SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 2Issue 4 ǁ April. 2014 ǁ PP-33-41
www.ijmsi.org 33 | P a g e
Estimation of Parameters of Bivariate
Bilognormal Distribution
1,
Dr. Parag B Shah, 2,
Dr. C. D. Bhavsar
1,
Dept. of Statistics, H.L.College of Commerce, Ahmedabad-380009, GUJARAT, INDIA
2,
Dept. of Statistics, Gujarat University, Ahmedabad-380009, GUJARAT, INDIA
ABSTRACT: In this paper we define bivariate bilognormal distribution with seven parameters
(1,2,11,12,21,22,). Bivariate bilognormal distribution with five parameters (1, 2, 11, 21, ) is
deduced from seven parameters distribution when the deviations of two component normal distributions of two
variables x and y are proportional to each other. We try to derive some elementary properties of bivariate
bilognormal distribution and estimate the parameters using method of moments and method of maximum
likelihood.
KEYWORDS: Bivariate bilognormal distribution, Method of moments, Method of maximum likelihood,
Concomitant observations.
I. INTRODUCTION:
Various researchers such as Galton (1879) and Wal Chuan-yi (1966), have shown the suitability of the
lognormal distribution as a limiting distribution of order Statistics under certain conditions. Nabar and Desmukh
(2002) proposed Bilognormal distribution to model income distribution and life time distribution. We define
Bivariate Bilognormal distribution with seven parameters 1,2,11,12,21,22 and  as follows :
2 2 2
1 1 1 2 2
2
11 11 21 21
log log log log-1
( ) exp 2
2(1 )
( , )
x x y y
K o xy
f x y
   

   

            
          
          
1 2
2 2 2
1 1 1 2 2
2
11 11 22 22
log , log
log log log log-1
( ) exp 2
2(1 )
x y
x x y y
K o xy
 
   

   

 
            
          
          
1 2
2 2 2
1 1 1 2 2
2
12 12 21 21
log , log >
log log log log-1
( ) exp 2
2(1 )
x y
x x y y
K o xy
 
   

   


            
          
          
1 2
2 2 2
1 1 1 2 2
2
12 12 22 22
log > , log
log log log log-1
( ) exp 2
2(1 )
x y
x x y y
K o xy
 
   

   


            
          
          
1 2
log > , log >x y 























   
1
2
1 1 1 2 2 1 2 2
2
w h ere 1K o     


    
 
….…(1.1)
Now, (1.1) can be rewritten as
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 34 | P a g e
( , ) , ( , ) A }
1 1 2 1 1 1 2 1 1
( , ) , ( , ) A }
1 1 2 2 1 1 2 2 2( , , , )
1 1 2 1 1 2 2 2 ( , ) , ( , ) A }
1 2 2 1 1 2 2 1 3
( , ) , ( , ) A }
1 2 2 2 1 2 2 2 4
A = ( , )
1 1 1 2 1
w h ere
f
f
f
f
f
z
z z z z
z z z z
z z z z
z z z
z z z z
z z

















1 2 2 2
: 0 , 0 , A = ( , ) : 0 , 0
1 1 2 1 2 1 1 2 1 1 1 2 2
A = ( , ) : 0 , 0 , A = ( , ) : 0 , 0
1 1 2 1 1 2 2 1 1 2 2 23 4
z z z z z z
z z z z z z z z
   
   
   
      
  
 
  
 
 
   
   

 

 
 
and
1 2 1 2
1 1 2 1 1 2 2 2
1 1 2 1 1 2 2 2
lo g lo g lo g lo g
, , an d
x y x y
z z z z
   
   
   
   
   
   
   
110 2 2 2
( , ) = e x p 1 2
1 1 1 2 1 1 1 1 1 2 1 2 121 1 2 1
11 2 2 20
( , ) = e x p 1 2
1 1 1 2 2 1 1 1 1 2 2 2 22
1 1 2 2
11 2 2 20
( , ) = e x p 1 2
1 1 2 2 1 1 2 1 2 2 1 2 12
1 2 2 1
K
f z z z z z z
K
f z z z z z z
K
f z z z z z z
 
 
 
 
 
 
 
    
 
 
    
  

   
   
110 2 2 2
( , ) = e x p 1 2
1 1 2 2 2 1 2 1 2 2 2 2 221 2 2 2
K
f z z z z z z 
 
 
 
  
 
    
 
   
1
2
0 1 1 1 1 2 1 2 2
2
= 1k     


   
 
......( 1.2 )
Bivariate Bilognormal distribution with five parameters 1 2 11 21
, , ,    and
12 1 12 22 2 21
w hen andk k      can be deduced from (1.2) as follows :
( , ) , ( , ) A }1 1 2 1 1 1 2 1 1
( , ) , ( , ) A }1 1 2 2 1 1 2 2 2( , , , )1 1 2 1 1 2 2 2 ( , ) , ( , ) A }1 2 2 1 1 2 2 1 3
( , ) , ( , ) A }1 2 2 2 1 2 2 2 4
f z z z z
f z z z z
f z z z z
f z z z z
f z z z z

 
  


where
   
 
0
0
11 2 2 2
( , ) ex p 1 2
1 1 1 2 1 1 1 1 1 2 1 2 12
1 1 2 1
2
11 2 2 2 1
( , ) ex p 1 2
2 1 1 2 1 1 1 1 1 2 22
1 1 2 2 1 2
0
( , )
3 1 2 2 1
1 1 1
K
f
K
f
K
f
z z z z z z
z
z z z z z
k k
z z
k




 
 


    

    

 
 
 
        
  
      
 
 0
2
11 2 21 1 1 1
ex p 1 2
2 1 2 12
2 1 1 1
2 2
11 2 1 1 1 1 2 1 2 1
( , ) ex p 1 2 .
4 1 2 2 1 2
1 1 1 2 2 1 1 1 2 2
K
f
k k k
z z
z z
k k
z z z z
z z
k k k
 
 

 

   

    
        
  
      
            
    
        
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 35 | P a g e
   
1
2
0 11 21 1 2
2
= 1 1 1k k k  


   
 
1 1 2 1
1 2 2 2
1 2
= , =
z z
z z
k k
.......( 1.3)
In section – 2, we derive elementary properties of Bivariate Bilognormal distribution.
In section 3 & 4, we estimate the parameters by the method of moments and method of M.L.E. respectively.
II. ELEMENTARY PROPERTIES:-
The cumulative distribution function of the Bivariate Bilognormal distribution
BVBILN (1, 2, 11, 12,21, 22, is given by
( , ) , ( , ) A
1 1 1 2 1 1 1 2 1 1
( , ) , ( , ) A
2 1 1 2 2 1 1 2 2 2
( , , , )
1 1 2 1 1 2 2 2 ( , ) , ( , ) A
3 1 2 2 1 1 2 2 1 3
( , ) , ( , ) A
4 1 2 2 2 1 2 2 2 4
F
F
F
F
F
z z z z
z z z z
z z z z
z z z z
z z z z












where
2
2
2 1 1 1
1 1 1 2 1 1 1 2 1 1 1
2
2 2 1 1
2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1
2 1 1 1 2 1 1 2
3 1 2 2 1 1 1 2 1 1 2 2 1 1 2
2
4 1 2
( ) 4 ( )
1
( ) 2 ( )+ 4 C ( )
1
( ) 2 + 2 C (2 ( ) 1)
1 1
(
,
, -
,
,
F C
F C
F C
F
z z
z z z
z z
z z z
z z z z
z z z
z




 
 
 
 
    
 

  


  

 
    
 
 
 
 
 
 
 
 
 
   
   
   
   
 
2
1 1 2 1 1 2 2 1
2 2 1 1 2 1 2 2 1 1 1 1 2 1 1 2 2 1
2
) 2 ( ) 2 C 2 C
1 1
C
z zz z
z z

 

      

     
 
   
    
   
   
2 1 1 2 2 2 1 1
1 2 2 1 1 2 1 1 2 2 1 1
2 2
4 C ( ) + 4 C ( )
1 1
z z z z
z z
 
   
 
    
       
       
......
( 2.1 )
C-1 = (11 + 12) (21 + 22) and  (.) denotes the cumulative distribution function of the standard normal
distribution. The cumulative distribution function of BVBILN (1, 2, 11, 21, can be deduced from
(2.1) as follows :
1 1 1 2 1 1 1 2 1 1
2 1 1 2 1 1 1 2 1 2
1 1 2 1
3 1 2 2 1 1 2 2 1 3
4 1 2 2 1 1 2 2 1 4
( ) , ( ) A
( ) , ( ) A
( )
( ) , ( ) A
( ) , ( ) A
, ,
, ,
,
, ,
, ,
F
F
F
F
F
z z z z
z z z z
z z
z z z z
z z z z












........ ( 2.2 )
where
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 36 | P a g e
 2
2 1 1 1
1 1 1 2 1 1 1
2 1
1 1
2
2 1 1 2 1 2 1 1
2
1 1
2 1
2 1 1 1 1 1 1
3 1 2 2 1 1 1 2
2
1
4 1 2 2 1
*
2
*
* *
2
*
( ) 4
1
( ) 2 (1 ) 4
1
( ) 2 ( ) 4
1
( )
1
, ( )
,
, 1
,
F C
F C k C k
F C C
F
z
k
z z
z z z
z
z z z
z
z
z z z k
z z k k k
k
z z




 


  


    

    



 
 
 
 
 
 
 
 
 
 
 
    
          
 
 
 
1 1
2 1
1 1 2 1 1
2 1 1 1
2 2
1 1 2 1
2 1 1 1
1 1 1 2
1 2 1 1
2 2
1
*
* *
*
2 (1 ) ( ) 2
1 1
4 4
1 1
C C
C C
z
z
z z k
k z k
z z
z z
z k k
k k z
k
 


 
 

     
 
     
 
  
  
    
 
 
   
 
   
 
   
 
      
   
   
where   1 1 1
* 1 2
k kC
   
11 21
  and  (.) denotes the cumulative distribution function of the
standard normal distribution.
Note that it is easy to simulate observations with density (1.1).
If we define z
1
and z
2
as standard normal variables & define
 
1 2
1 2
1 2
1 2
1 1 1 2 2 1
2 1 1 2 2 2
1 1 2 2 2 1
1
w ith p ro b ab ility
1
w ith p ro b ab ility
2
w ith p ro b ab ility
3
,
,
,
,
z z
e e
z z
e e
z z
z z
e e
e
   
   
   
 



 
 
 

 
 
 
 
 
 

 
 
 
1 21 2 2 2 2
w ith p ro b ab ility
4
,
z z
e
 












  
  
  
…...(2.3)
where
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 37 | P a g e
 
   
 
   
 
   
 
   
1 1 2 1
1 1 1 2 2 1 2 2
1 1 1 2 2 1 2 2
1 2 2 1
1 1 1 2 2 1 2 2
1 2 2 2
1 2
1 1 2 1 2 2
1 2
1 2
1 2
P r o b lo g , lo g
1
1 1 2 2
P r o b lo g , lo g
2
P ro b lo g , lo g =
3
P ro b lo g , lo g
4
1 2
x y
x y
x y
x y
 
  
   
 
  
   
 
  
   
 
  
   
   
 
   
 
  
 
   
 
........ (2.4)
then (x, y) has the BVBILN (1, 2, 11, 12, 21, 22, distribution. Note that if we define (z1, z2) as
 
2 2 1
1 2
1 2
1 2
1 2
1 1 1 2 2 1
1 1 1 2 2 2 1
1 1 1 1
w ith p ro b ab ility
1
w ith p ro b ab ility
2
w ith p ro b ab ili
,
,
,
,
k
k
z z
e e
z z
e e
z z
z z
e e
 
   
   
 



 
 

 
 
 
 
 
 

 
 
 
2 2 2 11 21 1 1 1
ty
3
w ith p ro b ab ility
4
,
kk z z
e e
  













  
  
  
where   1
1 1
1 1 2
k k

   ,   1
1 1
2 1 2 2
/k k k

   ,
  1
1 1
3 1 2 1
/k k k

   and   1
1 1
4 1 2 1 2
/k k k k

  
....... (2.5)
then (x, y) has the BVBILN (1, 2, 11, 21, distribution.
The tth row moments of BVBILN (1, 2, 11, 21, distribution about zero are given by
 '
0
r
E x
r 
 
    
1 1 1
1 1 1 1 1
1
2 21 12 2
2 1 12 2 1
11
r r re
e r k e k r
k
  
 
 
 
       
  
 
........(2.6)
and
 '
0
t
E y
s 
 
    
2
2
1
2
2
2 1
2 22 2
2 1 2 1
2
2
2
1
2 1 2
1
1
2
s
e
e e
k
k
s s k
s k s


 
     


 
 
 
 
 
....(2.7)
The moments of (log x, log y) about (1, 2) are given by
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 38 | P a g e
 
 
 
  1
1
2 1
0
1 1*
1
1
2 2
lo g 1
1
r
r
r
r
r r
r
E x
k
k






    

 
 
 
....(2.8)
 
 
 
  2
2
0
2
* 2 1
2
1
1
2 2
lo g 1
1
s
ss
s
s
r
E y
k
s
k






    

 
 
 
....(2.9)
Putting r = 1, 2, 3,…. in (2.8) and (2.9) we get
   1 11 1
*
1 0
2
= E lo g - = 1 ,x k 

 
   
2
1 1 1
2
11
* 2
20
= E log - = 1x k k   
     1 1
3
1
3
1 1
* 2
3 0
2
= E lo g - = 2 1 1x k k

  
   2 2 1 20 1
2
= E lo g = 1* y k 

  
   
2
2
2
02 21 2 2
2
= E log - = 1* x k k   
     
3 3
0 3 2 2 1 2 2
22
= E lo g - = 2 1 1* y k k

   
The central moments of log x and log y of order two and three are given by
 
2
* *
2 0 1 0
2 0
   
 
2
1 1 11
22
(1 )1( ) kk

  
* * * *3
3 2
3 0 3 0 2 0 1 0 1 0
      
    
3
11 1 1
2
1
2 4
1 ( 1) 1
1
k kk k



    
 
  
and
 
2
0 1
* *
0 2 0 2
  
 2
2 1
2
2
2 2
1( 1) kk

 
 
  
* * * *3
3 2
0 3 0 3 0 2 0 1 0 1
      
     
2
2 2 2 2
3
2 1
2 4
1 1 1k k k k
 
    
 
  
III. ESTIMATION BY THE METHOD OF MOMENTS:-
It is difficult to obtain the estimators of the parameters 1, 2, 11, 21, and  using the row moments
of (x, y) given in (2.6) and (2.7). If 11, 21, and  are known, then the estimators of 1, 2, based on
moments of (x, y) are given by:
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 39 | P a g e
  
    
2 2 2
1 1 1 1 1
1 1 0
1 1 1
2 2
1 1 1 1 1 1
1 +
= lo g
2 1
k
k m
e k e k
 

 
 
 
 
 
  
       
  
........(3.1)
and
  
    
2 0 1
2
2 1 2 2 1
2
2 1
2 2
2 2 1
1
2
2
1 +
= lo g
2 1
1
2
k m
e e
k
kk






     
 
 
 
 
   
  
   
..........(3.2)
where 1 0
1
1
=
n
n
i
i
m x

  0 1
1
1
an d =
n
n
i
i
m y

 
However these estimators are found to be less efficient then the estimators based on the moments of
(Log x, Log y), namely.
2
= - ( 1)
1 10 11 1
m k 


and
2
= - ( 1)
2 01 21 2
m k 


..........(3.3)
where
1 0
1
1
= lo g
n
n
i
i
m x


n
0 1
i= 1
1
an d = lo g
n
i
m y
It can be observed that
 
 1 2
,  is not satisfactory when ,
12 11 22 21
     . Hence to estimate the
parameters 1, 2, 11, 21, and  the following method is adopted. Denote the sample mean of (log xi,
log yi ) (i = 1,2,3,4........n) by ( 1 0
m , 0 1
m ) and central sample moments of order two and three by ( 2 0
m , 0 2
m )
and ( 3 0
m , 0 3
m ) respectively. Then the moment estimates satisfy the equations:-
 
 
 
 
2
= + ( 1 )
1 0 1 1 1 1
2
= + ( 1 )
1 0 2 2 1 2
222 2
= 1 1 +
2 0 1 1 1 1 1 1
222 2
= 1 1 +
0 2 2 1 2 2 2 1
22 43
= ( 1 ) 1 1 +
3 0 1 1 1 1 1
3 22 4
= ( 1 ) 1 1 +
0 3 2 1 2 2 2
m k
m k
m k k
m k k
m k k k
m k k k
 

 

 

 


 

 


 
  
 
 
  
 
  
    
  

 
   
 




Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 40 | P a g e
The above equations are solved by the procedure given by John(1982) subject to the conditions.
3 1
2 2
3 3
2 2
3
2
3 0 2 0 0 3 0 2
1
2= < 1 1 & = < 1 1
2 2 2 2
m m m m
           
            
       
The moment estimators are given by
2
2
= B , B = 1
1 1 0 1 1 1 1 12
= B , B = 1
2 0 1 2 2 2 1 22
2B B 4 B B 4
1 1 1 2 2
= , =
1 1 2 12 2
m k
m k
C C


 
 
 
 
  
 
 
 
 
 
 
   
 
 
 
and
2 2
B 4 B B 4 B
1 1 1 2 2 22 2
= , =
1 2 2 22 2
2 2
= + B 4 B 4
1 2 1 1 2 2
2 2
= , =
1 1 1 1 2 2 1 1
C C
B B C C
C k C k 
 

   
 
 
 

IV. ESTIMATION BY THE METHOD OF M.L.E:-
Let (x
[1:n]
, y
[1:n]
), (x
[1:n]
, y
[2:n]
),...,(x[n:n], y[n:n]) be a random sample of concomitant ordered paired
observations of size n from BVBILN (1, 2, 11, 21, . The likelihood function is given by
Log L = Const. - n(log11 + log21 + 1/2log(1 - 2))
   1 1 2 1 1 1 2 1
1 2
2 2 2
2 2 2 211 11 21 21 11 21 21
11 21 11 21 2
1 1 2
1
2 2 2
3 4
21
2
21
2
2
2 21
2 2
2 (1 )
z
k
z
z z z z z
z z z z z z
z z z
k k k
kk k

 

 
           

     
       
   
     

.…….(4.1)
where Const. =    
4
2
lo g lo g 1 lo g 1 lo g lo g
1 2
1
n k k x y
i i i
      
            
       
,
Z11 = 1 2
2 1
1 1 2 1
(lo g ) (lo g )
an d Z
x x 
 
 
 Note that , , ,
2 3 4I
    denotes the summation over all
observations such that the conditions (i) log x  1, log y  2 (ii) log x  1, log y > 2, (iii) log x > 1, log
y  2 and (iv) log x  1, log y  2 are satisfied by the n concomitant ordered paired observations
respectively. The likelihood equations are given by
 
lo g 1 2 1 1 1 2 1 1 1 2 1
0 0
1 1 2 1 1 1 2 2
1 2 3 41 1 1 2 1 21 1 1
Z Z Z Z ZL
Z Z Z
k k kk k k
 
 
 
     
                    
            
… ....(4.2)
 
lo g 1 2 1 1 1 1 1 2 1 1 1
0 0
2 1 1 1 2 12 2
1 2 3 42 2 1 2 1 22 1 2
Z Z Z Z ZL
Z Z Z
k k kk k k
 
 
 
      
                     
             
....(4.3)
Estimation of Parameters of Bivariate Bilognormal Distribution
www.ijmsi.org 41 | P a g e
Solving (4.2) and (4.3) for 1 and 2 we get
   
2 lo g lo g lo g lo g
1
1 2 3 4^
1 2
1 1 2 3 4
x x x xk
r r r rk

  
        
   

  
…...(4.4)
and
   
2 lo g lo g lo g lo g
2
1 3 2 4^
2 2
2 1 3 2 4
y y y yk
r r r rk

   
         
  

  
….(4.5)
where r1, r2, r3 and r4 are the numbers of paired ordered observations satisfied the conditions (i) logx 1,
logy 2, (ii) logx 1, logy > 2, (iii) logx >1, logy 2, and (iv) logx > 1, logy > 2 respectively with
4
1
r n
i
i


. Further by differentiating (4.1) with respect to 11, 21 and and equating them to zero and
solving them simultaneously we get
       
2 2 2 2
2 lo g lo g lo g lo g
1 1 1 1 12 1 2 3 4
^ 21 1
1
x x x xk
n k
   

      
              
       

 
 
 
 
....(4.6)
       
2 2 2 2
2 lo g lo g lo g lo g
2 2 2 22 1 3 2 4
^ 22 1
2
y y y yk
n k
   

       
              
     

 
 
 
 
....(4.7)
and
               1 2 1 2 1 1 2 2 1 2 1 2
1
^ ^
1 2 11 21
2 3 4^
log log log log log log log logk k x y k x y k x y x y
nk k
       

 
           

  
.…(4.8)
REFERENCES
[1]. Garvin, J. S. and McClean, S.L.(1997). Convolution and sampling theory of the binormal distribution as a prerequisite to its
application in statistical process control. The Statistician, 46, No. 1, pp 33-47.
[2]. H.N. Nagaraja (2005). Function of Conconitants of order statistics - ISPS Vol. 7, 16-32.
[3]. John, S. (1982). The three-parameter two-piece normal family of distribution and its fitting. Commun. Statist. – Theor and
Meth, 11, 879-885.
[4]. Kimber, A.C. (1985) Methods for the two-piece normal distribution. Commun. Statist. – Theor. And Meth, 14(1), 235-245.
[5]. S. P. Nabar and S. C. Deshmukh. (2002) On Estimation of Parameters of Bilognormal Distribution. Journal of the Indian
Statistical Association Vol. 40, 1, 2002, 59-70.
[6]. S.P. Nabar & S.P.Parpande (2001) A note on the maximum likelihood estimator of the binormal distribution BIN (, , ).

Mais conteúdo relacionado

Mais procurados

Theory of electroelasticity
Theory of electroelasticityTheory of electroelasticity
Theory of electroelasticity
Springer
 

Mais procurados (16)

End sem solution
End sem solutionEnd sem solution
End sem solution
 
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
 
Quantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualQuantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manual
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
 
E2 f8 bộ binh
E2 f8 bộ binhE2 f8 bộ binh
E2 f8 bộ binh
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
 
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions ManualQuantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
E1 f9 bộ binh
E1 f9 bộ binhE1 f9 bộ binh
E1 f9 bộ binh
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Theory of electroelasticity
Theory of electroelasticityTheory of electroelasticity
Theory of electroelasticity
 
E1 f1 bộ binh
E1 f1 bộ binhE1 f1 bộ binh
E1 f1 bộ binh
 
ゲーム理論NEXT コア第4回(最終回) -平衡ゲームとコア-
ゲーム理論NEXT コア第4回(最終回) -平衡ゲームとコア-ゲーム理論NEXT コア第4回(最終回) -平衡ゲームとコア-
ゲーム理論NEXT コア第4回(最終回) -平衡ゲームとコア-
 
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
 
Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 

Destaque (7)

Kaibigan (For 2g)
Kaibigan (For 2g)Kaibigan (For 2g)
Kaibigan (For 2g)
 
Анализ объема перевозок пассажиров авиакомпаниями России на международных и...
Анализ объема перевозок пассажиров авиакомпаниями России на международных и...Анализ объема перевозок пассажиров авиакомпаниями России на международных и...
Анализ объема перевозок пассажиров авиакомпаниями России на международных и...
 
First presentation
First presentationFirst presentation
First presentation
 
Yukerja - Join The Movements
Yukerja - Join The MovementsYukerja - Join The Movements
Yukerja - Join The Movements
 
Paparan Relawan TIK Papua
Paparan Relawan TIK PapuaPaparan Relawan TIK Papua
Paparan Relawan TIK Papua
 
Hayley Conick, Upwork - Work is Looking Up
Hayley Conick, Upwork - Work is Looking UpHayley Conick, Upwork - Work is Looking Up
Hayley Conick, Upwork - Work is Looking Up
 
Rohit Talwar - The Future of Business, OMN Book Launch event
Rohit Talwar - The Future of Business, OMN Book Launch eventRohit Talwar - The Future of Business, OMN Book Launch event
Rohit Talwar - The Future of Business, OMN Book Launch event
 

Semelhante a E024033041

مراجعة مركزة نهائية 2021
مراجعة مركزة  نهائية 2021مراجعة مركزة  نهائية 2021
مراجعة مركزة نهائية 2021
Rihan Rihan
 

Semelhante a E024033041 (20)

D41024030
D41024030D41024030
D41024030
 
Maths ms
Maths msMaths ms
Maths ms
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
 
مراجعة مركزة نهائية 2021
مراجعة مركزة  نهائية 2021مراجعة مركزة  نهائية 2021
مراجعة مركزة نهائية 2021
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Lect17
Lect17Lect17
Lect17
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
A combinatorial approach to determinants
A combinatorial approach to determinantsA combinatorial approach to determinants
A combinatorial approach to determinants
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
Indefinite Integral 3
Indefinite Integral 3Indefinite Integral 3
Indefinite Integral 3
 
On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Lec 06 12 Jan 2018 - Pt 2.pptx
Lec 06 12 Jan 2018 - Pt 2.pptxLec 06 12 Jan 2018 - Pt 2.pptx
Lec 06 12 Jan 2018 - Pt 2.pptx
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variable
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-Integral
 

Último

Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Último (20)

Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 

E024033041

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 2Issue 4 ǁ April. 2014 ǁ PP-33-41 www.ijmsi.org 33 | P a g e Estimation of Parameters of Bivariate Bilognormal Distribution 1, Dr. Parag B Shah, 2, Dr. C. D. Bhavsar 1, Dept. of Statistics, H.L.College of Commerce, Ahmedabad-380009, GUJARAT, INDIA 2, Dept. of Statistics, Gujarat University, Ahmedabad-380009, GUJARAT, INDIA ABSTRACT: In this paper we define bivariate bilognormal distribution with seven parameters (1,2,11,12,21,22,). Bivariate bilognormal distribution with five parameters (1, 2, 11, 21, ) is deduced from seven parameters distribution when the deviations of two component normal distributions of two variables x and y are proportional to each other. We try to derive some elementary properties of bivariate bilognormal distribution and estimate the parameters using method of moments and method of maximum likelihood. KEYWORDS: Bivariate bilognormal distribution, Method of moments, Method of maximum likelihood, Concomitant observations. I. INTRODUCTION: Various researchers such as Galton (1879) and Wal Chuan-yi (1966), have shown the suitability of the lognormal distribution as a limiting distribution of order Statistics under certain conditions. Nabar and Desmukh (2002) proposed Bilognormal distribution to model income distribution and life time distribution. We define Bivariate Bilognormal distribution with seven parameters 1,2,11,12,21,22 and  as follows : 2 2 2 1 1 1 2 2 2 11 11 21 21 log log log log-1 ( ) exp 2 2(1 ) ( , ) x x y y K o xy f x y                                              1 2 2 2 2 1 1 1 2 2 2 11 11 22 22 log , log log log log log-1 ( ) exp 2 2(1 ) x y x x y y K o xy                                                  1 2 2 2 2 1 1 1 2 2 2 12 12 21 21 log , log > log log log log-1 ( ) exp 2 2(1 ) x y x x y y K o xy                                                 1 2 2 2 2 1 1 1 2 2 2 12 12 22 22 log > , log log log log log-1 ( ) exp 2 2(1 ) x y x x y y K o xy                                                 1 2 log > , log >x y                             1 2 1 1 1 2 2 1 2 2 2 w h ere 1K o               ….…(1.1) Now, (1.1) can be rewritten as
  • 2. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 34 | P a g e ( , ) , ( , ) A } 1 1 2 1 1 1 2 1 1 ( , ) , ( , ) A } 1 1 2 2 1 1 2 2 2( , , , ) 1 1 2 1 1 2 2 2 ( , ) , ( , ) A } 1 2 2 1 1 2 2 1 3 ( , ) , ( , ) A } 1 2 2 2 1 2 2 2 4 A = ( , ) 1 1 1 2 1 w h ere f f f f f z z z z z z z z z z z z z z z z z z z z z z                  1 2 2 2 : 0 , 0 , A = ( , ) : 0 , 0 1 1 2 1 2 1 1 2 1 1 1 2 2 A = ( , ) : 0 , 0 , A = ( , ) : 0 , 0 1 1 2 1 1 2 2 1 1 2 2 23 4 z z z z z z z z z z z z z z                                                and 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 1 2 2 2 lo g lo g lo g lo g , , an d x y x y z z z z                             110 2 2 2 ( , ) = e x p 1 2 1 1 1 2 1 1 1 1 1 2 1 2 121 1 2 1 11 2 2 20 ( , ) = e x p 1 2 1 1 1 2 2 1 1 1 1 2 2 2 22 1 1 2 2 11 2 2 20 ( , ) = e x p 1 2 1 1 2 2 1 1 2 1 2 2 1 2 12 1 2 2 1 K f z z z z z z K f z z z z z z K f z z z z z z                                         110 2 2 2 ( , ) = e x p 1 2 1 1 2 2 2 1 2 1 2 2 2 2 221 2 2 2 K f z z z z z z                        1 2 0 1 1 1 1 2 1 2 2 2 = 1k              ......( 1.2 ) Bivariate Bilognormal distribution with five parameters 1 2 11 21 , , ,    and 12 1 12 22 2 21 w hen andk k      can be deduced from (1.2) as follows : ( , ) , ( , ) A }1 1 2 1 1 1 2 1 1 ( , ) , ( , ) A }1 1 2 2 1 1 2 2 2( , , , )1 1 2 1 1 2 2 2 ( , ) , ( , ) A }1 2 2 1 1 2 2 1 3 ( , ) , ( , ) A }1 2 2 2 1 2 2 2 4 f z z z z f z z z z f z z z z f z z z z f z z z z         where       0 0 11 2 2 2 ( , ) ex p 1 2 1 1 1 2 1 1 1 1 1 2 1 2 12 1 1 2 1 2 11 2 2 2 1 ( , ) ex p 1 2 2 1 1 2 1 1 1 1 1 2 22 1 1 2 2 1 2 0 ( , ) 3 1 2 2 1 1 1 1 K f K f K f z z z z z z z z z z z z k k z z k                                                   0 2 11 2 21 1 1 1 ex p 1 2 2 1 2 12 2 1 1 1 2 2 11 2 1 1 1 1 2 1 2 1 ( , ) ex p 1 2 . 4 1 2 2 1 2 1 1 1 2 2 1 1 1 2 2 K f k k k z z z z k k z z z z z z k k k                                                                
  • 3. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 35 | P a g e     1 2 0 11 21 1 2 2 = 1 1 1k k k           1 1 2 1 1 2 2 2 1 2 = , = z z z z k k .......( 1.3) In section – 2, we derive elementary properties of Bivariate Bilognormal distribution. In section 3 & 4, we estimate the parameters by the method of moments and method of M.L.E. respectively. II. ELEMENTARY PROPERTIES:- The cumulative distribution function of the Bivariate Bilognormal distribution BVBILN (1, 2, 11, 12,21, 22, is given by ( , ) , ( , ) A 1 1 1 2 1 1 1 2 1 1 ( , ) , ( , ) A 2 1 1 2 2 1 1 2 2 2 ( , , , ) 1 1 2 1 1 2 2 2 ( , ) , ( , ) A 3 1 2 2 1 1 2 2 1 3 ( , ) , ( , ) A 4 1 2 2 2 1 2 2 2 4 F F F F F z z z z z z z z z z z z z z z z z z z z             where 2 2 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 2 2 1 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 1 2 1 1 2 3 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2 4 1 2 ( ) 4 ( ) 1 ( ) 2 ( )+ 4 C ( ) 1 ( ) 2 + 2 C (2 ( ) 1) 1 1 ( , , - , , F C F C F C F z z z z z z z z z z z z z z z z z z                                                                         2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 1 1 2 1 1 2 2 1 2 ) 2 ( ) 2 C 2 C 1 1 C z zz z z z                                      2 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 4 C ( ) + 4 C ( ) 1 1 z z z z z z                              ...... ( 2.1 ) C-1 = (11 + 12) (21 + 22) and  (.) denotes the cumulative distribution function of the standard normal distribution. The cumulative distribution function of BVBILN (1, 2, 11, 21, can be deduced from (2.1) as follows : 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 3 1 2 2 1 1 2 2 1 3 4 1 2 2 1 1 2 2 1 4 ( ) , ( ) A ( ) , ( ) A ( ) ( ) , ( ) A ( ) , ( ) A , , , , , , , , , F F F F F z z z z z z z z z z z z z z z z z z             ........ ( 2.2 ) where
  • 4. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 36 | P a g e  2 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 3 1 2 2 1 1 1 2 2 1 4 1 2 2 1 * 2 * * * 2 * ( ) 4 1 ( ) 2 (1 ) 4 1 ( ) 2 ( ) 4 1 ( ) 1 , ( ) , , 1 , F C F C k C k F C C F z k z z z z z z z z z z z z z z k z z k k k k z z                                                                        1 1 2 1 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 2 2 1 * * * * 2 (1 ) ( ) 2 1 1 4 4 1 1 C C C C z z z z k k z k z z z z z k k k k z k                                                                          where   1 1 1 * 1 2 k kC     11 21   and  (.) denotes the cumulative distribution function of the standard normal distribution. Note that it is easy to simulate observations with density (1.1). If we define z 1 and z 2 as standard normal variables & define   1 2 1 2 1 2 1 2 1 1 1 2 2 1 2 1 1 2 2 2 1 1 2 2 2 1 1 w ith p ro b ab ility 1 w ith p ro b ab ility 2 w ith p ro b ab ility 3 , , , , z z e e z z e e z z z z e e e                                            1 21 2 2 2 2 w ith p ro b ab ility 4 , z z e                        …...(2.3) where
  • 5. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 37 | P a g e                         1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 2 2 1 1 1 1 2 2 1 2 2 1 2 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 P r o b lo g , lo g 1 1 1 2 2 P r o b lo g , lo g 2 P ro b lo g , lo g = 3 P ro b lo g , lo g 4 1 2 x y x y x y x y                                                            ........ (2.4) then (x, y) has the BVBILN (1, 2, 11, 12, 21, 22, distribution. Note that if we define (z1, z2) as   2 2 1 1 2 1 2 1 2 1 2 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 w ith p ro b ab ility 1 w ith p ro b ab ility 2 w ith p ro b ab ili , , , , k k z z e e z z e e z z z z e e                                        2 2 2 11 21 1 1 1 ty 3 w ith p ro b ab ility 4 , kk z z e e                          where   1 1 1 1 1 2 k k     ,   1 1 1 2 1 2 2 /k k k     ,   1 1 1 3 1 2 1 /k k k     and   1 1 1 4 1 2 1 2 /k k k k     ....... (2.5) then (x, y) has the BVBILN (1, 2, 11, 21, distribution. The tth row moments of BVBILN (1, 2, 11, 21, distribution about zero are given by  ' 0 r E x r         1 1 1 1 1 1 1 1 1 2 21 12 2 2 1 12 2 1 11 r r re e r k e k r k                       ........(2.6) and  ' 0 t E y s         2 2 1 2 2 2 1 2 22 2 2 1 2 1 2 2 2 1 2 1 2 1 1 2 s e e e k k s s k s k s                       ....(2.7) The moments of (log x, log y) about (1, 2) are given by
  • 6. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 38 | P a g e         1 1 2 1 0 1 1* 1 1 2 2 lo g 1 1 r r r r r r r E x k k                   ....(2.8)         2 2 0 2 * 2 1 2 1 1 2 2 lo g 1 1 s ss s s r E y k s k                   ....(2.9) Putting r = 1, 2, 3,…. in (2.8) and (2.9) we get    1 11 1 * 1 0 2 = E lo g - = 1 ,x k         2 1 1 1 2 11 * 2 20 = E log - = 1x k k         1 1 3 1 3 1 1 * 2 3 0 2 = E lo g - = 2 1 1x k k        2 2 1 20 1 2 = E lo g = 1* y k          2 2 2 02 21 2 2 2 = E log - = 1* x k k          3 3 0 3 2 2 1 2 2 22 = E lo g - = 2 1 1* y k k      The central moments of log x and log y of order two and three are given by   2 * * 2 0 1 0 2 0       2 1 1 11 22 (1 )1( ) kk     * * * *3 3 2 3 0 3 0 2 0 1 0 1 0             3 11 1 1 2 1 2 4 1 ( 1) 1 1 k kk k              and   2 0 1 * * 0 2 0 2     2 2 1 2 2 2 2 1( 1) kk         * * * *3 3 2 0 3 0 3 0 2 0 1 0 1              2 2 2 2 2 3 2 1 2 4 1 1 1k k k k             III. ESTIMATION BY THE METHOD OF MOMENTS:- It is difficult to obtain the estimators of the parameters 1, 2, 11, 21, and  using the row moments of (x, y) given in (2.6) and (2.7). If 11, 21, and  are known, then the estimators of 1, 2, based on moments of (x, y) are given by:
  • 7. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 39 | P a g e         2 2 2 1 1 1 1 1 1 1 0 1 1 1 2 2 1 1 1 1 1 1 1 + = lo g 2 1 k k m e k e k                            ........(3.1) and         2 0 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 1 2 2 1 + = lo g 2 1 1 2 k m e e k kk                                ..........(3.2) where 1 0 1 1 = n n i i m x    0 1 1 1 an d = n n i i m y    However these estimators are found to be less efficient then the estimators based on the moments of (Log x, Log y), namely. 2 = - ( 1) 1 10 11 1 m k    and 2 = - ( 1) 2 01 21 2 m k    ..........(3.3) where 1 0 1 1 = lo g n n i i m x   n 0 1 i= 1 1 an d = lo g n i m y It can be observed that    1 2 ,  is not satisfactory when , 12 11 22 21      . Hence to estimate the parameters 1, 2, 11, 21, and  the following method is adopted. Denote the sample mean of (log xi, log yi ) (i = 1,2,3,4........n) by ( 1 0 m , 0 1 m ) and central sample moments of order two and three by ( 2 0 m , 0 2 m ) and ( 3 0 m , 0 3 m ) respectively. Then the moment estimates satisfy the equations:-         2 = + ( 1 ) 1 0 1 1 1 1 2 = + ( 1 ) 1 0 2 2 1 2 222 2 = 1 1 + 2 0 1 1 1 1 1 1 222 2 = 1 1 + 0 2 2 1 2 2 2 1 22 43 = ( 1 ) 1 1 + 3 0 1 1 1 1 1 3 22 4 = ( 1 ) 1 1 + 0 3 2 1 2 2 2 m k m k m k k m k k m k k k m k k k                                                          
  • 8. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 40 | P a g e The above equations are solved by the procedure given by John(1982) subject to the conditions. 3 1 2 2 3 3 2 2 3 2 3 0 2 0 0 3 0 2 1 2= < 1 1 & = < 1 1 2 2 2 2 m m m m                                  The moment estimators are given by 2 2 = B , B = 1 1 1 0 1 1 1 1 12 = B , B = 1 2 0 1 2 2 2 1 22 2B B 4 B B 4 1 1 1 2 2 = , = 1 1 2 12 2 m k m k C C                                    and 2 2 B 4 B B 4 B 1 1 1 2 2 22 2 = , = 1 2 2 22 2 2 2 = + B 4 B 4 1 2 1 1 2 2 2 2 = , = 1 1 1 1 2 2 1 1 C C B B C C C k C k                IV. ESTIMATION BY THE METHOD OF M.L.E:- Let (x [1:n] , y [1:n] ), (x [1:n] , y [2:n] ),...,(x[n:n], y[n:n]) be a random sample of concomitant ordered paired observations of size n from BVBILN (1, 2, 11, 21, . The likelihood function is given by Log L = Const. - n(log11 + log21 + 1/2log(1 - 2))    1 1 2 1 1 1 2 1 1 2 2 2 2 2 2 2 211 11 21 21 11 21 21 11 21 11 21 2 1 1 2 1 2 2 2 3 4 21 2 21 2 2 2 21 2 2 2 (1 ) z k z z z z z z z z z z z z z z z k k k kk k                                             .…….(4.1) where Const. =     4 2 lo g lo g 1 lo g 1 lo g lo g 1 2 1 n k k x y i i i                             , Z11 = 1 2 2 1 1 1 2 1 (lo g ) (lo g ) an d Z x x       Note that , , , 2 3 4I     denotes the summation over all observations such that the conditions (i) log x  1, log y  2 (ii) log x  1, log y > 2, (iii) log x > 1, log y  2 and (iv) log x  1, log y  2 are satisfied by the n concomitant ordered paired observations respectively. The likelihood equations are given by   lo g 1 2 1 1 1 2 1 1 1 2 1 0 0 1 1 2 1 1 1 2 2 1 2 3 41 1 1 2 1 21 1 1 Z Z Z Z ZL Z Z Z k k kk k k                                               … ....(4.2)   lo g 1 2 1 1 1 1 1 2 1 1 1 0 0 2 1 1 1 2 12 2 1 2 3 42 2 1 2 1 22 1 2 Z Z Z Z ZL Z Z Z k k kk k k                                                  ....(4.3)
  • 9. Estimation of Parameters of Bivariate Bilognormal Distribution www.ijmsi.org 41 | P a g e Solving (4.2) and (4.3) for 1 and 2 we get     2 lo g lo g lo g lo g 1 1 2 3 4^ 1 2 1 1 2 3 4 x x x xk r r r rk                      …...(4.4) and     2 lo g lo g lo g lo g 2 1 3 2 4^ 2 2 2 1 3 2 4 y y y yk r r r rk                       ….(4.5) where r1, r2, r3 and r4 are the numbers of paired ordered observations satisfied the conditions (i) logx 1, logy 2, (ii) logx 1, logy > 2, (iii) logx >1, logy 2, and (iv) logx > 1, logy > 2 respectively with 4 1 r n i i   . Further by differentiating (4.1) with respect to 11, 21 and and equating them to zero and solving them simultaneously we get         2 2 2 2 2 lo g lo g lo g lo g 1 1 1 1 12 1 2 3 4 ^ 21 1 1 x x x xk n k                                             ....(4.6)         2 2 2 2 2 lo g lo g lo g lo g 2 2 2 22 1 3 2 4 ^ 22 1 2 y y y yk n k                                            ....(4.7) and                1 2 1 2 1 1 2 2 1 2 1 2 1 ^ ^ 1 2 11 21 2 3 4^ log log log log log log log logk k x y k x y k x y x y nk k                            .…(4.8) REFERENCES [1]. Garvin, J. S. and McClean, S.L.(1997). Convolution and sampling theory of the binormal distribution as a prerequisite to its application in statistical process control. The Statistician, 46, No. 1, pp 33-47. [2]. H.N. Nagaraja (2005). Function of Conconitants of order statistics - ISPS Vol. 7, 16-32. [3]. John, S. (1982). The three-parameter two-piece normal family of distribution and its fitting. Commun. Statist. – Theor and Meth, 11, 879-885. [4]. Kimber, A.C. (1985) Methods for the two-piece normal distribution. Commun. Statist. – Theor. And Meth, 14(1), 235-245. [5]. S. P. Nabar and S. C. Deshmukh. (2002) On Estimation of Parameters of Bilognormal Distribution. Journal of the Indian Statistical Association Vol. 40, 1, 2002, 59-70. [6]. S.P. Nabar & S.P.Parpande (2001) A note on the maximum likelihood estimator of the binormal distribution BIN (, , ).