SlideShare uma empresa Scribd logo
1 de 3
Baixar para ler offline
EOS: utility scale battery storage
competitive with gas
By Giles Parkinson on 17 December 2013

The cost of battery storage is falling quicker than most analysts presume and could be competitive
with gas-fired generation – even in the US, where gas prices are low – within the next 18 months.
That’s the prediction of Steve Hellman, the president of battery storage start-up EOS Energy Storage,
which intends to launch its zinc-air battery next year with a price of $200-$250/kWh.
EOS has grabbed the attention of the renewables and the mainstream energy industry with its battery
product, which undercuts the pricing of lithium-ion batteries by a significant margin.
EOS actually predicts its storage will be available at around $160/kWh, but that is for D/C battery
system. It needs extra costs and additions to be integrated into the A/C system on which major grids
operate. Its attractiveness, Hellman says, will be its ability to provide
capacity at prices that
compete with current options.
In a recent talk with a US analysts and investors hosted by UBS, Hellman gave a fascinating insight
into how he sees the battery storage industry evolving in coming years. Its attractiveness, Hellman
says, will be its ability to match gas on upfront capital costs. After that, it has no fuel cost.
“In 2014-2015 energy storage will actually be less expensive or competitive with gas,” he said.
“Basically, in utility scales, that’s tomorrow … energy storage will be your default approach for solving
standard peak capacity challenges. It will be much more usable as peaking capacity than a traditional
generator.”
Not that Hellman thinks that the major energy grids are suddenly going to dump gas and swith to
battery storage. These transitions will take time, he notes. But NRG, the largest private generator has
already invested in the company, and EOS has been approached by the
likes of Con Edison, ENEL, GDF Suez, and National Grid.
(Just to put Hellman’s claim into a little context – he began his career
with commodities giant Glencore, where he built six successful companies
in oil production and refining. His bio says that Hellman (pictured right)
then created his own energy trading company which grew to $8 billion
revenues, and built a shipping company of 27 tankers, an energy
technology company, and a $150 million real estate company. He speaks
Russian and Chinese. He hasn’t just wandered in from an environmental
NGO and he’s not a nerd that just emerged with a good idea from a test
lab).
Hellman says there was a common myth that people would want to install battery storage to make
money by buying cheap off-peak power and selling expensive on-peak power. In effect, however,
the amount of energy lost in such a round trip would probably offset any gains made.
“That’s not your fundamental value proposition,” he says. It would instead be in its ‘capacity’-like
properties, able to be quickly installed in constrained regions, rapidly respond to demands of the grid,
and clip scarcity price events. He says the immediate outlook did not suggest merchant build in any
meaningful manner in the near term, but development will remain focused on urban utility contract-
backed opportunities, such as the 1.3GW mandate from the California Public Utilities Commission, and
a similar one in Long Island.
“Ultimately, we view energy storage as a business problem, not as a technology problem. The
business problem we are trying to address is: how do you decouple supply and demand on the
electricity grid?
“The grid overall is this gargantuan infrastructure that is basically attempting to instantaneously
match supply and demand. Though there is variable demand, you have full control of supply. As soon
as you introduce the intermittency of generation sources such as wind and solar, you have
intermittent supply and demand. This problem becomes a lot more difficult for grid operators without
storage to buffer supply and demand.
“There are also very complex infrastructure problems that need to be resolved where storage can
play an important role. There is pressure from end users, who would like to lower electricity costs by
using micro-grids. Storage becomes a critical component for this. In sister sectors like transportation,
for example, energy storage is of course the key to transitioning to an electrically charged
transportation grid and electric vehicles. Energy storage plays a crucial role for this transition.
“These factors are leading to an enormous amount of innovation in this space, but they all converge
around a certain set of major requirements. To become viable, energy storage needs to be extremely
inexpensive in terms of capital costs. It needs to be very long lasting because like other capital assets
on the grid you need to be able to amortize those costs over a long period of time.
“You need to have high efficiency as these business cases are built around energy value propositions.
The ratio of energy out of a battery to energy or the round-trip efficiency becomes critical to that
business problem and at energy storage in its classic paradigm, which is distributed energy
storage. In other words, getting energy storage as close as possible or even inside the load centers
so you can not only time shift energy, but you can debottleneck and get downstream from
bottlenecks on the transmission and distribution system.”
If, as Hellman suggests, battery storage can match gas-fired generation on both capital costs and
levellised cost of energy, then energy storage value proposition becomes a “triple play” with three
different sources of revenue.
The first is on capacity: a device with 4-6
hours storage should be entitled to capacity
payments, a storage facility behind the
metre is reducing demand charges or is
monetising the capacity value, and is also
playing that off-peak, on peak arbitrage.
The second is locational capacity,, the most
important: The ability to be modularized and
placed in areas of the grid that require the
most attention but traditional sources of
generation, and th transmission and
distribution system, are either impossible or
too expensive to install.
The third area of growth Hellman sees is behind the meter micro-grid, pairing with distributed
generation in order to create a fully autonomous type of environment.
This, he says, is good news for the traditional utilities. “Many think energy storage is somehow a
threat to the utility paradigm. It’s actually not. The energy storage – in so far as it can provide
locational capacity – can resolve problems for utilities in a very cost- effective fashion, allowing them
to better optimize their capital spend for example.
“Over the long-term and in even in this micro-gridding configuration, energy storage is an opportunity
for utilities that actually embrace it and understand how to make that paradigm function to provide
those services to customers rather than encouraging customers to take the technology risk, the
development risk, the operating risk and so forth.
“The utilities understand this technology better. They will have a lower cost of capital and a better
ability to take advantage of this emerging opportunity even on the customer side of the meter going
forward. So we see it as a benefit. Not just on the grid, but behind the meter as well in terms of the
traditional utility business model.”
But he says that energy storage will provide a new way of designing an electricity grid, particularly for
emerging countries that actually are perhaps mired in energy poverty.
Micro-grids become a realistic solution for that problem together with distributed generation. Even in
developed countries as you see energy storage and distributed generation become more and more
prevalent, ultimately the future is an overlay on top of loosely interconnected micro-grids that can
actually add robustness, lower costs and robustness for all kinds of energy consumers.
“The winners in this process are going to be electricity consumers, technology providers, developers
and ultimately those utilities that are able to and have a mechanism for embracing change, which is
inevitable in any case as the sector grows.
On some other issues, Hellman says:
EOS batteries are designed to achieve 10,000 cycles. If it was charged at night and discharged during
the day, that would correspond to one cycle a day. So 10,000 cycles equates to something like a 30year operating life for its batteries.
Hellman said EOS technology was specifically designed for grid-scale.storage but it was looking to see
if it could be adapted for electric vehicles. He was not confident of the future of lithium ion battery
technology, because of its cost and because of its lack of stability.
He said the challenge with lead acid is that it is very cheap, but it doesn’t last very long. “It doesn’t
really fit the requirements for utilities style solutions. It’s not a bad stop-gap technology, but it’s
probably not a great long- term technology.”
However, he noted that there are so many different applications for energy storage on the grid and
off the grid that there will likely be a large number of technologies that emerge as being very
commercial and having a lot of value added in this whole process.

(This article is from RenewEconomy)

Mais conteúdo relacionado

Destaque

Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 

Destaque (20)

Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 

Eos utility scale battery storage competitive with gas

  • 1. EOS: utility scale battery storage competitive with gas By Giles Parkinson on 17 December 2013 The cost of battery storage is falling quicker than most analysts presume and could be competitive with gas-fired generation – even in the US, where gas prices are low – within the next 18 months. That’s the prediction of Steve Hellman, the president of battery storage start-up EOS Energy Storage, which intends to launch its zinc-air battery next year with a price of $200-$250/kWh. EOS has grabbed the attention of the renewables and the mainstream energy industry with its battery product, which undercuts the pricing of lithium-ion batteries by a significant margin. EOS actually predicts its storage will be available at around $160/kWh, but that is for D/C battery system. It needs extra costs and additions to be integrated into the A/C system on which major grids operate. Its attractiveness, Hellman says, will be its ability to provide capacity at prices that compete with current options. In a recent talk with a US analysts and investors hosted by UBS, Hellman gave a fascinating insight into how he sees the battery storage industry evolving in coming years. Its attractiveness, Hellman says, will be its ability to match gas on upfront capital costs. After that, it has no fuel cost. “In 2014-2015 energy storage will actually be less expensive or competitive with gas,” he said. “Basically, in utility scales, that’s tomorrow … energy storage will be your default approach for solving standard peak capacity challenges. It will be much more usable as peaking capacity than a traditional generator.” Not that Hellman thinks that the major energy grids are suddenly going to dump gas and swith to battery storage. These transitions will take time, he notes. But NRG, the largest private generator has already invested in the company, and EOS has been approached by the likes of Con Edison, ENEL, GDF Suez, and National Grid. (Just to put Hellman’s claim into a little context – he began his career with commodities giant Glencore, where he built six successful companies in oil production and refining. His bio says that Hellman (pictured right) then created his own energy trading company which grew to $8 billion revenues, and built a shipping company of 27 tankers, an energy technology company, and a $150 million real estate company. He speaks Russian and Chinese. He hasn’t just wandered in from an environmental NGO and he’s not a nerd that just emerged with a good idea from a test lab). Hellman says there was a common myth that people would want to install battery storage to make money by buying cheap off-peak power and selling expensive on-peak power. In effect, however, the amount of energy lost in such a round trip would probably offset any gains made. “That’s not your fundamental value proposition,” he says. It would instead be in its ‘capacity’-like properties, able to be quickly installed in constrained regions, rapidly respond to demands of the grid, and clip scarcity price events. He says the immediate outlook did not suggest merchant build in any meaningful manner in the near term, but development will remain focused on urban utility contract-
  • 2. backed opportunities, such as the 1.3GW mandate from the California Public Utilities Commission, and a similar one in Long Island. “Ultimately, we view energy storage as a business problem, not as a technology problem. The business problem we are trying to address is: how do you decouple supply and demand on the electricity grid? “The grid overall is this gargantuan infrastructure that is basically attempting to instantaneously match supply and demand. Though there is variable demand, you have full control of supply. As soon as you introduce the intermittency of generation sources such as wind and solar, you have intermittent supply and demand. This problem becomes a lot more difficult for grid operators without storage to buffer supply and demand. “There are also very complex infrastructure problems that need to be resolved where storage can play an important role. There is pressure from end users, who would like to lower electricity costs by using micro-grids. Storage becomes a critical component for this. In sister sectors like transportation, for example, energy storage is of course the key to transitioning to an electrically charged transportation grid and electric vehicles. Energy storage plays a crucial role for this transition. “These factors are leading to an enormous amount of innovation in this space, but they all converge around a certain set of major requirements. To become viable, energy storage needs to be extremely inexpensive in terms of capital costs. It needs to be very long lasting because like other capital assets on the grid you need to be able to amortize those costs over a long period of time. “You need to have high efficiency as these business cases are built around energy value propositions. The ratio of energy out of a battery to energy or the round-trip efficiency becomes critical to that business problem and at energy storage in its classic paradigm, which is distributed energy storage. In other words, getting energy storage as close as possible or even inside the load centers so you can not only time shift energy, but you can debottleneck and get downstream from bottlenecks on the transmission and distribution system.” If, as Hellman suggests, battery storage can match gas-fired generation on both capital costs and levellised cost of energy, then energy storage value proposition becomes a “triple play” with three different sources of revenue. The first is on capacity: a device with 4-6 hours storage should be entitled to capacity payments, a storage facility behind the metre is reducing demand charges or is monetising the capacity value, and is also playing that off-peak, on peak arbitrage. The second is locational capacity,, the most important: The ability to be modularized and placed in areas of the grid that require the most attention but traditional sources of generation, and th transmission and distribution system, are either impossible or too expensive to install. The third area of growth Hellman sees is behind the meter micro-grid, pairing with distributed generation in order to create a fully autonomous type of environment.
  • 3. This, he says, is good news for the traditional utilities. “Many think energy storage is somehow a threat to the utility paradigm. It’s actually not. The energy storage – in so far as it can provide locational capacity – can resolve problems for utilities in a very cost- effective fashion, allowing them to better optimize their capital spend for example. “Over the long-term and in even in this micro-gridding configuration, energy storage is an opportunity for utilities that actually embrace it and understand how to make that paradigm function to provide those services to customers rather than encouraging customers to take the technology risk, the development risk, the operating risk and so forth. “The utilities understand this technology better. They will have a lower cost of capital and a better ability to take advantage of this emerging opportunity even on the customer side of the meter going forward. So we see it as a benefit. Not just on the grid, but behind the meter as well in terms of the traditional utility business model.” But he says that energy storage will provide a new way of designing an electricity grid, particularly for emerging countries that actually are perhaps mired in energy poverty. Micro-grids become a realistic solution for that problem together with distributed generation. Even in developed countries as you see energy storage and distributed generation become more and more prevalent, ultimately the future is an overlay on top of loosely interconnected micro-grids that can actually add robustness, lower costs and robustness for all kinds of energy consumers. “The winners in this process are going to be electricity consumers, technology providers, developers and ultimately those utilities that are able to and have a mechanism for embracing change, which is inevitable in any case as the sector grows. On some other issues, Hellman says: EOS batteries are designed to achieve 10,000 cycles. If it was charged at night and discharged during the day, that would correspond to one cycle a day. So 10,000 cycles equates to something like a 30year operating life for its batteries. Hellman said EOS technology was specifically designed for grid-scale.storage but it was looking to see if it could be adapted for electric vehicles. He was not confident of the future of lithium ion battery technology, because of its cost and because of its lack of stability. He said the challenge with lead acid is that it is very cheap, but it doesn’t last very long. “It doesn’t really fit the requirements for utilities style solutions. It’s not a bad stop-gap technology, but it’s probably not a great long- term technology.” However, he noted that there are so many different applications for energy storage on the grid and off the grid that there will likely be a large number of technologies that emerge as being very commercial and having a lot of value added in this whole process. (This article is from RenewEconomy)