1.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 2.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 5.0 MGA)
Estimated number of divergence events (mode)
Density
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=0.997
1 3 5 7 9 11 13 15 17 19 210.0
0.1
0.2
0.3
0.4
0.5
0.6
p( ˆ|τ| =1)=0.473
Estimated number of divergence events (mode)
Density
Islands and Integrals J. Oaks, University of Kansas 28/53
Simulation results: Power with informed priors
0.05 0.25 0.45 0.65 0.850
5
10
15
20
τ∼U(0, 0.5 MGA)
0.05 0.25 0.45 0.65 0.850
5
10
15
20
τ∼U(0, 1.5 MGA)
0.05 0.25 0.45 0.65 0.850
2
4
6
8
10
12
τ∼U(0, 2.5 MGA)
0.05 0.25 0.45 0.65 0.850
2
4
6
8
10
τ∼U(0, 5.0 MGA)
Posterior probability of one divergence
Density
0.05 0.25 0.45 0.65 0.850
2
4
6
8
10
12
14
0.05 0.25 0.45 0.65 0.850
1
2
3
4
5
6
7
8
9
0.05 0.25 0.45 0.65 0.850
1
2
3
4
5
6
0.05 0.25 0.45 0.65 0.850.0
0.5
1.0
1.5
2.0
Posterior probability of one divergence
Density
Islands and Integrals J. Oaks, University of Kansas 29/53
Causes of bias: Simulation results
Broad uniform priors are reducing marginal likelihoods of models
with more divergence events
Even when uniform priors are informed by the data the bias remains
Islands and Integrals J. Oaks, University of Kansas 30/53
Causes of bias: Simulation results
Broad uniform priors are reducing marginal likelihoods of models
with more divergence events
Even when uniform priors are informed by the data the bias remains
Potential solution:
More flexible priors
Islands and Integrals J. Oaks, University of Kansas 30/53
Mitigating the bias
Potential solution:
More flexible priors
0.0 0.2 0.4 0.6 0.8 1.0
θ
0
5
10
15
20
25
30
Density
p(X| θ)
p(θ)
Islands and Integrals J. Oaks, University of Kansas 31/53
Mitigating the bias
Potential solution:
More flexible priors
0.0 0.2 0.4 0.6 0.8 1.0
θ
0
5
10
15
20
25
30
Density
p(X| θ)
p(θ)
Islands and Integrals J. Oaks, University of Kansas 31/53
Mitigating the bias
Potential solution:
More flexible priors
#ofdivergencemodels
020406080100120
1 3 5 7 9 11 13 15 17 19 21
A
p(M|τ|,i)
0.000.010.020.030.04 1 3 5 7 9 11 13 15 17 19 21
B
# of divergence events, |τ|
Islands and Integrals J. Oaks, University of Kansas 31/53
Mitigating the bias
Potential solution:
More flexible priors
Potential solution:
Alternative prior over divergence models (e.g., uniform or Dirichlet
process)
Islands and Integrals J. Oaks, University of Kansas 31/53
New method: dpp-msbayes
Reparameterized the model implemented in msBayes
Islands and Integrals J. Oaks, University of Kansas 32/53
New method: dpp-msbayes
Reparameterized the model implemented in msBayes
Replaced uniform priors on continuous parameters with
gamma and beta distributions
Islands and Integrals J. Oaks, University of Kansas 32/53
New method: dpp-msbayes
Reparameterized the model implemented in msBayes
Replaced uniform priors on continuous parameters with
gamma and beta distributions
Dirichlet process prior (DPP) over all possible discrete
divergence models
Islands and Integrals J. Oaks, University of Kansas 32/53
New method: dpp-msbayes
Reparameterized the model implemented in msBayes
Replaced uniform priors on continuous parameters with
gamma and beta distributions
Dirichlet process prior (DPP) over all possible discrete
divergence models
Uniform prior over divergence models
Islands and Integrals J. Oaks, University of Kansas 32/53
dpp-msbayes: Simulation-based assessment
Simulate 50,000 datasets under four models
MmsBayes U-shaped prior on divergence models
Uniform priors on continuous parameters
MUshaped U-shaped prior on divergence models
Gamma priors on continuous parameters
MUniform Uniform prior on divergence models
Gamma priors on continuous parameters
MDPP DPP prior on divergence models
Gamma priors on continuous parameters
Analyze all datasets under each of the models
Islands and Integrals J. Oaks, University of Kansas 33/53
dpp-msbayes: Simulation-based assessment
Assess power
Simulate datasets in which all 22 divergence times are random
τ ∼ U(0, 0.5 MGA)
τ ∼ U(0, 1.5 MGA)
τ ∼ U(0, 2.5 MGA)
τ ∼ U(0, 5.0 MGA)
MGA = Millions of Generations Ago
Simulate 1000 datasets for each τ distribution
Analyze all 4000 datasets as we did the empirical data
Islands and Integrals J. Oaks, University of Kansas 34/53
dpp-msbayes: Simulation results
0.0
0.2
0.4
0.6
0.8
1.0
MmsBayes MDPP
MmsBayes
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0 0.2 0.4 0.6 0.8 1.0
MDPP
Posterior probability of one divergence
Trueprobabilityofonedivergence
Analysismodel
Data model
Islands and Integrals J. Oaks, University of Kansas 35/53
dpp-msbayes: Simulation results
0.0
0.2
0.4
0.6
0.8
1.0
MmsBayes MDPP MUniform MUshaped
MmsBayes
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MDPP
Posterior probability of one divergence
Trueprobabilityofonedivergence
Analysismodel
Data model
Islands and Integrals J. Oaks, University of Kansas 36/53
dpp-msbayes: Simulation results
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 0.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=1.0
τ∼U(0, 1.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=0.999
τ∼U(0, 2.5 MGA)
1 3 5 7 9 11 13 15 17 19 210.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
p( ˆ|τ| =1)=0.83
τ∼U(0, 5.0 MGA)
MmsBayes
Estimated number of divergence events (mode)
Density
1 3 5 7 9 11 13 15 17 19 210.0
0.2
0.4
0.6
0.8
1.0
p( ˆ|τ| =1)=0.926
1 3 5 7 9 11 13 15 17 19 210.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
p( ˆ|τ| =1)=0.605
1 3 5 7 9 11 13 15 17 19 210.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
p( ˆ|τ| =1)=0.187
1 3 5 7 9 11 13 15 17 19 210.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
p( ˆ|τ| =1)=0.003
MDPP
Estimated number of divergence events (mode)
Density
Islands and Integrals J. Oaks, University of Kansas 37/53
dpp-msbayes: Simulation results
0.05 0.25 0.45 0.65 0.850
2
4
6
8
10
12
14
16
τ∼U(0, 0.5 MGA)
0.05 0.25 0.45 0.65 0.850
1
2
3
4
5
6
7
8
9
τ∼U(0, 1.5 MGA)
0.05 0.25 0.45 0.65 0.850
1
2
3
4
5
6
7
τ∼U(0, 2.5 MGA)
0.05 0.25 0.45 0.65 0.850.0
0.5
1.0
1.5
2.0
2.5
3.0
τ∼U(0, 5.0 MGA)
MmsBayes
Posterior probability of one divergence
Density
0.05 0.25 0.45 0.65 0.850
1
2
3
4
5
6
7
0.05 0.25 0.45 0.65 0.850.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.05 0.25 0.45 0.65 0.850
1
2
3
4
5
0.05 0.25 0.45 0.65 0.850
5
10
15
20
MDPP
Posterior probability of one divergence
Density
Islands and Integrals J. Oaks, University of Kansas 38/53
dpp-msbayes: Simulation results
0.0 0.02 0.04 0.06 0.08 0.1 0.120
50
100
150
200
p( ˆDT <0.01)=1.0
τ∼U(0, 0.5 MGA)
0.0 0.02 0.04 0.06 0.08 0.1 0.120
50
100
150
200
p( ˆDT <0.01)=0.999
τ∼U(0, 1.5 MGA)
0.0 0.02 0.04 0.06 0.08 0.1 0.120
50
100
150
200
p( ˆDT <0.01)=0.996
τ∼U(0, 2.5 MGA)
0.0 0.02 0.04 0.06 0.08 0.1 0.120
20
40
60
80
100
120
140
160
180
p( ˆDT <0.01)=0.637
τ∼U(0, 5.0 MGA)
MmsBayes
Estimated variance in divergence times (median)
Density
0.0 0.1 0.2 0.3 0.4 0.50
2
4
6
8
10
p( ˆDT <0.01)=0.002
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
p( ˆDT <0.01)=0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
0.5
1.0
1.5
2.0
2.5
p( ˆDT <0.01)=0.0
0.0 0.4 0.8 1.2 1.60.0
0.5
1.0
1.5
2.0
2.5
3.0
p( ˆDT <0.01)=0.0
MDPP
Estimated variance in divergence times (median)
Density
Islands and Integrals J. Oaks, University of Kansas 39/53
dpp-msbayes: Simulation results
0.0 0.02 0.04 0.06 0.08 0.1 0.120
50
100
150
200
p( ˆDT <0.01)=1.0
τ∼U(0, 0.5 MGA)
0.0 0.02 0.04 0.06 0.08 0.1 0.120
50
100
150
200
p( ˆDT <0.01)=0.999
τ∼U(0, 1.5 MGA)
0.0 0.02 0.04 0.06 0.08 0.1 0.120
50
100
150
200
p( ˆDT <0.01)=0.996
τ∼U(0, 2.5 MGA)
0.0 0.02 0.04 0.06 0.08 0.1 0.120
20
40
60
80
100
120
140
160
180
p( ˆDT <0.01)=0.637
τ∼U(0, 5.0 MGA)
MmsBayes
Estimated variance in divergence times (median)
Density
0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.350
10
20
30
40
50
60
70
p( ˆDT <0.01)=0.914
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80
5
10
15
20
25
p( ˆDT <0.01)=0.626
0.0 0.2 0.4 0.6 0.80
1
2
3
4
5
6
7
8
9
p( ˆDT <0.01)=0.235
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
0.5
1.0
1.5
2.0
2.5
p( ˆDT <0.01)=0.004
MUshaped
Estimated variance in divergence times (median)
Density
0.0 0.1 0.2 0.3 0.4 0.50
2
4
6
8
10
p( ˆDT <0.01)=0.002
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
p( ˆDT <0.01)=0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
0.5
1.0
1.5
2.0
2.5
p( ˆDT <0.01)=0.0
0.0 0.4 0.8 1.2 1.60.0
0.5
1.0
1.5
2.0
2.5
3.0
p( ˆDT <0.01)=0.0
MDPP
Estimated variance in divergence times (median)
Density
Islands and Integrals J. Oaks, University of Kansas 40/53
dpp-msbayes: Simulation results
Results confirm the bias of msBayes was caused by
1. Broad uniform priors
2. U-shaped prior on divergence models
The new model shows improved model-choice accuracy,
power, and robustness
Islands and Integrals J. Oaks, University of Kansas 41/53
Testing climate-driven diversification
Did repeated fragmentation of
islands during inter-glacial
rises in sea level promote
diversification?
Islands and Integrals J. Oaks, University of Kansas 42/53
Species n1 n2
Mammals
Crocidura beatus 12 11
Crocidura negrina-panayensis 12 6
Hipposideros obscurus 19 9
Hipposideros pygmaeus 3 12
Cynopterus brachyotis 20 8
Cynopterus brachyotis 8 14
Haplonycteris fischeri 29 8
Haplonycteris fischeri 9 21
Macroglossus minimus 19 4
Macroglossus minimus 8 10
Ptenochirus jagori 4 7
Ptenochirus jagori 8 8
Ptenochirus minor 30 9
Squamates
Cyrtodactylus gubaot-sumuroi 29 6
Cyrtodactylus annulatus 14 3
Cyrtodactylus philippinicus 6 14
Gekko mindorensis 8 11
Insulasaurus arborens 22 10
Pinoyscincus jagori 8 8
Dendrelaphis marenae 6 6
Anurans
Limnonectes leytensis 4 2
Limnonectes magnus 2 3
Islands and Integrals J. Oaks, University of Kansas 43/53
dpp-msbayes: Philippine diversification
1 3 5 7 9 11 13 15 17 19 21
Number of divergence events
0.0
0.1
0.2
0.3
0.4
0.5
Posteriorprobability
msBayes
1 3 5 7 9 11 13 15 17 19 21
Number of divergence events
dpp-msbayes
Islands and Integrals J. Oaks, University of Kansas 44/53
dpp-msbayes: Philippine diversification
1 3 5 7 9 11 13 15 17 19 21
Number of divergence events
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Probability
Prior
1 3 5 7 9 11 13 15 17 19 21
Number of divergence events
Posterior
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 45/53
Conclusions
Our new approximate-Bayesian method of phylogeographical
model choice shows improved behavior
Improved accuracy, robustness, and power
More “honest” estimates regarding uncertainty
Islands and Integrals J. Oaks, University of Kansas 46/53
Conclusions
Our new approximate-Bayesian method of phylogeographical
model choice shows improved behavior
Improved accuracy, robustness, and power
More “honest” estimates regarding uncertainty
Philippine climate-driven diversification model?
Results consistent with prediction of clustered divergences
Results suggest multiple co-divergences
However, there is a lot of uncertainty
Islands and Integrals J. Oaks, University of Kansas 46/53
Future directions: Full-Bayesian phylogenetic framework
T2
T3
T5
τ2 τ1
T1
τ3
T4
0100200300400500
Time (kya)
0
-50
-100 Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 47/53
Future directions: Full-Bayesian phylogenetic framework
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
Islands and Integrals J. Oaks, University of Kansas 47/53
Software
Everything is on GitHub. . .
dpp-msbayes: https://github.com/joaks1/dpp-msbayes
PyMsBayes: https://github.com/joaks1/PyMsBayes
ABACUS: Approximate BAyesian C UtilitieS.
https://github.com/joaks1/abacus
Islands and Integrals J. Oaks, University of Kansas 48/53
Open Notebook Science
Everything is on GitHub. . .
msbayes-experiments:
https://github.com/joaks1/msbayes-experiments
joaks1@gmail.com
Islands and Integrals J. Oaks, University of Kansas 49/53
Acknowledgments
Ideas and feedback:
KU Herpetology
Holder Lab
Melissa Callahan
Mike Hickerson
Laura Kubatko
My committee
Computation:
KU ITTC
KU Computing Center
iPlant
Funding:
NSF
KU Grad Studies, EEB & BI
SSB
Sigma Xi
Photo credits:
Rafe Brown, Cam Siler, &
Jake Esselstyn
FMNH Philippine Mammal
Website:
D.S. Balete, M.R.M. Duya,
& J. Holden
Islands and Integrals J. Oaks, University of Kansas 50/53
Acknowledgments
Friends & Family
Islands and Integrals J. Oaks, University of Kansas 51/53
Acknowledgments
Friends & Family
Islands and Integrals J. Oaks, University of Kansas 52/53
Questions?
Islands and Integrals J. Oaks, University of Kansas 53/53
Gene tree divergences
Age (mybp)
Split(Taxon:Island1−Island2)
Crocidura beatus: Leyte−Samar
Crocidura negrina−panayensis: Negros−Panay
Cynopterus brachyotis: Biliran−Mindanao
Cynopterus brachyotis: Negros−Panay
Cyrtodactylus annulatus: Bohol−Mindanao
Cyrtodactylus gubaot−sumuroi: Leyte−Samar
Cyrtodactylus philippinicus: Negros−Panay
Dendrelaphis marenae: Negros−Panay
Gekko mindorensis: Negros−Panay
Haplonycteris fischeri: Biliran−Mindanao
Haplonycteris fischeri: Negros−Panay
Hipposideros obscurus: Leyte−Mindanao
Hipposideros pygmaeus: Bohol−Mindanao
Limnonectes leytensis: Bohol−Mindanao
Limnonectes magnus: Bohol−Mindanao
Macroglossus minimus: Biliran−Mindanao
Macroglossus minimus: Negros−Panay
Ptenochirus jagori: Leyte−Mindanao
Ptenochirus jagori: Negros−Panay
Ptenochirus minor: Biliran−Mindanao
Insulasaurus arborens: Negros−Panay
Pinoyscincus jagori: Mindanao−Samar
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
0.5 1.0 1.5 2.0 2.5 3.0
Islands and Integrals J. Oaks, University of Kansas 53/53
Causes of bias: Insufficient sampling
Models with more parameter space are less densely sampled
Could explain bias toward small models in extreme cases
Predicts large variance in posterior estimates
We explored empirical and simulation-based analyses with 2, 5,
and 10 million prior samples, and estimates were very similar
0.0 0.2 0.4 0.6 0.8 1.0
1e8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
95%HPDDT
UnadjustedA
0.0 0.2 0.4 0.6 0.8 1.0
1e8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 GLM-adjustedB
Number of prior samples
Islands and Integrals J. Oaks, University of Kansas 53/53
Geological history
Islands and Integrals J. Oaks, University of Kansas 53/53

Mais conteúdo relacionado

Destaque

Câu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệmCâu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệmPhùng Minh Tân
 
The wonderful world of genre
The wonderful world of genreThe wonderful world of genre
The wonderful world of genreEdward Towers
 
The wonderful world of genre copy
The wonderful world of genre   copyThe wonderful world of genre   copy
The wonderful world of genre copyEdward Towers
 
Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3Phùng Minh Tân
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsJamie Oaks
 
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...Aadhar Homes
 
Fleurs De Printemps
Fleurs De PrintempsFleurs De Printemps
Fleurs De Printempsvalerioute
 
Entre Calvi et l'Île rousse (Corse)
Entre Calvi et l'Île rousse (Corse)Entre Calvi et l'Île rousse (Corse)
Entre Calvi et l'Île rousse (Corse)valerioute
 

Destaque (11)

Logika bag-3-
Logika bag-3-Logika bag-3-
Logika bag-3-
 
Câu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệmCâu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệm
 
The wonderful world of genre
The wonderful world of genreThe wonderful world of genre
The wonderful world of genre
 
The wonderful world of genre copy
The wonderful world of genre   copyThe wonderful world of genre   copy
The wonderful world of genre copy
 
20100104 fungsi determinan
20100104 fungsi determinan20100104 fungsi determinan
20100104 fungsi determinan
 
Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3
 
Bài 1 thời gian lưu
Bài 1 thời gian lưuBài 1 thời gian lưu
Bài 1 thời gian lưu
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary events
 
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
 
Fleurs De Printemps
Fleurs De PrintempsFleurs De Printemps
Fleurs De Printemps
 
Entre Calvi et l'Île rousse (Corse)
Entre Calvi et l'Île rousse (Corse)Entre Calvi et l'Île rousse (Corse)
Entre Calvi et l'Île rousse (Corse)
 

Mais de Jamie Oaks

Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Jamie Oaks
 
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...Jamie Oaks
 
SSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography WorkshopSSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography WorkshopJamie Oaks
 
Inferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic dataInferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic dataJamie Oaks
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsJamie Oaks
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsJamie Oaks
 

Mais de Jamie Oaks (6)

Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...
 
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
 
SSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography WorkshopSSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography Workshop
 
Inferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic dataInferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic data
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary events
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary events
 

Último

Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxabhishekdhamu51
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Último (20)

Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 

Islands and Integrals

  • 1. Islands and Integrals Processes of Diversification in an Island Archipelago and Bayesian Methods of Comparative Phylogeographical Model Choice Jamie R. Oaks1 1Department of Ecology and Evolutionary Biology, University of Kansas October 16, 2013 Islands and Integrals J. Oaks, University of Kansas 1/53
  • 2. Southeast Asia Islands and Integrals J. Oaks, University of Kansas 2/53
  • 3. Southeast Asia Islands and Integrals J. Oaks, University of Kansas 3/53
  • 4. Philippine Archipelago Islands and Integrals J. Oaks, University of Kansas 4/53
  • 5. Philippine Archipelago Islands and Integrals J. Oaks, University of Kansas 4/53
  • 6. Climate-driven diversification model Repeated coalescence and fragmentation of island complexes Islands and Integrals J. Oaks, University of Kansas 5/53
  • 7. Climate-driven diversification model Repeated coalescence and fragmentation of island complexes Prominent paradigm for explaining Philippine biodiversity Islands and Integrals J. Oaks, University of Kansas 5/53
  • 8. Climate-driven diversification model Repeated coalescence and fragmentation of island complexes Prominent paradigm for explaining Philippine biodiversity Proposed as model of diversification Islands and Integrals J. Oaks, University of Kansas 5/53
  • 9. Testing climate-driven diversification Did repeated fragmentation of islands during inter-glacial rises in sea level promote diversification? Islands and Integrals J. Oaks, University of Kansas 6/53
  • 10. Testing climate-driven diversification Did repeated fragmentation of islands during inter-glacial rises in sea level promote diversification? Model has testable prediction: Temporally clustered divergences among taxa co-distributed across fragmented islands Islands and Integrals J. Oaks, University of Kansas 6/53
  • 11. Climate-driven model: Prediction 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 7/53
  • 12. Climate-driven model: Prediction 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 7/53
  • 13. Climate-driven model: Prediction T2 T3 T5 τ2 τ1 T1 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 7/53
  • 14. Divergence model choice T2 T3 T5 τ2 τ1 T1 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 15. Divergence model choice T = (T1, T2, T3, T4, T5) τ = {τ1, τ2} |τ| = 2 T2 T3 T5 τ2 τ1 T1 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 16. Divergence model choice T = (330, 330, 125, 125, 125) τ = {125, 330} |τ| = 2 T2 T3 T5 τ2 τ1 T1 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 17. Divergence model choice T = (330, 330, 125, 330, 125) τ = {125, 330} |τ| = 2 T2 T3 T5 τ2 τ1 T1 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 18. Divergence model choice T = (375, 330, 125, 330, 125) τ = {125, 330, 375} |τ| = 3 T2 T3 T5 τ2 τ1 T1 τ3 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 19. Divergence model choice T = (T1, T2, T3, T4, T5) τ = {τ1, τ2, τ3} |τ| = 3 T2 T3 T5 τ2 τ1 T1 τ3 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 20. Divergence model choice T = (T1, T2, . . . , TY) τ = {τ1, . . . , τ|τ|} |τ| T2 T3 T5 τ2 τ1 T1 τ3 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 21. Divergence model choice T = (T1, T2, . . . , TY) τ = {τ1, . . . , τ|τ|} |τ| We want to infer T given DNA sequence alignments X Islands and Integrals J. Oaks, University of Kansas 8/53
  • 22. Divergence model choice T = (T1, T2, . . . , TY) τ = {τ1, . . . , τ|τ|} |τ| We want to infer T given DNA sequence alignments X p(T | X) = p(X | T)p(T) p(X) Islands and Integrals J. Oaks, University of Kansas 8/53
  • 23. Divergence model choice T = (T1, T2, . . . , TY) τ = {τ1, . . . , τ|τ|} |τ| We want to infer T given DNA sequence alignments X p(T | X) = p(X | T)p(T) p(X) This approach implemented in msBayes Islands and Integrals J. Oaks, University of Kansas 8/53
  • 24. Divergence model choice T = (T1, T2, . . . , TY) τ = {τ1, . . . , τ|τ|} |τ| We want to infer T given DNA sequence alignments X p(T | X) = p(X | T)p(T) p(X) This approach implemented in msBayes Not that simple Islands and Integrals J. Oaks, University of Kansas 8/53
  • 25. The msBayes model T2 T3 T5 τ2 τ1 T1 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 9/53
  • 26. The msBayes model T1 T2 τ2 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 9/53
  • 27. The msBayes model T1 T2 τ2 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 9/53
  • 28. The msBayes model T1 T2 τ2 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 10/53
  • 29. The msBayes model X Sequence alignments G Gene trees T Divergence times Θ Demographic parameters T1 T2 τ2 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 10/53
  • 30. The msBayes model X Sequence alignments G Gene trees T Divergence times Θ Demographic parameters Islands and Integrals J. Oaks, University of Kansas 11/53
  • 31. The msBayes model Full Model: p(G, T, Θ | X) = p(X | G, T, Θ)p(G, T, Θ) p(X) X Sequence alignments G Gene trees T Divergence times Θ Demographic parameters Islands and Integrals J. Oaks, University of Kansas 11/53
  • 32. The msBayes model Full Model: p(G, T, Θ | X) = p(X | G, T, Θ)p(G, T, Θ) p(X) p(G, T, θA, θD1, θD2, τB, ζD1, ζD2, m, α, υ | X, φ, ρ, ν) = 1 p(X) p(T)f (α) Y i=1 p(θA,i )p(θD1,i , θD2,i )p(τB,i )p(ζD1,i )f (ζD2,i )p(mi ) ki j=1 p(Xi,j | Gi,j , φi,j )p(Gi,j | Ti , θA,i , θD1,i , θD2,i , ρi,j , νi,j , υj , τB,i , ζD1,i , ζD2,i , mi ) K j=1 f (υj | α) Islands and Integrals J. Oaks, University of Kansas 11/53
  • 33. The msBayes model Full Model: p(G, T, Θ | X) = p(X | G, T, Θ)p(G, T, Θ) p(X) Approximate Bayesian computation (ABC) X → S∗ → B (S∗ ) Islands and Integrals J. Oaks, University of Kansas 11/53
  • 34. The msBayes model Full Model: p(G, T, Θ | X) = p(X | G, T, Θ)p(G, T, Θ) p(X) Approximate Bayesian computation (ABC) X → S∗ → B (S∗ ) Approximate Model: p(G, T, Θ | B (S∗ )) = p(X | G, T, Θ)p(G, T, Θ) p(B (S∗ )) Islands and Integrals J. Oaks, University of Kansas 11/53
  • 35. The msBayes model Full Model: p(G, T, Θ | X) = p(X | G, T, Θ)p(G, T, Θ) p(X) T Vector of divergence times across pairs of populations |τ| Number of divergence parameters DT The variance of T Islands and Integrals J. Oaks, University of Kansas 11/53
  • 36. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 12/53
  • 37. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 13/53
  • 38. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 13/53
  • 39. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 13/53
  • 40. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 13/53
  • 41. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 13/53
  • 42. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 13/53
  • 43. Empirical results Strong support for simultaneous divergence of all 22 taxon pairs pp > 0.96 ∼100,000–250,000 years ago Islands and Integrals J. Oaks, University of Kansas 14/53
  • 44. Simulation-based power analyses What is “simultaneous”? Islands and Integrals J. Oaks, University of Kansas 15/53
  • 45. Simulation-based power analyses What is “simultaneous”? Simulate datasets in which all 22 divergence times are random Islands and Integrals J. Oaks, University of Kansas 15/53
  • 46. Simulation-based power analyses What is “simultaneous”? Simulate datasets in which all 22 divergence times are random τ ∼ U(0, 0.5 MGA) τ ∼ U(0, 1.5 MGA) τ ∼ U(0, 2.5 MGA) τ ∼ U(0, 5.0 MGA) MGA = Millions of Generations Ago Islands and Integrals J. Oaks, University of Kansas 15/53
  • 47. Simulation-based power analyses What is “simultaneous”? Simulate datasets in which all 22 divergence times are random τ ∼ U(0, 0.5 MGA) τ ∼ U(0, 1.5 MGA) τ ∼ U(0, 2.5 MGA) τ ∼ U(0, 5.0 MGA) MGA = Millions of Generations Ago Simulate 1000 datasets for each τ distribution Analyze all 4000 datasets as we did the empirical data Islands and Integrals J. Oaks, University of Kansas 15/53
  • 48. Simulation-based power analyses: Results 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 0.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 1.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 2.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 5.0 MGA) Estimated number of divergence events (mode) Density Islands and Integrals J. Oaks, University of Kansas 16/53
  • 49. Simulation-based power analyses: Results 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 0.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 1.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 2.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 5.0 MGA) Estimated number of divergence events (mode) Density 0.05 0.25 0.45 0.65 0.850 5 10 15 20 0.05 0.25 0.45 0.65 0.850 5 10 15 20 0.05 0.25 0.45 0.65 0.850 2 4 6 8 10 12 0.05 0.25 0.45 0.65 0.850 2 4 6 8 10 Posterior probability of one divergence Density Islands and Integrals J. Oaks, University of Kansas 16/53
  • 50. Simulation-based power analyses: Results Strong support for highly clustered divergences when divergence times are random over 5 million generations Our empirical results are likely spurious Islands and Integrals J. Oaks, University of Kansas 17/53
  • 51. Why the bias? Potential causes of the bias: 1. The prior on divergence models 2. Broad uniform priors on many of the model’s parameters, including divergence times Islands and Integrals J. Oaks, University of Kansas 18/53
  • 52. Causes of bias: Prior on divergence models T = (375, 330, 125, 330, 125) τ = {125, 330, 375} |τ| = 3 T2 T3 T5 τ2 τ1 T1 τ3 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 19/53
  • 53. Causes of bias: Prior on divergence models msBayes uses a discrete uniform prior on the number of divergence events, |τ| #ofdivergencemodels 020406080100120 1 3 5 7 9 11 13 15 17 19 21 A p(M|τ|,i) 0.000.010.020.030.04 1 3 5 7 9 11 13 15 17 19 21 B # of divergence events, |τ| Islands and Integrals J. Oaks, University of Kansas 20/53
  • 54. Causes of bias: Broad priors msBayes uses uniform priors on most model parameters, including divergence times Islands and Integrals J. Oaks, University of Kansas 21/53
  • 55. Causes of bias: Broad priors msBayes uses uniform priors on most model parameters, including divergence times This requires the use of broad priors Islands and Integrals J. Oaks, University of Kansas 21/53
  • 56. Causes of bias: Broad priors msBayes uses uniform priors on most model parameters, including divergence times This requires the use of broad priors Models with more divergence-time parameters have much greater parameter space, much of it with low likelihood Islands and Integrals J. Oaks, University of Kansas 21/53
  • 57. Causes of bias: Broad priors msBayes uses uniform priors on most model parameters, including divergence times This requires the use of broad priors Models with more divergence-time parameters have much greater parameter space, much of it with low likelihood This vast space can cause problems with Bayesian model choice Reduced marginal likelihoods Islands and Integrals J. Oaks, University of Kansas 21/53
  • 58. Causes of bias: Marginal likelihoods p(X) = θ p(X | θ)p(θ)dθ Islands and Integrals J. Oaks, University of Kansas 22/53
  • 59. Causes of bias: Marginal likelihoods p(X) = θ p(X | θ)p(θ)dθ 0.0 0.2 0.4 0.6 0.8 1.0 θ 0 5 10 15 20 25 30 Density p(X| θ) Islands and Integrals J. Oaks, University of Kansas 22/53
  • 60. Causes of bias: Marginal likelihoods p(X) = θ p(X | θ)p(θ)dθ 0.0 0.2 0.4 0.6 0.8 1.0 θ 0 5 10 15 20 25 30 Density p(X| θ) p(θ) Islands and Integrals J. Oaks, University of Kansas 22/53
  • 61. Causes of bias: Marginal likelihoods Islands and Integrals J. Oaks, University of Kansas 23/53
  • 62. Causes of bias: Marginal likelihoods Islands and Integrals J. Oaks, University of Kansas 23/53
  • 63. Causes of bias: Marginal likelihoods Islands and Integrals J. Oaks, University of Kansas 23/53
  • 64. Causes of bias: Marginal likelihoods p(θ | X) = p(X | θ)p(θ) p(X) p(X) = θ p(X | θ)p(θ)dθ Islands and Integrals J. Oaks, University of Kansas 24/53
  • 65. Causes of bias: Marginal likelihoods p(θ1 | X, M1) = p(X | θ1, M1)p(θ1 | M1) p(X | M1) p(X | M1) = θ1 p(X | θ1, M1)p(θ | M1)dθ1 Islands and Integrals J. Oaks, University of Kansas 24/53
  • 66. Causes of bias: Marginal likelihoods p(θ1 | X, M1) = p(X | θ1, M1)p(θ1 | M1) p(X | M1) p(X | M1) = θ1 p(X | θ1, M1)p(θ | M1)dθ1 p(M1 | X) = p(X | M1)p(M1) p(X | M1)p(M1) + p(X | M2)p(M2) Islands and Integrals J. Oaks, University of Kansas 24/53
  • 67. Causes of bias: Marginal likelihoods Predictions: Posterior estimates should be sensitive to priors As prior converges to distribution underlying the data, the bias should disappear Islands and Integrals J. Oaks, University of Kansas 25/53
  • 68. Causes of bias: Marginal likelihoods Predictions: Posterior estimates should be sensitive to priors As prior converges to distribution underlying the data, the bias should disappear Testing prior sensitivity: Islands and Integrals J. Oaks, University of Kansas 25/53
  • 69. Causes of bias: Marginal likelihoods Predictions: Posterior estimates should be sensitive to priors As prior converges to distribution underlying the data, the bias should disappear Testing prior sensitivity: 1. Analyze empirical data under several different prior settings Results are very sensitive Islands and Integrals J. Oaks, University of Kansas 25/53
  • 70. Causes of bias: Marginal likelihoods Predictions: Posterior estimates should be sensitive to priors As prior converges to distribution underlying the data, the bias should disappear Testing prior sensitivity: 1. Analyze empirical data under several different prior settings Results are very sensitive 2. Use simulations to assess behavior when priors are correct Islands and Integrals J. Oaks, University of Kansas 25/53
  • 71. Simulation results: Performance when priors are correct 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Posterior probability of one divergence Trueprobabilityofonedivergence msBayes performs well when all assumptions are met Islands and Integrals J. Oaks, University of Kansas 26/53
  • 72. Causes of bias: Marginal likelihoods Predictions: Posterior estimates should be sensitive to priors As prior converges to distribution underlying the data, the bias should disappear Testing prior sensitivity: 1. Analyze empirical data under several different prior settings Results are very sensitive 2. Use simulations to assess behavior when priors are correct Islands and Integrals J. Oaks, University of Kansas 27/53
  • 73. Causes of bias: Marginal likelihoods Predictions: Posterior estimates should be sensitive to priors As prior converges to distribution underlying the data, the bias should disappear Testing prior sensitivity: 1. Analyze empirical data under several different prior settings Results are very sensitive 2. Use simulations to assess behavior when priors are correct 3. Use simulations to assess behavior under “ideal” real-world priors Islands and Integrals J. Oaks, University of Kansas 27/53
  • 74. Simulation results: Power with informed priors 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 0.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 1.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 2.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 5.0 MGA) Estimated number of divergence events (mode) Density 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=0.997 1 3 5 7 9 11 13 15 17 19 210.0 0.1 0.2 0.3 0.4 0.5 0.6 p( ˆ|τ| =1)=0.473 Estimated number of divergence events (mode) Density Islands and Integrals J. Oaks, University of Kansas 28/53
  • 75. Simulation results: Power with informed priors 0.05 0.25 0.45 0.65 0.850 5 10 15 20 τ∼U(0, 0.5 MGA) 0.05 0.25 0.45 0.65 0.850 5 10 15 20 τ∼U(0, 1.5 MGA) 0.05 0.25 0.45 0.65 0.850 2 4 6 8 10 12 τ∼U(0, 2.5 MGA) 0.05 0.25 0.45 0.65 0.850 2 4 6 8 10 τ∼U(0, 5.0 MGA) Posterior probability of one divergence Density 0.05 0.25 0.45 0.65 0.850 2 4 6 8 10 12 14 0.05 0.25 0.45 0.65 0.850 1 2 3 4 5 6 7 8 9 0.05 0.25 0.45 0.65 0.850 1 2 3 4 5 6 0.05 0.25 0.45 0.65 0.850.0 0.5 1.0 1.5 2.0 Posterior probability of one divergence Density Islands and Integrals J. Oaks, University of Kansas 29/53
  • 76. Causes of bias: Simulation results Broad uniform priors are reducing marginal likelihoods of models with more divergence events Even when uniform priors are informed by the data the bias remains Islands and Integrals J. Oaks, University of Kansas 30/53
  • 77. Causes of bias: Simulation results Broad uniform priors are reducing marginal likelihoods of models with more divergence events Even when uniform priors are informed by the data the bias remains Potential solution: More flexible priors Islands and Integrals J. Oaks, University of Kansas 30/53
  • 78. Mitigating the bias Potential solution: More flexible priors 0.0 0.2 0.4 0.6 0.8 1.0 θ 0 5 10 15 20 25 30 Density p(X| θ) p(θ) Islands and Integrals J. Oaks, University of Kansas 31/53
  • 79. Mitigating the bias Potential solution: More flexible priors 0.0 0.2 0.4 0.6 0.8 1.0 θ 0 5 10 15 20 25 30 Density p(X| θ) p(θ) Islands and Integrals J. Oaks, University of Kansas 31/53
  • 80. Mitigating the bias Potential solution: More flexible priors #ofdivergencemodels 020406080100120 1 3 5 7 9 11 13 15 17 19 21 A p(M|τ|,i) 0.000.010.020.030.04 1 3 5 7 9 11 13 15 17 19 21 B # of divergence events, |τ| Islands and Integrals J. Oaks, University of Kansas 31/53
  • 81. Mitigating the bias Potential solution: More flexible priors Potential solution: Alternative prior over divergence models (e.g., uniform or Dirichlet process) Islands and Integrals J. Oaks, University of Kansas 31/53
  • 82. New method: dpp-msbayes Reparameterized the model implemented in msBayes Islands and Integrals J. Oaks, University of Kansas 32/53
  • 83. New method: dpp-msbayes Reparameterized the model implemented in msBayes Replaced uniform priors on continuous parameters with gamma and beta distributions Islands and Integrals J. Oaks, University of Kansas 32/53
  • 84. New method: dpp-msbayes Reparameterized the model implemented in msBayes Replaced uniform priors on continuous parameters with gamma and beta distributions Dirichlet process prior (DPP) over all possible discrete divergence models Islands and Integrals J. Oaks, University of Kansas 32/53
  • 85. New method: dpp-msbayes Reparameterized the model implemented in msBayes Replaced uniform priors on continuous parameters with gamma and beta distributions Dirichlet process prior (DPP) over all possible discrete divergence models Uniform prior over divergence models Islands and Integrals J. Oaks, University of Kansas 32/53
  • 86. dpp-msbayes: Simulation-based assessment Simulate 50,000 datasets under four models MmsBayes U-shaped prior on divergence models Uniform priors on continuous parameters MUshaped U-shaped prior on divergence models Gamma priors on continuous parameters MUniform Uniform prior on divergence models Gamma priors on continuous parameters MDPP DPP prior on divergence models Gamma priors on continuous parameters Analyze all datasets under each of the models Islands and Integrals J. Oaks, University of Kansas 33/53
  • 87. dpp-msbayes: Simulation-based assessment Assess power Simulate datasets in which all 22 divergence times are random τ ∼ U(0, 0.5 MGA) τ ∼ U(0, 1.5 MGA) τ ∼ U(0, 2.5 MGA) τ ∼ U(0, 5.0 MGA) MGA = Millions of Generations Ago Simulate 1000 datasets for each τ distribution Analyze all 4000 datasets as we did the empirical data Islands and Integrals J. Oaks, University of Kansas 34/53
  • 88. dpp-msbayes: Simulation results 0.0 0.2 0.4 0.6 0.8 1.0 MmsBayes MDPP MmsBayes 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 MDPP Posterior probability of one divergence Trueprobabilityofonedivergence Analysismodel Data model Islands and Integrals J. Oaks, University of Kansas 35/53
  • 89. dpp-msbayes: Simulation results 0.0 0.2 0.4 0.6 0.8 1.0 MmsBayes MDPP MUniform MUshaped MmsBayes 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 MDPP Posterior probability of one divergence Trueprobabilityofonedivergence Analysismodel Data model Islands and Integrals J. Oaks, University of Kansas 36/53
  • 90. dpp-msbayes: Simulation results 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 0.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=1.0 τ∼U(0, 1.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=0.999 τ∼U(0, 2.5 MGA) 1 3 5 7 9 11 13 15 17 19 210.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p( ˆ|τ| =1)=0.83 τ∼U(0, 5.0 MGA) MmsBayes Estimated number of divergence events (mode) Density 1 3 5 7 9 11 13 15 17 19 210.0 0.2 0.4 0.6 0.8 1.0 p( ˆ|τ| =1)=0.926 1 3 5 7 9 11 13 15 17 19 210.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 p( ˆ|τ| =1)=0.605 1 3 5 7 9 11 13 15 17 19 210.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 p( ˆ|τ| =1)=0.187 1 3 5 7 9 11 13 15 17 19 210.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 p( ˆ|τ| =1)=0.003 MDPP Estimated number of divergence events (mode) Density Islands and Integrals J. Oaks, University of Kansas 37/53
  • 91. dpp-msbayes: Simulation results 0.05 0.25 0.45 0.65 0.850 2 4 6 8 10 12 14 16 τ∼U(0, 0.5 MGA) 0.05 0.25 0.45 0.65 0.850 1 2 3 4 5 6 7 8 9 τ∼U(0, 1.5 MGA) 0.05 0.25 0.45 0.65 0.850 1 2 3 4 5 6 7 τ∼U(0, 2.5 MGA) 0.05 0.25 0.45 0.65 0.850.0 0.5 1.0 1.5 2.0 2.5 3.0 τ∼U(0, 5.0 MGA) MmsBayes Posterior probability of one divergence Density 0.05 0.25 0.45 0.65 0.850 1 2 3 4 5 6 7 0.05 0.25 0.45 0.65 0.850.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.05 0.25 0.45 0.65 0.850 1 2 3 4 5 0.05 0.25 0.45 0.65 0.850 5 10 15 20 MDPP Posterior probability of one divergence Density Islands and Integrals J. Oaks, University of Kansas 38/53
  • 92. dpp-msbayes: Simulation results 0.0 0.02 0.04 0.06 0.08 0.1 0.120 50 100 150 200 p( ˆDT <0.01)=1.0 τ∼U(0, 0.5 MGA) 0.0 0.02 0.04 0.06 0.08 0.1 0.120 50 100 150 200 p( ˆDT <0.01)=0.999 τ∼U(0, 1.5 MGA) 0.0 0.02 0.04 0.06 0.08 0.1 0.120 50 100 150 200 p( ˆDT <0.01)=0.996 τ∼U(0, 2.5 MGA) 0.0 0.02 0.04 0.06 0.08 0.1 0.120 20 40 60 80 100 120 140 160 180 p( ˆDT <0.01)=0.637 τ∼U(0, 5.0 MGA) MmsBayes Estimated variance in divergence times (median) Density 0.0 0.1 0.2 0.3 0.4 0.50 2 4 6 8 10 p( ˆDT <0.01)=0.002 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 p( ˆDT <0.01)=0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.5 1.0 1.5 2.0 2.5 p( ˆDT <0.01)=0.0 0.0 0.4 0.8 1.2 1.60.0 0.5 1.0 1.5 2.0 2.5 3.0 p( ˆDT <0.01)=0.0 MDPP Estimated variance in divergence times (median) Density Islands and Integrals J. Oaks, University of Kansas 39/53
  • 93. dpp-msbayes: Simulation results 0.0 0.02 0.04 0.06 0.08 0.1 0.120 50 100 150 200 p( ˆDT <0.01)=1.0 τ∼U(0, 0.5 MGA) 0.0 0.02 0.04 0.06 0.08 0.1 0.120 50 100 150 200 p( ˆDT <0.01)=0.999 τ∼U(0, 1.5 MGA) 0.0 0.02 0.04 0.06 0.08 0.1 0.120 50 100 150 200 p( ˆDT <0.01)=0.996 τ∼U(0, 2.5 MGA) 0.0 0.02 0.04 0.06 0.08 0.1 0.120 20 40 60 80 100 120 140 160 180 p( ˆDT <0.01)=0.637 τ∼U(0, 5.0 MGA) MmsBayes Estimated variance in divergence times (median) Density 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.350 10 20 30 40 50 60 70 p( ˆDT <0.01)=0.914 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80 5 10 15 20 25 p( ˆDT <0.01)=0.626 0.0 0.2 0.4 0.6 0.80 1 2 3 4 5 6 7 8 9 p( ˆDT <0.01)=0.235 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.5 1.0 1.5 2.0 2.5 p( ˆDT <0.01)=0.004 MUshaped Estimated variance in divergence times (median) Density 0.0 0.1 0.2 0.3 0.4 0.50 2 4 6 8 10 p( ˆDT <0.01)=0.002 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 p( ˆDT <0.01)=0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0 0.5 1.0 1.5 2.0 2.5 p( ˆDT <0.01)=0.0 0.0 0.4 0.8 1.2 1.60.0 0.5 1.0 1.5 2.0 2.5 3.0 p( ˆDT <0.01)=0.0 MDPP Estimated variance in divergence times (median) Density Islands and Integrals J. Oaks, University of Kansas 40/53
  • 94. dpp-msbayes: Simulation results Results confirm the bias of msBayes was caused by 1. Broad uniform priors 2. U-shaped prior on divergence models The new model shows improved model-choice accuracy, power, and robustness Islands and Integrals J. Oaks, University of Kansas 41/53
  • 95. Testing climate-driven diversification Did repeated fragmentation of islands during inter-glacial rises in sea level promote diversification? Islands and Integrals J. Oaks, University of Kansas 42/53
  • 96. Species n1 n2 Mammals Crocidura beatus 12 11 Crocidura negrina-panayensis 12 6 Hipposideros obscurus 19 9 Hipposideros pygmaeus 3 12 Cynopterus brachyotis 20 8 Cynopterus brachyotis 8 14 Haplonycteris fischeri 29 8 Haplonycteris fischeri 9 21 Macroglossus minimus 19 4 Macroglossus minimus 8 10 Ptenochirus jagori 4 7 Ptenochirus jagori 8 8 Ptenochirus minor 30 9 Squamates Cyrtodactylus gubaot-sumuroi 29 6 Cyrtodactylus annulatus 14 3 Cyrtodactylus philippinicus 6 14 Gekko mindorensis 8 11 Insulasaurus arborens 22 10 Pinoyscincus jagori 8 8 Dendrelaphis marenae 6 6 Anurans Limnonectes leytensis 4 2 Limnonectes magnus 2 3 Islands and Integrals J. Oaks, University of Kansas 43/53
  • 97. dpp-msbayes: Philippine diversification 1 3 5 7 9 11 13 15 17 19 21 Number of divergence events 0.0 0.1 0.2 0.3 0.4 0.5 Posteriorprobability msBayes 1 3 5 7 9 11 13 15 17 19 21 Number of divergence events dpp-msbayes Islands and Integrals J. Oaks, University of Kansas 44/53
  • 98. dpp-msbayes: Philippine diversification 1 3 5 7 9 11 13 15 17 19 21 Number of divergence events 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Probability Prior 1 3 5 7 9 11 13 15 17 19 21 Number of divergence events Posterior 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 45/53
  • 99. Conclusions Our new approximate-Bayesian method of phylogeographical model choice shows improved behavior Improved accuracy, robustness, and power More “honest” estimates regarding uncertainty Islands and Integrals J. Oaks, University of Kansas 46/53
  • 100. Conclusions Our new approximate-Bayesian method of phylogeographical model choice shows improved behavior Improved accuracy, robustness, and power More “honest” estimates regarding uncertainty Philippine climate-driven diversification model? Results consistent with prediction of clustered divergences Results suggest multiple co-divergences However, there is a lot of uncertainty Islands and Integrals J. Oaks, University of Kansas 46/53
  • 101. Future directions: Full-Bayesian phylogenetic framework T2 T3 T5 τ2 τ1 T1 τ3 T4 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 47/53
  • 102. Future directions: Full-Bayesian phylogenetic framework 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) Islands and Integrals J. Oaks, University of Kansas 47/53
  • 103. Software Everything is on GitHub. . . dpp-msbayes: https://github.com/joaks1/dpp-msbayes PyMsBayes: https://github.com/joaks1/PyMsBayes ABACUS: Approximate BAyesian C UtilitieS. https://github.com/joaks1/abacus Islands and Integrals J. Oaks, University of Kansas 48/53
  • 104. Open Notebook Science Everything is on GitHub. . . msbayes-experiments: https://github.com/joaks1/msbayes-experiments joaks1@gmail.com Islands and Integrals J. Oaks, University of Kansas 49/53
  • 105. Acknowledgments Ideas and feedback: KU Herpetology Holder Lab Melissa Callahan Mike Hickerson Laura Kubatko My committee Computation: KU ITTC KU Computing Center iPlant Funding: NSF KU Grad Studies, EEB & BI SSB Sigma Xi Photo credits: Rafe Brown, Cam Siler, & Jake Esselstyn FMNH Philippine Mammal Website: D.S. Balete, M.R.M. Duya, & J. Holden Islands and Integrals J. Oaks, University of Kansas 50/53
  • 106. Acknowledgments Friends & Family Islands and Integrals J. Oaks, University of Kansas 51/53
  • 107. Acknowledgments Friends & Family Islands and Integrals J. Oaks, University of Kansas 52/53
  • 108. Questions? Islands and Integrals J. Oaks, University of Kansas 53/53
  • 109. Gene tree divergences Age (mybp) Split(Taxon:Island1−Island2) Crocidura beatus: Leyte−Samar Crocidura negrina−panayensis: Negros−Panay Cynopterus brachyotis: Biliran−Mindanao Cynopterus brachyotis: Negros−Panay Cyrtodactylus annulatus: Bohol−Mindanao Cyrtodactylus gubaot−sumuroi: Leyte−Samar Cyrtodactylus philippinicus: Negros−Panay Dendrelaphis marenae: Negros−Panay Gekko mindorensis: Negros−Panay Haplonycteris fischeri: Biliran−Mindanao Haplonycteris fischeri: Negros−Panay Hipposideros obscurus: Leyte−Mindanao Hipposideros pygmaeus: Bohol−Mindanao Limnonectes leytensis: Bohol−Mindanao Limnonectes magnus: Bohol−Mindanao Macroglossus minimus: Biliran−Mindanao Macroglossus minimus: Negros−Panay Ptenochirus jagori: Leyte−Mindanao Ptenochirus jagori: Negros−Panay Ptenochirus minor: Biliran−Mindanao Insulasaurus arborens: Negros−Panay Pinoyscincus jagori: Mindanao−Samar ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.5 1.0 1.5 2.0 2.5 3.0 Islands and Integrals J. Oaks, University of Kansas 53/53
  • 110. Causes of bias: Insufficient sampling Models with more parameter space are less densely sampled Could explain bias toward small models in extreme cases Predicts large variance in posterior estimates We explored empirical and simulation-based analyses with 2, 5, and 10 million prior samples, and estimates were very similar 0.0 0.2 0.4 0.6 0.8 1.0 1e8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 95%HPDDT UnadjustedA 0.0 0.2 0.4 0.6 0.8 1.0 1e8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 GLM-adjustedB Number of prior samples Islands and Integrals J. Oaks, University of Kansas 53/53
  • 111. Geological history Islands and Integrals J. Oaks, University of Kansas 53/53