SlideShare uma empresa Scribd logo
1 de 29
Eirini Koutantou
Supervisor: Prof. D. Valougeorgis
Holweck pump
modeling
Department of Mechanical Engineering,
University of Thessaly
Presentation contents:
1) Introduction
2) Statement of the problem
3) Computational scheme
4) Results and discussion
5) Concluding remarks
2
3
Vacuum:
the pressure of the
gas is much lower
than the one of its
environment
Pump:
device that is used
to move fluids
Vacuum pump:
movement of gas
molecules due to flow
induced by a vacuum
system
Was invented in:
1650
by:
Otto von Guericke
General Terminology:
4
• Pressure:
• Ideal gas equation:
• Mean free path:
• Reynolds number:
• Knudsen number:
mfp:
F
p
A
B
mRT
pV Nk T
M
2 2
1 1
2 2n d n d
where: 8kT
m
Re
ud
v
1
2
Kn
d
Absolute vacuum:
density of
molecules=0
5
Vacuum Terminology:
• Mass flow:
• Pumping speed:
• Pump throughput:
• Conductance/Conductivity:
• Compression ratio:
m
M
t
 [kg/h, g/s]
dV
S
dt
[m3/s, m3/h]
pV
V mRT
Q p
t tM
pV
dV
Q S p p
dt
[Pa m3/s =W]
pVQ
C
p
in row:
1/Ctot = 1/C1 + 1/C2
parallel:
Ctot = C1 + C2 + …
2
0
1
p
K
p
P1: inlet pressure
P2: outlet pressure
6
vacuum
(mfp range)
rough vacuum:
mfp << 10-4 m
medium vacuum:
10-4 m - 10-1 m
high vacuum:
10-1 m - 103 m
ultra high vacuum:
mfp >> 103 m
vacuum
(pressure range)
rough vacuum:
105 Pa - 100 Pa
fine vacuum:
100 Pa - 10-1 Pa
high vacuum:
10-1 Pa - 10-5 Pa
ultra high vacuum (UHV):
10-5 Pa - 10-10 Pa
extreme high vacuum(XHV):
10-10 Pa - 10-12 Pa
Definition of vacuum
ranges:
Gas flow regimes:
Kn > 0.5:
Free Molecular
-Equation of Boltzmann
(without the collision term)
-ultra, extreme high
vacuum
0.01 < Kn < 0.5:
Transition regime
-Equation of Boltzmann
(empirical approaches)
- fine, medium vacuum
Kn << 0.01:
Viscous or continuum flow
(laminar or turbulent)
-Described by the equations NS
- rough vacuum
7
fluid displaced
by a space and is
forwarded to
another
gases are removed
by extracting them
in the atmosphere
change of the
kinetic state of
the moving fluid
cause condensation
or chemical
trapping of gas
Pump tree:
Gas transfer: Positive displacement
8
• Diaphragm pump:
- Well known for
environmental reasons
- low maintenance cost
- noiseless
Rotary pumps
• Roots pump:
- design principle was discovered:
in 1848 by Isaiah Davies
- implemented in practice:
Francis and Philander Roots
- in vacuum science: only since 1954
Reciprocating pumps
9
Gas transfer: Kinetic
- 1913 :Gaede - molecular
- 1957 :Dr.W.Becker - turbomolecular
• (Turbo) molecular pump:
Entrapment pumps
• Cryopump:
- concentration on cold
surface
- profitable for some
gases
Drag pumps
10
Examples!
AUDI
MERCEDESBMW
MEDICAL APPLICATIONAEROSPACE APPLICATION
Applications:
- Refrigeration systems
- Food industry
- Laboratory experimentation
- Mechanical vacuum
- Medicine
- Aerospace industry
- Formula 1 and
Automotive industries
Holweck pump:
11
Invented by:
Fernand Holweck
Constructed by:
Charles Beaudouin
Molecular pump:
- Outer cylinder with
grooves, spiral form
- Inner cylinder with
smooth surface
The rotation of the
smooth cylinder causes
the gas flow
Fernand Holweck
(1890-1941)
3D problem
12
Simulation: much computational effort
Neglect: end effects and the curvature
of the geometry
(total effect = 0.05 )
4 independent problems: 2D flow
in grooved channel
region of solution:
Geometry:
13
H : distance between plates
W x D : groove cross section
W : groove width
D : groove depth
L : period
Isothermal walls:
Τ=Τ0
Characteristic length:
Η
Boundaries of flow domain:
- Inlet: (x΄= -L/2)
- Outlet: (x΄= L/2)
- Top wall: (y΄= Η)
- Bottom wall: (y΄=-D)
General description of
individual problems:
14
1. Longitudinal Couette flow
2. Longitudinal Poiseuille flow
3. Transversal Couette flow
4. Transversal Poiseuille flow( , )i
f f
Q f f
t i
Boltzmann equation:
BGK model:
( )M
i
f f
v f f
t i
23
[ ( , )]
2
2 ( , )
( , )
2 ( , )
i i
B
m u i t
k T i tM
B
m
f n i t e
k T i t
Maxwell distribution function:
Steady state flow:
Taylor expansion:( )M
i
f
v f f
i
0
0
n n
n
0
0
T T
T
2
0
0 0
3
1
2 2
M i iu
f f
RT RT
where:
Polar system coordinates:
2 2
x yc c
1
tan y
x
c
c
cos sinx y
d
c c
x y x y ds
Linear differentiation of distribution function
15
Longitudinal Couette: Longitudinal Poiseuille:
Fluid flow: in direction z’
Cause of flow: moving wall
in direction z’
Cause of flow: pressure gradient
in direction z’
0,0, ,zu u x y
0 0
1
o
U
f f h
u
0
1
o
U
u
Linearization0
1f f hXp z Xp 1Xp
x
x
H
y
y
H 0
x
xc
u 0
y
yc
u 0
z
zc
u
0
0
P
v 0
0 0
P H
u 02ou RT
Non dimensional
variables
'
0
z
z
u
u
U
0
0
u
U 0
ou
U
'
0
z
z
u
u
u Xp Xp Xp
reduced
BGK equations
after projection
x y zc c u
x y
where:
21
, , , , , , , zc
x y x y z z zx y c c h x y c c c c e dc
1
2
x y zc c u
x y
Macroscopic velocity:
1616
Fluid flow: in direction x’
Cause of flow: moving wall
in direction x’
Cause of flow: pressure gradient
in direction x’
Linearization
x
x
H
y
y
H 0
x
xc
u 0
y
yc
u 0
z
zc
u
0
0
P
v 0
0 0
P H
u 02ou RT
Non dimensional
variables
( , ), ( , ),0x yu u x y u x yTransversal Couette: Transversal Poiseuille:
0 0
1
o
U
f f h
u
0
1
o
U
u
0
1f f hXp x Xp 1Xp
0
0
u
U 0
ou
U Xp Xp
where:
'
0
x
x
u
u
U
'
0
y
y
u
u
U
'
0
x
x
u
u
u Xp
'
0
y
y
u
u
u Xp
2
1 2 cos sinx yu u
x y
2
1 2 cos sin cosx yu u
x y
2
x yc c
x y
21
, , , , , , , zc
x y x y z zx y c c h x y c c c e dc
2
21 1
, , , , , , ,
2
zc
x y x y z z zx y c c h x y c c c c e dcand
reduced
BGK equations
after projection
Macroscopic velocity:
Macroscopic quantities:
17
Longitudinal flows:
22
0 0
1
,zu x y e d d
22
0 0
1
, sinyzP x y e d d
1
0
2 ,
2
z
L
G u y dy
H
/2
/2
2
( ,1)
L H
yz
L H
H
Cd P x dx
L

Transversal flows:
2
2
0 0
1
,x y e d d
2
2
2
0 0
1 2
, 1
3
x y e d d
2
2
2
0 0
1
, cosxu x y e d d
2
2
2
0 0
1
, sinyu x y e d d
2
2
3
0 0
1
, sin cosxyP x y e d d
/2
/2
2
,1
L
xyL
H
Cd P x dx
L

1
0
2 ,
2
x
L
G u y dy
H
Density deviation:
Temperature deviation:
Macroscopic velocity:
Stress tensor:
Flow rate:
Drag coefficient:
18
Boundary conditions:
Couette
Poiseuille
eq
wf f
2
02
3
2
02
wu
RTeq w
w
n
f e
RT
, , , , , ,
2 2
L L
y y
H H
Inlet – Outlet: Periodic
Interface gas-wall: Maxwell - diffusion
0 0ncStationary walls:
Moving wall: 2 zc 0yc
Stationary walls:
2 coswn 0yc
Longitudinal
Transversal Stationary walls:
Moving wall:
0 0nc
0 0nc
wnStationary walls: 0nc
where
0
0
Longitudinal
Transversal
where nw is defined by the no-penetration condition: 0u n
• Discretization:
- Physical space [ (x,y) or (x,z)] : (i,j)
where i=1,2,…,I and j=1,2,…,J
- Molecular velocity space (μm,θn) : (ζm , θn)
where 0 < ζm < ∞ and 0 < θn < 2π
m=1,2,…,M and n=1,2,…N
19
Discrete Velocity Method
DVM
Set consists of:
Μ × Ν discrete velocities
(16 × 50 × 4)
3200
• Discretized kinetic equations:
(e.g. transversal Couette flow)
, ,
, , , 2
, , , , , 1 2 cos sini j i j
i j m n
m i j m n i j i j m m x n y n
d
u u
ds
, , , ,
, , ,
2
i j m n i j
m i j m n
d
ds
Set of
algebraic equations:
2 × Μ × Ν
equations/node
Algorithm:
20
Parameters:
δ μm θn Ny_cha
D (D/H) W (W/H) L (L/H)
Couette: U0 / Poiseuille: Χp
• Grid format :
Channel and Cavity
• Grid reverse:
Scan of grid:
1st 2nd
3rd
4th
end of scanning
• Geometries:
21
L = 2:
L = 2.5:
L = 3:
• Rarefaction parameter:
δ 0 10-3
10-
² 10-
¹ 1 10 100
Total runs:
18 geometries 7 δ
=
126
• Results:
Mass flow rate
Drag coefficient
Macroscopic velocities
22
Transversal Poiseuille flow:
Knudsen minimum: δ=1
Normalization of results:
F. Sharipov
L=3 , W=1.5 , D=0.5
δ
L W D 0 10-3 10-² 10-1 1 10 100
2 0.5 0.5 3,211 3,157 2,815 1,976 1,511 2,766 15,544
2 0.5 1 3,212 3,158 2,814 1,975 1,509 2,752 15,433
2 1 0.5 3,149 3,096 2,760 1,945 1,534 2,996 17,228
2 1 1 3,159 3,106 2,769 1,953 1,539 2,984 16,625
2 1.5 0.5 3,159 3,107 2,777 1,983 1,651 3,523 20,918
2 1.5 1 3,159 3,107 2,775 1,978 1,641 3,514 20,856
2.5 0.5 0.5 3,227 3,173 2,829 1,988 1,516 2,754 15,450
2.5 0.5 1 3,227 3,173 2,828 1,986 1,513 2,740 15,340
2.5 1 0.5 3,183 3,129 2,789 1,961 1,532 2,927 16,742
2.5 1 1 3,191 3,137 2,796 1,968 1,535 2,914 16,625
2.5 1.5 0.5 3,171 3,119 1,219 1,241 1,617 3,312 19,412
2.5 1.5 1 3,173 3,120 2,785 1,980 1,610 3,301 19,333
3 0.5 0.5 3,239 3,184 2,839 1,996 1,520 2,746 15,387
3 0.5 1 3,239 3,184 2,838 1,993 1,517 2,732 15,277
3 1 0.5 3,202 3,148 2,806 1,974 1,530 2,880 16,428
3 1 1 3,208 3,154 2,811 1,978 1,533 2,867 16,313
3 1.5 0.5 3,193 3,139 2,801 1,985 1,594 3,171 18,496
3 1.5 1 3,196 3,142 2,802 1,984 1,588 3,160 18,408
0.01 0.10 1.00 10.00
0.5
1.0
1.5
2.0
2.5
Mass flow rate:
23
Transversal Poiseuille flow:
Normalization of results:
F. Sharipov
L=3 , W=1.5 , D=0.5
δ
L W D 0 10-3 10-² 10-1 1 10 100
2 0.5 0.5 0,470 0,470 0,471 0,476 0,488 0,488 0,393
2 0.5 1 0,471 0,471 0,472 0,477 0,489 0,488 0,393
2 1 0.5 0,436 0,436 0,438 0,449 0,483 0,499 0,403
2 1 1 0,443 0,443 0,445 0,456 0,488 0,500 0,400
2 1.5 0.5 0,414 0,414 0,417 0,436 0,493 0,522 0,420
2 1.5 1 0,415 0,415 0,418 0,436 0,493 0,522 0,420
2.5 0.5 0.5 0,476 0,476 0,477 0,480 0,490 0,487 0,392
2.5 0.5 1 0,477 0,477 0,478 0,481 0,491 0,487 0,392
2.5 1 0.5 0,449 0,449 0,450 0,459 0,486 0,496 0,399
2.5 1 1 0,455 0,455 0,456 0,464 0,489 0,497 0,400
2.5 1.5 0.5 0,431 0,431 0,434 0,449 0,494 0,513 0,413
2.5 1.5 1 0,432 0,320 0,434 0,449 0,494 0,513 0,412
3 0.5 0.5 0,480 0,480 0,481 0,484 0,491 0,487 0,392
3 0.5 1 0,481 0,481 0,481 0,484 0,492 0,487 0,392
3 1 0.5 0,457 0,457 0,459 0,466 0,488 0,494 0,398
3 1 1 0,462 0,462 0,464 0,470 0,491 0,495 0,398
3 1.5 0.5 0,442 0,443 0,445 0,457 0,495 0,508 0,408
3 1.5 1 0,443 0,443 0,445 0,457 0,494 0,508 0,408
0.010 0.100 1.000 10.000
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Drag coefficient:
24
channel inlet:
Longitudinal Couette:
Transversal Couette:
L=3, W=1, D=1
L=3, W=1, D=1
Macroscopic velocities
channel middle:
L=3, W=1, D=1
L=3, W=1, D=1
cavity start:
L=3, W=1, D=1
L=3, W=1, D=1
25
channel inlet:
Macroscopic velocities
channel middle:cavity start:
Longitudinal Poiseuille:
Transversal Poiseuille:
L=3, W=1, D=1L=3, W=1, D=1
L=3, W=1, D=1 L=3, W=1, D=1
L=3, W=1, D=1
L=3, W=1, D=1
26
Longitudinal Couette:
Longitudinal Poiseuille:
Macroscopic velocities
velocity contours:
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
27
Transversal Couette:
Transversal Poiseuille:
Macroscopic velocities
velocity streamlines:
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
• Four different flow configurations have been examined:
1. Longitudinal Couette flow
2. Longitudinal Poiseuille flow
3. Transversal Couette flow
4. Transversal Poiseuille flow
• Results have been obtained in the whole range of Knudsen number
and for various values of the geometrical parameters: L/H , W/H
, D/H.
• Synthesizing these results in a proper manner designed parameters
such as pumping speed and throughput can be obtained.
• Optimization of the Holweck pump will follow soon!!!
28
29
Thank you for your attention !!!

Mais conteúdo relacionado

Mais procurados

Applications of metal nanoparticles in photocatalysis
Applications of metal nanoparticles in photocatalysisApplications of metal nanoparticles in photocatalysis
Applications of metal nanoparticles in photocatalysisChamudithaBenaragama
 
Optical properties of nanoparticles
Optical properties of nanoparticlesOptical properties of nanoparticles
Optical properties of nanoparticlesAchal Bhardwaj
 
Synthesis and applications of graphene based ti o2 photocatalysts
Synthesis and applications of graphene based ti o2 photocatalystsSynthesis and applications of graphene based ti o2 photocatalysts
Synthesis and applications of graphene based ti o2 photocatalystsGaurav Kothari
 
Nanotechnology in water treatment
Nanotechnology in water treatmentNanotechnology in water treatment
Nanotechnology in water treatmentShahrbano Awan
 
Electrochemical reduction of Carbon Dioxide
Electrochemical reduction of Carbon DioxideElectrochemical reduction of Carbon Dioxide
Electrochemical reduction of Carbon DioxideSaurav Ch. Sarma
 
Kinetics & Modeling of Adsorption Process.pptx
Kinetics & Modeling of Adsorption Process.pptxKinetics & Modeling of Adsorption Process.pptx
Kinetics & Modeling of Adsorption Process.pptxDr Priy Brat Dwivedi
 
Quantum Tunnelling
Quantum TunnellingQuantum Tunnelling
Quantum TunnellingSoham Thakur
 
Photoelectrochemical Water Splitting
Photoelectrochemical Water SplittingPhotoelectrochemical Water Splitting
Photoelectrochemical Water Splittingchkxu
 

Mais procurados (20)

Analysis of Algorithum
Analysis of AlgorithumAnalysis of Algorithum
Analysis of Algorithum
 
Survey of unit operations
Survey of unit operationsSurvey of unit operations
Survey of unit operations
 
Perturbation
PerturbationPerturbation
Perturbation
 
Misconceptions in Photocatalysis
Misconceptions in PhotocatalysisMisconceptions in Photocatalysis
Misconceptions in Photocatalysis
 
Applications of metal nanoparticles in photocatalysis
Applications of metal nanoparticles in photocatalysisApplications of metal nanoparticles in photocatalysis
Applications of metal nanoparticles in photocatalysis
 
3.3 the ideal gas
3.3 the ideal gas3.3 the ideal gas
3.3 the ideal gas
 
Gas - Liquid Reactors
Gas - Liquid ReactorsGas - Liquid Reactors
Gas - Liquid Reactors
 
Carbon Quantum Dots
Carbon Quantum DotsCarbon Quantum Dots
Carbon Quantum Dots
 
Nano Ball Milling
Nano Ball MillingNano Ball Milling
Nano Ball Milling
 
Adsorption isotherm
Adsorption isothermAdsorption isotherm
Adsorption isotherm
 
Optical properties of nanoparticles
Optical properties of nanoparticlesOptical properties of nanoparticles
Optical properties of nanoparticles
 
Specific Heat Capacity
Specific Heat CapacitySpecific Heat Capacity
Specific Heat Capacity
 
Synthesis and applications of graphene based ti o2 photocatalysts
Synthesis and applications of graphene based ti o2 photocatalystsSynthesis and applications of graphene based ti o2 photocatalysts
Synthesis and applications of graphene based ti o2 photocatalysts
 
Particle in 1 D box
Particle in 1 D boxParticle in 1 D box
Particle in 1 D box
 
Nanotechnology in water treatment
Nanotechnology in water treatmentNanotechnology in water treatment
Nanotechnology in water treatment
 
Electrochemical reduction of Carbon Dioxide
Electrochemical reduction of Carbon DioxideElectrochemical reduction of Carbon Dioxide
Electrochemical reduction of Carbon Dioxide
 
Kinetics & Modeling of Adsorption Process.pptx
Kinetics & Modeling of Adsorption Process.pptxKinetics & Modeling of Adsorption Process.pptx
Kinetics & Modeling of Adsorption Process.pptx
 
Quantum Tunnelling
Quantum TunnellingQuantum Tunnelling
Quantum Tunnelling
 
Photoelectrochemical Water Splitting
Photoelectrochemical Water SplittingPhotoelectrochemical Water Splitting
Photoelectrochemical Water Splitting
 
Spin coating
Spin coatingSpin coating
Spin coating
 

Semelhante a Holweck pump

Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamicsCik Minn
 
Open channel flow
Open channel flowOpen channel flow
Open channel flowAdnan Aslam
 
FYP Presentation v2.0
FYP Presentation v2.0FYP Presentation v2.0
FYP Presentation v2.0Bianchi Dy
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipeSaif al-din ali
 
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...Liqiang Lu
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...Rodolfo Gonçalves
 
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Salman Jailani
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxElisée Ndjabu
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptKOSIREDDYASHOKDEVAKU
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsSohil Shah
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfPrAtYuShGauR1
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabadEdhole.com
 

Semelhante a Holweck pump (20)

Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
Quishpe mireya practica6
Quishpe mireya practica6Quishpe mireya practica6
Quishpe mireya practica6
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
FluidDynamics.ppt
FluidDynamics.pptFluidDynamics.ppt
FluidDynamics.ppt
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
1stSymposiumTALK_Closed_Conduit-Paul_Ghamry
1stSymposiumTALK_Closed_Conduit-Paul_Ghamry1stSymposiumTALK_Closed_Conduit-Paul_Ghamry
1stSymposiumTALK_Closed_Conduit-Paul_Ghamry
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Hardycross method
Hardycross methodHardycross method
Hardycross method
 
FYP Presentation v2.0
FYP Presentation v2.0FYP Presentation v2.0
FYP Presentation v2.0
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
 
Pipe sizing
Pipe sizingPipe sizing
Pipe sizing
 
Application on bernoulli equation
Application on bernoulli equationApplication on bernoulli equation
Application on bernoulli equation
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
 
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal Wells
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdf
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
 

Mais de irinikou

συστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιισυστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιιirinikou
 
κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1irinikou
 
κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3irinikou
 
κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1irinikou
 
τριγωνικη τραπεζοειδής διατομή
τριγωνικη   τραπεζοειδής διατομήτριγωνικη   τραπεζοειδής διατομή
τριγωνικη τραπεζοειδής διατομήirinikou
 
τυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητριατυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητριαirinikou
 

Mais de irinikou (8)

συστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιισυστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιι
 
κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1
 
κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3
 
κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1
 
τριγωνικη τραπεζοειδής διατομή
τριγωνικη   τραπεζοειδής διατομήτριγωνικη   τραπεζοειδής διατομή
τριγωνικη τραπεζοειδής διατομή
 
m.v.c.
m.v.c.m.v.c.
m.v.c.
 
τυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητριατυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητρια
 
απε
απεαπε
απε
 

Último

Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdfCatalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdfOrient Homes
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesDipal Arora
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Lviv Startup Club
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMRavindra Nath Shukla
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear RegressionRavindra Nath Shukla
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth MarketingShawn Pang
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation SlidesKeppelCorporation
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...anilsa9823
 
DEPED Work From Home WORKWEEK-PLAN.docx
DEPED Work From Home  WORKWEEK-PLAN.docxDEPED Work From Home  WORKWEEK-PLAN.docx
DEPED Work From Home WORKWEEK-PLAN.docxRodelinaLaud
 
Socio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptxSocio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptxtrishalcan8
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 

Último (20)

Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdfCatalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
Catalogue ONG NƯỚC uPVC - HDPE DE NHAT.pdf
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSM
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear Regression
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
 
KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)
 
DEPED Work From Home WORKWEEK-PLAN.docx
DEPED Work From Home  WORKWEEK-PLAN.docxDEPED Work From Home  WORKWEEK-PLAN.docx
DEPED Work From Home WORKWEEK-PLAN.docx
 
Socio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptxSocio-economic-Impact-of-business-consumers-suppliers-and.pptx
Socio-economic-Impact-of-business-consumers-suppliers-and.pptx
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 

Holweck pump

  • 1. Eirini Koutantou Supervisor: Prof. D. Valougeorgis Holweck pump modeling Department of Mechanical Engineering, University of Thessaly
  • 2. Presentation contents: 1) Introduction 2) Statement of the problem 3) Computational scheme 4) Results and discussion 5) Concluding remarks 2
  • 3. 3 Vacuum: the pressure of the gas is much lower than the one of its environment Pump: device that is used to move fluids Vacuum pump: movement of gas molecules due to flow induced by a vacuum system Was invented in: 1650 by: Otto von Guericke
  • 4. General Terminology: 4 • Pressure: • Ideal gas equation: • Mean free path: • Reynolds number: • Knudsen number: mfp: F p A B mRT pV Nk T M 2 2 1 1 2 2n d n d where: 8kT m Re ud v 1 2 Kn d Absolute vacuum: density of molecules=0
  • 5. 5 Vacuum Terminology: • Mass flow: • Pumping speed: • Pump throughput: • Conductance/Conductivity: • Compression ratio: m M t  [kg/h, g/s] dV S dt [m3/s, m3/h] pV V mRT Q p t tM pV dV Q S p p dt [Pa m3/s =W] pVQ C p in row: 1/Ctot = 1/C1 + 1/C2 parallel: Ctot = C1 + C2 + … 2 0 1 p K p P1: inlet pressure P2: outlet pressure
  • 6. 6 vacuum (mfp range) rough vacuum: mfp << 10-4 m medium vacuum: 10-4 m - 10-1 m high vacuum: 10-1 m - 103 m ultra high vacuum: mfp >> 103 m vacuum (pressure range) rough vacuum: 105 Pa - 100 Pa fine vacuum: 100 Pa - 10-1 Pa high vacuum: 10-1 Pa - 10-5 Pa ultra high vacuum (UHV): 10-5 Pa - 10-10 Pa extreme high vacuum(XHV): 10-10 Pa - 10-12 Pa Definition of vacuum ranges: Gas flow regimes: Kn > 0.5: Free Molecular -Equation of Boltzmann (without the collision term) -ultra, extreme high vacuum 0.01 < Kn < 0.5: Transition regime -Equation of Boltzmann (empirical approaches) - fine, medium vacuum Kn << 0.01: Viscous or continuum flow (laminar or turbulent) -Described by the equations NS - rough vacuum
  • 7. 7 fluid displaced by a space and is forwarded to another gases are removed by extracting them in the atmosphere change of the kinetic state of the moving fluid cause condensation or chemical trapping of gas Pump tree:
  • 8. Gas transfer: Positive displacement 8 • Diaphragm pump: - Well known for environmental reasons - low maintenance cost - noiseless Rotary pumps • Roots pump: - design principle was discovered: in 1848 by Isaiah Davies - implemented in practice: Francis and Philander Roots - in vacuum science: only since 1954 Reciprocating pumps
  • 9. 9 Gas transfer: Kinetic - 1913 :Gaede - molecular - 1957 :Dr.W.Becker - turbomolecular • (Turbo) molecular pump: Entrapment pumps • Cryopump: - concentration on cold surface - profitable for some gases Drag pumps
  • 10. 10 Examples! AUDI MERCEDESBMW MEDICAL APPLICATIONAEROSPACE APPLICATION Applications: - Refrigeration systems - Food industry - Laboratory experimentation - Mechanical vacuum - Medicine - Aerospace industry - Formula 1 and Automotive industries
  • 11. Holweck pump: 11 Invented by: Fernand Holweck Constructed by: Charles Beaudouin Molecular pump: - Outer cylinder with grooves, spiral form - Inner cylinder with smooth surface The rotation of the smooth cylinder causes the gas flow Fernand Holweck (1890-1941)
  • 12. 3D problem 12 Simulation: much computational effort Neglect: end effects and the curvature of the geometry (total effect = 0.05 ) 4 independent problems: 2D flow in grooved channel region of solution:
  • 13. Geometry: 13 H : distance between plates W x D : groove cross section W : groove width D : groove depth L : period Isothermal walls: Τ=Τ0 Characteristic length: Η Boundaries of flow domain: - Inlet: (x΄= -L/2) - Outlet: (x΄= L/2) - Top wall: (y΄= Η) - Bottom wall: (y΄=-D)
  • 14. General description of individual problems: 14 1. Longitudinal Couette flow 2. Longitudinal Poiseuille flow 3. Transversal Couette flow 4. Transversal Poiseuille flow( , )i f f Q f f t i Boltzmann equation: BGK model: ( )M i f f v f f t i 23 [ ( , )] 2 2 ( , ) ( , ) 2 ( , ) i i B m u i t k T i tM B m f n i t e k T i t Maxwell distribution function: Steady state flow: Taylor expansion:( )M i f v f f i 0 0 n n n 0 0 T T T 2 0 0 0 3 1 2 2 M i iu f f RT RT where: Polar system coordinates: 2 2 x yc c 1 tan y x c c cos sinx y d c c x y x y ds Linear differentiation of distribution function
  • 15. 15 Longitudinal Couette: Longitudinal Poiseuille: Fluid flow: in direction z’ Cause of flow: moving wall in direction z’ Cause of flow: pressure gradient in direction z’ 0,0, ,zu u x y 0 0 1 o U f f h u 0 1 o U u Linearization0 1f f hXp z Xp 1Xp x x H y y H 0 x xc u 0 y yc u 0 z zc u 0 0 P v 0 0 0 P H u 02ou RT Non dimensional variables ' 0 z z u u U 0 0 u U 0 ou U ' 0 z z u u u Xp Xp Xp reduced BGK equations after projection x y zc c u x y where: 21 , , , , , , , zc x y x y z z zx y c c h x y c c c c e dc 1 2 x y zc c u x y Macroscopic velocity:
  • 16. 1616 Fluid flow: in direction x’ Cause of flow: moving wall in direction x’ Cause of flow: pressure gradient in direction x’ Linearization x x H y y H 0 x xc u 0 y yc u 0 z zc u 0 0 P v 0 0 0 P H u 02ou RT Non dimensional variables ( , ), ( , ),0x yu u x y u x yTransversal Couette: Transversal Poiseuille: 0 0 1 o U f f h u 0 1 o U u 0 1f f hXp x Xp 1Xp 0 0 u U 0 ou U Xp Xp where: ' 0 x x u u U ' 0 y y u u U ' 0 x x u u u Xp ' 0 y y u u u Xp 2 1 2 cos sinx yu u x y 2 1 2 cos sin cosx yu u x y 2 x yc c x y 21 , , , , , , , zc x y x y z zx y c c h x y c c c e dc 2 21 1 , , , , , , , 2 zc x y x y z z zx y c c h x y c c c c e dcand reduced BGK equations after projection Macroscopic velocity:
  • 17. Macroscopic quantities: 17 Longitudinal flows: 22 0 0 1 ,zu x y e d d 22 0 0 1 , sinyzP x y e d d 1 0 2 , 2 z L G u y dy H /2 /2 2 ( ,1) L H yz L H H Cd P x dx L  Transversal flows: 2 2 0 0 1 ,x y e d d 2 2 2 0 0 1 2 , 1 3 x y e d d 2 2 2 0 0 1 , cosxu x y e d d 2 2 2 0 0 1 , sinyu x y e d d 2 2 3 0 0 1 , sin cosxyP x y e d d /2 /2 2 ,1 L xyL H Cd P x dx L  1 0 2 , 2 x L G u y dy H Density deviation: Temperature deviation: Macroscopic velocity: Stress tensor: Flow rate: Drag coefficient:
  • 18. 18 Boundary conditions: Couette Poiseuille eq wf f 2 02 3 2 02 wu RTeq w w n f e RT , , , , , , 2 2 L L y y H H Inlet – Outlet: Periodic Interface gas-wall: Maxwell - diffusion 0 0ncStationary walls: Moving wall: 2 zc 0yc Stationary walls: 2 coswn 0yc Longitudinal Transversal Stationary walls: Moving wall: 0 0nc 0 0nc wnStationary walls: 0nc where 0 0 Longitudinal Transversal where nw is defined by the no-penetration condition: 0u n
  • 19. • Discretization: - Physical space [ (x,y) or (x,z)] : (i,j) where i=1,2,…,I and j=1,2,…,J - Molecular velocity space (μm,θn) : (ζm , θn) where 0 < ζm < ∞ and 0 < θn < 2π m=1,2,…,M and n=1,2,…N 19 Discrete Velocity Method DVM Set consists of: Μ × Ν discrete velocities (16 × 50 × 4) 3200 • Discretized kinetic equations: (e.g. transversal Couette flow) , , , , , 2 , , , , , 1 2 cos sini j i j i j m n m i j m n i j i j m m x n y n d u u ds , , , , , , , 2 i j m n i j m i j m n d ds Set of algebraic equations: 2 × Μ × Ν equations/node
  • 20. Algorithm: 20 Parameters: δ μm θn Ny_cha D (D/H) W (W/H) L (L/H) Couette: U0 / Poiseuille: Χp • Grid format : Channel and Cavity • Grid reverse: Scan of grid: 1st 2nd 3rd 4th end of scanning
  • 21. • Geometries: 21 L = 2: L = 2.5: L = 3: • Rarefaction parameter: δ 0 10-3 10- ² 10- ¹ 1 10 100 Total runs: 18 geometries 7 δ = 126 • Results: Mass flow rate Drag coefficient Macroscopic velocities
  • 22. 22 Transversal Poiseuille flow: Knudsen minimum: δ=1 Normalization of results: F. Sharipov L=3 , W=1.5 , D=0.5 δ L W D 0 10-3 10-² 10-1 1 10 100 2 0.5 0.5 3,211 3,157 2,815 1,976 1,511 2,766 15,544 2 0.5 1 3,212 3,158 2,814 1,975 1,509 2,752 15,433 2 1 0.5 3,149 3,096 2,760 1,945 1,534 2,996 17,228 2 1 1 3,159 3,106 2,769 1,953 1,539 2,984 16,625 2 1.5 0.5 3,159 3,107 2,777 1,983 1,651 3,523 20,918 2 1.5 1 3,159 3,107 2,775 1,978 1,641 3,514 20,856 2.5 0.5 0.5 3,227 3,173 2,829 1,988 1,516 2,754 15,450 2.5 0.5 1 3,227 3,173 2,828 1,986 1,513 2,740 15,340 2.5 1 0.5 3,183 3,129 2,789 1,961 1,532 2,927 16,742 2.5 1 1 3,191 3,137 2,796 1,968 1,535 2,914 16,625 2.5 1.5 0.5 3,171 3,119 1,219 1,241 1,617 3,312 19,412 2.5 1.5 1 3,173 3,120 2,785 1,980 1,610 3,301 19,333 3 0.5 0.5 3,239 3,184 2,839 1,996 1,520 2,746 15,387 3 0.5 1 3,239 3,184 2,838 1,993 1,517 2,732 15,277 3 1 0.5 3,202 3,148 2,806 1,974 1,530 2,880 16,428 3 1 1 3,208 3,154 2,811 1,978 1,533 2,867 16,313 3 1.5 0.5 3,193 3,139 2,801 1,985 1,594 3,171 18,496 3 1.5 1 3,196 3,142 2,802 1,984 1,588 3,160 18,408 0.01 0.10 1.00 10.00 0.5 1.0 1.5 2.0 2.5 Mass flow rate:
  • 23. 23 Transversal Poiseuille flow: Normalization of results: F. Sharipov L=3 , W=1.5 , D=0.5 δ L W D 0 10-3 10-² 10-1 1 10 100 2 0.5 0.5 0,470 0,470 0,471 0,476 0,488 0,488 0,393 2 0.5 1 0,471 0,471 0,472 0,477 0,489 0,488 0,393 2 1 0.5 0,436 0,436 0,438 0,449 0,483 0,499 0,403 2 1 1 0,443 0,443 0,445 0,456 0,488 0,500 0,400 2 1.5 0.5 0,414 0,414 0,417 0,436 0,493 0,522 0,420 2 1.5 1 0,415 0,415 0,418 0,436 0,493 0,522 0,420 2.5 0.5 0.5 0,476 0,476 0,477 0,480 0,490 0,487 0,392 2.5 0.5 1 0,477 0,477 0,478 0,481 0,491 0,487 0,392 2.5 1 0.5 0,449 0,449 0,450 0,459 0,486 0,496 0,399 2.5 1 1 0,455 0,455 0,456 0,464 0,489 0,497 0,400 2.5 1.5 0.5 0,431 0,431 0,434 0,449 0,494 0,513 0,413 2.5 1.5 1 0,432 0,320 0,434 0,449 0,494 0,513 0,412 3 0.5 0.5 0,480 0,480 0,481 0,484 0,491 0,487 0,392 3 0.5 1 0,481 0,481 0,481 0,484 0,492 0,487 0,392 3 1 0.5 0,457 0,457 0,459 0,466 0,488 0,494 0,398 3 1 1 0,462 0,462 0,464 0,470 0,491 0,495 0,398 3 1.5 0.5 0,442 0,443 0,445 0,457 0,495 0,508 0,408 3 1.5 1 0,443 0,443 0,445 0,457 0,494 0,508 0,408 0.010 0.100 1.000 10.000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Drag coefficient:
  • 24. 24 channel inlet: Longitudinal Couette: Transversal Couette: L=3, W=1, D=1 L=3, W=1, D=1 Macroscopic velocities channel middle: L=3, W=1, D=1 L=3, W=1, D=1 cavity start: L=3, W=1, D=1 L=3, W=1, D=1
  • 25. 25 channel inlet: Macroscopic velocities channel middle:cavity start: Longitudinal Poiseuille: Transversal Poiseuille: L=3, W=1, D=1L=3, W=1, D=1 L=3, W=1, D=1 L=3, W=1, D=1 L=3, W=1, D=1 L=3, W=1, D=1
  • 26. 26 Longitudinal Couette: Longitudinal Poiseuille: Macroscopic velocities velocity contours: L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10 L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10
  • 27. 27 Transversal Couette: Transversal Poiseuille: Macroscopic velocities velocity streamlines: L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10 L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10
  • 28. • Four different flow configurations have been examined: 1. Longitudinal Couette flow 2. Longitudinal Poiseuille flow 3. Transversal Couette flow 4. Transversal Poiseuille flow • Results have been obtained in the whole range of Knudsen number and for various values of the geometrical parameters: L/H , W/H , D/H. • Synthesizing these results in a proper manner designed parameters such as pumping speed and throughput can be obtained. • Optimization of the Holweck pump will follow soon!!! 28
  • 29. 29 Thank you for your attention !!!