SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
1
ES 128: Homework 2
Solutions
Problem 1
Show that the weak form of
02)( =+ x
dx
du
AE
dx
d
on 31 << x ,
1.0)1(
1
=





=
=xdx
du
Eσ ,
001.0)3( =u
is given by
∫∫ +−= =
3
1
1
3
1
2)(1.0 xwdxwAdx
dx
du
AE
dx
dw
x w∀ with 0)3( =w .
Solution
We multiply the governing equation and the natural boundary condition over the
domain [1, 3] by an arbitrary weight function:
02
3
1
=











+





∫ dxx
dx
du
AE
dx
d
w )(xw∀ , (1.1)
01.0
1
=











−
=x
dx
du
EwA )1(w∀ . (1.2)
We integrate (1.1) by parts as
dx
dx
du
AE
dx
dw
dx
du
wAEdx
dx
du
AE
dx
d
w
x
x
∫∫ 





−





=

















=
=
3
1
3
1
3
1
. (1.3)
Substituting (1.3) into (1.1) gives
02
13
3
1
3
1
=





−





++





−
==
∫∫
xx
dx
du
wAE
dx
du
wAEwxdxdx
dx
du
AE
dx
dw
)(xw∀ . (1.4)
With 0)3( =w and 1.0)1( =σ , we obtain
( ) 1
3
1
3
1
1.02 =
−=





∫∫ x
wAwxdxdx
dx
du
AE
dx
dw
)(xw∀ with 0)3( =w . (1.5)
2
El (1)
El (2)
1
2
3
Figure 1a
x
Problem 2
Consider the (steel) bar in Figure 1. The bar has
a uniform thickness t=1cm, Young’s modulus
E=200 9
10× Pa, and weight density
ρ =7 3
10× 3
/mkg . In addition to its self-weight,
the bar is subjected to a point load P=100N at
its midpoint.
(a) Model the bar with two finite elements.
(b) Write down expressions for the element
stiffness matrices and element body force
vectors.
(c) Assemble the structural stiffness matrix
K and global load vector F .
(d) Solve for the global displacement vector
d.
(e) Evaluate the stresses in each element.
(f) Determine the reaction force at the
support.
Solution
(a) Using two elements, each of 0.3m in length, we
obtain the finite element model in Figure 1a. In this
model, 0)1(
1 =x , 3.0)1(
2 =x , 3.0)2(
1 =x , 6.0)2(
2 =x ,
and A(x)=0.0012-0.001x .
(b) For element 1, [ ]xx−= 3.0
3.0
1
N(1)
,
[ ]11
3.0
1
B(1)
−= , the element stiffness matrix is
,
7.07.0
7.07.0
10
11
11
)001.00012.0(
09.0
10200
BBK
9
3.0
0
9
3.0
0
)1((1)T(1)






−
−
=






−
−
−
×
=
=
∫
∫
dxx
dxAE
the element body force vector is
( )






+





−
−−×
=
+=
∫
∫ =
100
0
)001.00012.0(
)001.00012.0)(3.0(
3.0
107
NNf
3.0
0
3
3.0
(1)T
3.0
0
(1)T(1)
dx
xx
xx
PAdx
x
ρ
= 





05.101
155.1
, and the scatter matrix is 





=
010
001
L(1)
.
3
For element 2, [ ]3.06.0
3.0
1
N(2)
−−= xx , [ ]11
3.0
1
B(2)
−= , the element
stiffness matrix is
dxxdxAE ∫∫ 





−
−
−
×
==
6.0
3.0
9
6.0
3.0
)2((2)T(2)
11
11
)001.00012.0(
09.0
10200
BBK
,
5.05.0
5.05.0
109






−
−
= the element body force vector
is dx
xx
xx
Adx ∫∫ 





−−
−−×
==
6.0
3.0
3
6.0
3.0
(2)T(2)
)001.00012.0)(3.0(
)001.00012.0)(6.0(
3.0
107
Nf ρ = 





735.0
84.0
, and
the scatter matrix is 





=
100
010
L(2)
.
(c) The global stiffness matrix is
=+== ∑=
(2)(2)(2)T(1)(1)(1)T
2
1e
eeeT
LKLLKLLKLK










−
−−
−
5.05.00
5.02.17.0
07.07.0
109
.
The global load vector is
=+== ∑=
(2)(2)T(1)(1)T
2
1e
eeT
fLfLfLf










735.0
89.101
155.1
.
(d) Note that only the reaction force at node 1 is not zero, thus









 +
=+
735.0
89.101
155.1
rf
1r
.
The resulting global system of equations is










−
−−
−
5.05.00
5.02.17.0
07.07.0
109










3
2
0
u
u =









 +
735.0
89.101
155.11r
.
Solving the above equation,
2u = 1.46607 7_
10× (m), 3u = 1.48077 7_
10× (m), and 1r =-103.78(N).
(e) The stress field in element 1 is given by






×
−××== −7
9(1)(1))1(
1046607.1
0
]11[
3.0
1
10200dB)( Exσ =9.7738 4
10× (Pa).
The stress field in element 2 is given by






×
×
−××== −
−
7
7
9(2)(2))2(
1048077.1
1046607.1
]11[
3.0
1
10200dB)( Exσ =980 (Pa).
(f) The reaction force at the support Node 1 is -103.78N.
4
Problem 3
Consider the mesh shown in Figure 2. The model consists of two linear
displacement constant strain elements. The cross-sectional area is A=1, Young’s
modulus is E; both are constant. A body force b(x)=cx is applied.
(a) Solve and plot u(x) and )(xε for
the FEM solution.
(b) Compare (by plotting) the finite
element solution against the exact
solution for the equation
.)(2
2
cxxb
dx
ud
E −=−=
(c) Solve the above problem using a single quadratic displacement element.
(d) Compare the accuracy of stress and displacement at the right end with that
of two linear displacement elements.
(e) Check whether the equilibrium equation and traction boundary condition
are satisfied for the two meshes.
Solution
(a) Using two linear displacement constant strain elements, each of l in length,
we obtain the finite element model with 0)1(
1 =x , lx =)1(
2 , lx =)2(
1 , and lx 2)2(
2 = .
For element 1, [ ]xxl
l
−=
1
N(1)
, [ ]11
1
B(1)
−=
l
, the element stiffness matrix is






−
−
=
11
11
K(1)
l
EA
, the element body force vector is 





== ∫ 3/
6/
Nf 2
2
0
(1)T(1)
cl
cl
cxdx
l
,
and the scatter matrix is 





=
010
001
L(1)
.
For element 2, [ ]lxxl
l
−−= 2
1
N(2)
, [ ]11
1
B(2)
−=
l
, the element stiffness matrix
is 





−
−
=
11
11
K(2)
l
EA
, the element body force vector
is 





== ∫ 6/5
3/2
Nf 2
2
2
(2)T(2)
cl
cl
cxdx
l
l
, and the scatter matrix is 





=
100
010
L(2)
.
The global stiffness matrix is
=+== ∑=
(2)(2)(2)T(1)(1)(1)T
2
1e
eeeT
LKLLKLLKLK










−
−−
−
110
121
011
l
EA
.
The global load vector is
Figure 2
5
=+== ∑=
(2)(2)T(1)(1)T
2
1e
eeT
fLfLfLf










8333.0
0.1
1667.0
2
cl .
The resulting global system of equations is










−
−−
−
110
121
011
l
EA










3
2
0
u
u =









 +
2
2
2
1
8333.0
1667.0
cl
cl
clr
.
Solving the above equation,
2u = 1.8333
EA
cl3
, 3u = 2.6666
EA
cl3
, and 1r =-2 2
cl .
When lx ≤≤0
[ ]
EA
xcl
EA
clxxl
l
xu
2
3(1)(1)
8333.1
8333.1
01
dN)( =








−== ,
and
EA
cl
dx
du
x
2
8333.1)( ==ε .
When lxl 2≤≤
[ ] x
EA
cl
EA
cl
EA
cl
EA
cl
lxxl
l
xu
23
3
3
(2)(2)
8333.0
6666.2
8333.1
2
1
dN)( +=












−−== ,
and
EA
cl
dx
du
x
2
8333.0)( ==ε .
(b). The governing equation is
,)(2
2
cxxb
dx
ud
EA −=−=
where A=1. The boundary condition is u(0)=0, and 0)2( =lσ .
Solving this linear ODE, we obtain the exact solution 21
3
6
)( cxcx
EA
c
xu ++−= .
Since u(0)=0, 02 =c . Since 0)2( =lσ ,
EA
cl
c
2
1
2
= . Thus
x
EA
cl
x
EA
c
xu
2
3 2
6
)( +−= .
EA
cl
EA
cx
x
22
2
2
)( +−=ε
The comparisons between the approximation results and the exact solutions are
shown in Figures 2a (displacement), and 2b (strain).
6
2
)(
cl
EA
l
xu
2
)(
cl
EA
xε
Exact
solution Exact
solution
Approximation
results
Approximation
results
Figure 2a Figure 2b
(c) Using a single quadratic displacement element with 0)1(
1 =x , lx =)1(
2 , and
lx 2)1(
3 = , the element shape functions are
( )( )
( )( ) 2)1(
3
)1(
1
)1(
2
)1(
1
)1(
3
)1(
2(1)
1
2
)2)((
)2)((
)2)((
N
l
lxlx
ll
lxlx
xxxx
xxxx −−
=
−−
−−
=
−−
−−
= ,
( )( )
( )( ) 2)1(
3
)1(
2
)1(
1
)1(
2
)1(
3
)1(
1(1)
2
)2(
)(
)2(
N
l
lxx
ll
lxx
xxxx
xxxx
−
−
=
−
−
=
−−
−−
= ,
( )( )
( )( ) 22)1(
2
)1(
3
)1(
1
)1(
3
)1(
2
)1(
1(1)
3
2
)(
2
)(
N
l
lxx
l
lxx
xxxx
xxxx −
=
−
=
−−
−−
= .
The corresponding B-matrix is
2
(1)
1(1)
1
2/3N
B
l
lx
dx
d −
== ,
2
(1)
2(1)
2
22N
B
l
lx
dx
d
−
−
== ,
2
(1)
3(1)
3
2/N
B
l
lx
dx
d −
== .
The element stiffness matrix is
dx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
EAdxEA
ll





 −
−
−−
















−
−
−
−
== ∫∫ 222
2
2
2
2
2
2
0
(1)(1)T(1) 2/222/3
2/
22
2/3
BBK
7
dx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
EA
l
∫




















−





 −






−
−





 −





 −





 −






−
−






−
−






−
−





 −





 −





 −






−
−





 −





 −
=
2
0
22222
22
2
222
2222
2
2
2/2/222/2/3
2/2222222/3
2/2/3222/32/3
.
6/73/46/1
3/43/83/4
6/13/46/7










−
−−
−
=
l
EA
The element body force vector is










== ∫
3/2
3/4
0
Nf
2
2
2
0
(1)T(1)
cl
clcxdx
l
.
The resulting global system of equations is










−
−−
−
6/73/46/1
3/43/83/4
6/13/46/7
l
EA










3
2
0
u
u =










3/2
3/4
2
2
1
cl
cl
r
.
Solving the above equation, we obtain
2u = 1.8333
EA
cl3
, 3u = 2.6666
EA
cl3
, and 1r =-2 2
cl .





















 −
−
−−−
==
EA
cl
EA
cl
l
lxx
l
lxx
l
lxlx
xu
3
3
222
(1)(1)
6666.2
8333.1
0
2
)()2(
2
)2)((
dN)( ,
x
EA
cl
x
EA
cl 2
2
3333.2
5.0
+−= .
EA
cl
x
EA
cl
x
2
3333.2)( +−=ε .
(d) At the right end with x=2l, for both of two linear displacement elements and a
single quadratic displacement element, the displacements are same to the exact
result ( 3u = 2.6666
EA
cl3
). As for the stress and strain, with two linear
displacement elements, we obtain
EA
cl
l
2
8333.0)2( =ε and
A
cl
l
2
8333.0)2( =σ .
8
With a single quadratic displacement element,
EA
cl
l
2
3333.0)2( =ε , and
A
cl
l
2
3333.0)2( =σ . It is found that the approximation result of the stress and
strain with a single quadratic displacement element is closer to the exact result
( 0=σ and 0=ε ).
(e). For both of two linear displacement elements and a single quadratic
displacement element, the reaction forces acting on node 1 are 1r =-2 2
cl , which
satisfy the equilibrium equation ( 0
2
0
1 =+ ∫
l
cxdxr ). However, as shown in (d), the
stress boundary conditions are not satisfied for the two meshes.

Mais conteúdo relacionado

Mais procurados

Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Suddhasheel GHOSH, PhD
 
Geotechnical Elements and Models in OpenSees
Geotechnical Elements and Models in OpenSeesGeotechnical Elements and Models in OpenSees
Geotechnical Elements and Models in OpenSeesopenseesdays
 
Finite element method.ppt
Finite element method.pptFinite element method.ppt
Finite element method.pptdaniel627861
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetHimadriBiswas10
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
Finite Element Analysis -Dr.P.Parandaman
Finite Element Analysis  -Dr.P.ParandamanFinite Element Analysis  -Dr.P.Parandaman
Finite Element Analysis -Dr.P.ParandamanDr.P.Parandaman
 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEMmezkurra
 
07 3 d_elasticity_02_3d_stressstrain
07 3 d_elasticity_02_3d_stressstrain07 3 d_elasticity_02_3d_stressstrain
07 3 d_elasticity_02_3d_stressstrainVijay Kumar
 
Solution of System of Linear Equations
Solution of System of Linear EquationsSolution of System of Linear Equations
Solution of System of Linear Equationsmofassair
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationDev Singh
 

Mais procurados (12)

Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...
 
Geotechnical Elements and Models in OpenSees
Geotechnical Elements and Models in OpenSeesGeotechnical Elements and Models in OpenSees
Geotechnical Elements and Models in OpenSees
 
Finite element method.ppt
Finite element method.pptFinite element method.ppt
Finite element method.ppt
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Finite Element Analysis -Dr.P.Parandaman
Finite Element Analysis  -Dr.P.ParandamanFinite Element Analysis  -Dr.P.Parandaman
Finite Element Analysis -Dr.P.Parandaman
 
физикадан дидактикалық материалдар
физикадан дидактикалық материалдарфизикадан дидактикалық материалдар
физикадан дидактикалық материалдар
 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEM
 
Power series
Power series Power series
Power series
 
07 3 d_elasticity_02_3d_stressstrain
07 3 d_elasticity_02_3d_stressstrain07 3 d_elasticity_02_3d_stressstrain
07 3 d_elasticity_02_3d_stressstrain
 
Solution of System of Linear Equations
Solution of System of Linear EquationsSolution of System of Linear Equations
Solution of System of Linear Equations
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 

Semelhante a Solution homework2

Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 
4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problemMohammed Imran
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupKeigo Nitadori
 
C 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsC 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsRashmi Taneja
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutionsPatrickMumba7
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions PatrickMumba7
 
Diffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metricDiffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metricGota Morota
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 

Semelhante a Solution homework2 (20)

Lecture5-FEA.pdf
Lecture5-FEA.pdfLecture5-FEA.pdf
Lecture5-FEA.pdf
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Shape1 d
Shape1 dShape1 d
Shape1 d
 
4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
 
C 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsC 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry Graphs
 
Section4 stochastic
Section4 stochasticSection4 stochastic
Section4 stochastic
 
Krishna
KrishnaKrishna
Krishna
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
Me 530 assignment 2
Me 530 assignment 2Me 530 assignment 2
Me 530 assignment 2
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
Intro Class.ppt
Intro Class.pptIntro Class.ppt
Intro Class.ppt
 
FEM 3 TwoD CST.ppt
FEM 3 TwoD CST.pptFEM 3 TwoD CST.ppt
FEM 3 TwoD CST.ppt
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
 
Diffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metricDiffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metric
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Ch05 6
Ch05 6Ch05 6
Ch05 6
 
Maths ms
Maths msMaths ms
Maths ms
 

Último

Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 

Último (20)

Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

Solution homework2

  • 1. 1 ES 128: Homework 2 Solutions Problem 1 Show that the weak form of 02)( =+ x dx du AE dx d on 31 << x , 1.0)1( 1 =      = =xdx du Eσ , 001.0)3( =u is given by ∫∫ +−= = 3 1 1 3 1 2)(1.0 xwdxwAdx dx du AE dx dw x w∀ with 0)3( =w . Solution We multiply the governing equation and the natural boundary condition over the domain [1, 3] by an arbitrary weight function: 02 3 1 =            +      ∫ dxx dx du AE dx d w )(xw∀ , (1.1) 01.0 1 =            − =x dx du EwA )1(w∀ . (1.2) We integrate (1.1) by parts as dx dx du AE dx dw dx du wAEdx dx du AE dx d w x x ∫∫       −      =                  = = 3 1 3 1 3 1 . (1.3) Substituting (1.3) into (1.1) gives 02 13 3 1 3 1 =      −      ++      − == ∫∫ xx dx du wAE dx du wAEwxdxdx dx du AE dx dw )(xw∀ . (1.4) With 0)3( =w and 1.0)1( =σ , we obtain ( ) 1 3 1 3 1 1.02 = −=      ∫∫ x wAwxdxdx dx du AE dx dw )(xw∀ with 0)3( =w . (1.5)
  • 2. 2 El (1) El (2) 1 2 3 Figure 1a x Problem 2 Consider the (steel) bar in Figure 1. The bar has a uniform thickness t=1cm, Young’s modulus E=200 9 10× Pa, and weight density ρ =7 3 10× 3 /mkg . In addition to its self-weight, the bar is subjected to a point load P=100N at its midpoint. (a) Model the bar with two finite elements. (b) Write down expressions for the element stiffness matrices and element body force vectors. (c) Assemble the structural stiffness matrix K and global load vector F . (d) Solve for the global displacement vector d. (e) Evaluate the stresses in each element. (f) Determine the reaction force at the support. Solution (a) Using two elements, each of 0.3m in length, we obtain the finite element model in Figure 1a. In this model, 0)1( 1 =x , 3.0)1( 2 =x , 3.0)2( 1 =x , 6.0)2( 2 =x , and A(x)=0.0012-0.001x . (b) For element 1, [ ]xx−= 3.0 3.0 1 N(1) , [ ]11 3.0 1 B(1) −= , the element stiffness matrix is , 7.07.0 7.07.0 10 11 11 )001.00012.0( 09.0 10200 BBK 9 3.0 0 9 3.0 0 )1((1)T(1)       − − =       − − − × = = ∫ ∫ dxx dxAE the element body force vector is ( )       +      − −−× = += ∫ ∫ = 100 0 )001.00012.0( )001.00012.0)(3.0( 3.0 107 NNf 3.0 0 3 3.0 (1)T 3.0 0 (1)T(1) dx xx xx PAdx x ρ =       05.101 155.1 , and the scatter matrix is       = 010 001 L(1) .
  • 3. 3 For element 2, [ ]3.06.0 3.0 1 N(2) −−= xx , [ ]11 3.0 1 B(2) −= , the element stiffness matrix is dxxdxAE ∫∫       − − − × == 6.0 3.0 9 6.0 3.0 )2((2)T(2) 11 11 )001.00012.0( 09.0 10200 BBK , 5.05.0 5.05.0 109       − − = the element body force vector is dx xx xx Adx ∫∫       −− −−× == 6.0 3.0 3 6.0 3.0 (2)T(2) )001.00012.0)(3.0( )001.00012.0)(6.0( 3.0 107 Nf ρ =       735.0 84.0 , and the scatter matrix is       = 100 010 L(2) . (c) The global stiffness matrix is =+== ∑= (2)(2)(2)T(1)(1)(1)T 2 1e eeeT LKLLKLLKLK           − −− − 5.05.00 5.02.17.0 07.07.0 109 . The global load vector is =+== ∑= (2)(2)T(1)(1)T 2 1e eeT fLfLfLf           735.0 89.101 155.1 . (d) Note that only the reaction force at node 1 is not zero, thus           + =+ 735.0 89.101 155.1 rf 1r . The resulting global system of equations is           − −− − 5.05.00 5.02.17.0 07.07.0 109           3 2 0 u u =           + 735.0 89.101 155.11r . Solving the above equation, 2u = 1.46607 7_ 10× (m), 3u = 1.48077 7_ 10× (m), and 1r =-103.78(N). (e) The stress field in element 1 is given by       × −××== −7 9(1)(1))1( 1046607.1 0 ]11[ 3.0 1 10200dB)( Exσ =9.7738 4 10× (Pa). The stress field in element 2 is given by       × × −××== − − 7 7 9(2)(2))2( 1048077.1 1046607.1 ]11[ 3.0 1 10200dB)( Exσ =980 (Pa). (f) The reaction force at the support Node 1 is -103.78N.
  • 4. 4 Problem 3 Consider the mesh shown in Figure 2. The model consists of two linear displacement constant strain elements. The cross-sectional area is A=1, Young’s modulus is E; both are constant. A body force b(x)=cx is applied. (a) Solve and plot u(x) and )(xε for the FEM solution. (b) Compare (by plotting) the finite element solution against the exact solution for the equation .)(2 2 cxxb dx ud E −=−= (c) Solve the above problem using a single quadratic displacement element. (d) Compare the accuracy of stress and displacement at the right end with that of two linear displacement elements. (e) Check whether the equilibrium equation and traction boundary condition are satisfied for the two meshes. Solution (a) Using two linear displacement constant strain elements, each of l in length, we obtain the finite element model with 0)1( 1 =x , lx =)1( 2 , lx =)2( 1 , and lx 2)2( 2 = . For element 1, [ ]xxl l −= 1 N(1) , [ ]11 1 B(1) −= l , the element stiffness matrix is       − − = 11 11 K(1) l EA , the element body force vector is       == ∫ 3/ 6/ Nf 2 2 0 (1)T(1) cl cl cxdx l , and the scatter matrix is       = 010 001 L(1) . For element 2, [ ]lxxl l −−= 2 1 N(2) , [ ]11 1 B(2) −= l , the element stiffness matrix is       − − = 11 11 K(2) l EA , the element body force vector is       == ∫ 6/5 3/2 Nf 2 2 2 (2)T(2) cl cl cxdx l l , and the scatter matrix is       = 100 010 L(2) . The global stiffness matrix is =+== ∑= (2)(2)(2)T(1)(1)(1)T 2 1e eeeT LKLLKLLKLK           − −− − 110 121 011 l EA . The global load vector is Figure 2
  • 5. 5 =+== ∑= (2)(2)T(1)(1)T 2 1e eeT fLfLfLf           8333.0 0.1 1667.0 2 cl . The resulting global system of equations is           − −− − 110 121 011 l EA           3 2 0 u u =           + 2 2 2 1 8333.0 1667.0 cl cl clr . Solving the above equation, 2u = 1.8333 EA cl3 , 3u = 2.6666 EA cl3 , and 1r =-2 2 cl . When lx ≤≤0 [ ] EA xcl EA clxxl l xu 2 3(1)(1) 8333.1 8333.1 01 dN)( =         −== , and EA cl dx du x 2 8333.1)( ==ε . When lxl 2≤≤ [ ] x EA cl EA cl EA cl EA cl lxxl l xu 23 3 3 (2)(2) 8333.0 6666.2 8333.1 2 1 dN)( +=             −−== , and EA cl dx du x 2 8333.0)( ==ε . (b). The governing equation is ,)(2 2 cxxb dx ud EA −=−= where A=1. The boundary condition is u(0)=0, and 0)2( =lσ . Solving this linear ODE, we obtain the exact solution 21 3 6 )( cxcx EA c xu ++−= . Since u(0)=0, 02 =c . Since 0)2( =lσ , EA cl c 2 1 2 = . Thus x EA cl x EA c xu 2 3 2 6 )( +−= . EA cl EA cx x 22 2 2 )( +−=ε The comparisons between the approximation results and the exact solutions are shown in Figures 2a (displacement), and 2b (strain).
  • 6. 6 2 )( cl EA l xu 2 )( cl EA xε Exact solution Exact solution Approximation results Approximation results Figure 2a Figure 2b (c) Using a single quadratic displacement element with 0)1( 1 =x , lx =)1( 2 , and lx 2)1( 3 = , the element shape functions are ( )( ) ( )( ) 2)1( 3 )1( 1 )1( 2 )1( 1 )1( 3 )1( 2(1) 1 2 )2)(( )2)(( )2)(( N l lxlx ll lxlx xxxx xxxx −− = −− −− = −− −− = , ( )( ) ( )( ) 2)1( 3 )1( 2 )1( 1 )1( 2 )1( 3 )1( 1(1) 2 )2( )( )2( N l lxx ll lxx xxxx xxxx − − = − − = −− −− = , ( )( ) ( )( ) 22)1( 2 )1( 3 )1( 1 )1( 3 )1( 2 )1( 1(1) 3 2 )( 2 )( N l lxx l lxx xxxx xxxx − = − = −− −− = . The corresponding B-matrix is 2 (1) 1(1) 1 2/3N B l lx dx d − == , 2 (1) 2(1) 2 22N B l lx dx d − − == , 2 (1) 3(1) 3 2/N B l lx dx d − == . The element stiffness matrix is dx l lx l lx l lx l lx l lx l lx EAdxEA ll       − − −−                 − − − − == ∫∫ 222 2 2 2 2 2 2 0 (1)(1)T(1) 2/222/3 2/ 22 2/3 BBK
  • 7. 7 dx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx EA l ∫                     −       −       − −       −       −       −       − −       − −       − −       −       −       −       − −       −       − = 2 0 22222 22 2 222 2222 2 2 2/2/222/2/3 2/2222222/3 2/2/3222/32/3 . 6/73/46/1 3/43/83/4 6/13/46/7           − −− − = l EA The element body force vector is           == ∫ 3/2 3/4 0 Nf 2 2 2 0 (1)T(1) cl clcxdx l . The resulting global system of equations is           − −− − 6/73/46/1 3/43/83/4 6/13/46/7 l EA           3 2 0 u u =           3/2 3/4 2 2 1 cl cl r . Solving the above equation, we obtain 2u = 1.8333 EA cl3 , 3u = 2.6666 EA cl3 , and 1r =-2 2 cl .                       − − −−− == EA cl EA cl l lxx l lxx l lxlx xu 3 3 222 (1)(1) 6666.2 8333.1 0 2 )()2( 2 )2)(( dN)( , x EA cl x EA cl 2 2 3333.2 5.0 +−= . EA cl x EA cl x 2 3333.2)( +−=ε . (d) At the right end with x=2l, for both of two linear displacement elements and a single quadratic displacement element, the displacements are same to the exact result ( 3u = 2.6666 EA cl3 ). As for the stress and strain, with two linear displacement elements, we obtain EA cl l 2 8333.0)2( =ε and A cl l 2 8333.0)2( =σ .
  • 8. 8 With a single quadratic displacement element, EA cl l 2 3333.0)2( =ε , and A cl l 2 3333.0)2( =σ . It is found that the approximation result of the stress and strain with a single quadratic displacement element is closer to the exact result ( 0=σ and 0=ε ). (e). For both of two linear displacement elements and a single quadratic displacement element, the reaction forces acting on node 1 are 1r =-2 2 cl , which satisfy the equilibrium equation ( 0 2 0 1 =+ ∫ l cxdxr ). However, as shown in (d), the stress boundary conditions are not satisfied for the two meshes.