SlideShare uma empresa Scribd logo
1 de 11
Baixar para ler offline
SECTION 3.6

DETERMINANTS

     0 0 3
                   4 0
1.   4 0 0 = + (3)     = 3 ⋅ 4 ⋅ 5 = 60
                   0 5
     0 5 0

     2 1 0
                   2 1       1 1
2.   1 2 1 = + (2)     − (1)     = 2(4 − 1) − (2 − 0) = 4
                   1 2       0 2
     0 1 2

     1    0 0        0
                               0 5 0
     2    0 5        0                       6 8
3.                     = + (1) 6 9 8 = − (5)     = − 5(42 − 0) = − 210
     3    6 9        8                       0 7
                               0 10 7
     4    0 10       7

     5 11 8 7
                        5 11 8
     3 −2 6 23                         5 8
4.             = − (−3) 3 −2 6 = 3(−4)     = − 12(30 − 24) = − 72
     0 0 0 −3                          3 6
                        0 4 0
     0 4 0 17

     0    0    1   0       0
                                  2 0   0   0
     2    0    0   0       0                        0 3 0
                                  0 0   3   0                      3 0
5.   0    0    0   3       0 = +1             = + 2 0 0 4 = 2( +5)     = 2 ⋅ 5 ⋅ 3 ⋅ 4 = 120
                                  0 0   0   4                      0 4
     0    0    0   0       4                        5 0 0
                                  0 5   0   0
     0    5    0   0       0

      3       0 11 −5          0
                                       3    0 −5   0
     −2       4 13 6           5                             3 0 0
                                      −2    4 6    5                           4 5
6.   0        0 5 0            0 = +5                = 5(−2) −2 4 5 = − 10(+3)     = 60
                                      7     6 17   7                           6 7
     7        6 −9 17          7                             7 6 7
                                      0     0 2    0
     0        0 8   2          0

     1 1 1                     1 1 1
                   R 2− 2 R1
7.   2 2 2             =       0 0 0 = 0
     3 3 3                     3 3 3
2 3 4                        2 3 4
                        R 2 + R1               2 3
8.    −2 −3 1              =        0 0 5 = −5     = − 5(4 − 9) = 25
                                               3 2
       3 2 7                        3 2 7

      3 −2 5                         3 −2 5
                        R 3− 2 R1                 3 5
9.    0 5 17               =         0 5 17 = + 2     = 5(6 − 0) = 30
                                                  0 2
      6 −4 12                        0 0 2

      −3 6 5                            0 0 −7
                          R1+ 3 R 2                       1 −2
10.   1 −2 −4                  =        1 −2 −4 = + ( −7)      = − 7( −5 + 4) = 7
                                                          2 −5
      2 −5 12                           2 −5 12

      1    2    3   4                   1   2   3    4
                                                            5 6 7
      0    5    6   7    R 4− 2 R1      0   5   6    7                  8 9
11.                          =                         = +1 0 8 9 = + 5     = 5 ⋅ 8 = 40
      0    0    8   9                   0   0   8    9                  0 1
                                                            0 0 1
      2    4    6   9                   0   0   0    1

       2       0 0 −3                       2   0 0 −3
                                                              1 11 12
      0        1 11 12         R 4 + 2 R1   0   1 11 12                    5 13
12.                                 =                   = + 2 0 5 13 = + 2      = 2 ⋅ 5 = 10
      0        0 5 13                       0   0 5 13                     0 1
                                                              0 0 1
      −4       0 0 7                        0   0 0 1

      −4 4 −1                           −4 4 −1                        0 20 11
                          R 2+ R3                       R1+ 4 R 3                 20 11
13.   −1 −2 2                =          0 2 5               =          0 2 5 = +1       = 100 − 22 = 78
                                                                                   2 5
      1 4 3                             1 4 3                          1 4 3

      4 2 −2                            1 1 3              R 2−3 R1     1 1   3
                          R1− R 2                          R 3+ 5 R1                   −2 −14
14.   3 1 −5                   =        3 1 −5                  =       0 −2 −14 = + 1        = − 22
                                                                                       1 18
      −5 −4 3                           −5 −4 3                         0 1 18

      −2 5 4                        0 13 14                     0 13 14
                    R1+ 2 R 3                       R 2−5 R 3                   13 14
15.   5 3 1              =          5 3 1              =        0 −17 −24 = + 1         = − 74
                                                                                −17 −24
      1 4 5                         1 4 5                       1 4    5
2 4 −2                      10 0 −4                    10 0 −4
                   R1− 2 R 3                     R 2+ 2 R 3                 10 −4
16.   −5 −4 −1         =           −5 −4 −1         =         −13 0 1 = − 2       = 84
                                                                            −13 1
      −4 2 1                       −4 2 1                     −4 2 1

      2 3 3 1                          2 3 3 1
                                                       4 3 −3                 R 2+ R1      4 3 −3
      0 4 3 −3          R 3− R1        0 4 3 −3                               R 3+ R1
17.                            =                  = 2 −4 −4 −4                    =      2 0 −1 −7 = 8
      2 −1 −1 −3                       0 −4 −4 −4
                                                      −4 −3 2                              0 0 −1
      0 −4 −3 2                        0 −4 −3 2

      1    4 4 1                   1 4   4  1
                                                  1 −2 2                     R 2+ 9 R1   1 −2 2
      0    1 −2 2    R 3−3 R1      0 1 −2 2                                  R 3− R1
18.                        =                  = 1 −9 −11 1                        =      0 −29 19 = 135
      3    3 1  4                  0 −9 −11 1
                                                  1 −3 −2                                0 −1 −4
      0    1 −3 −2                 0 1 −3 −2

      1 0 0 3                          1 0 0 3
                                                    1 −2 0                               1 0 0
      0 1 −2 0             R 3+ 2 R1   0 1 −2 0                            C 2+ 2 C1
19.                            =                = 1 3 −2 9                    =          3 4 9 = 39
      −2 3 −2 3                        0 3 −2 9
                                                   −3 3 3                                −3 −3 3
      0 −3 3 3                         0 −3 3 3

      1     2 1 −1                     1 2 1 −1
                        R 2− 2 R1                  −3 1 5                   R 2+ 2 R1    −3 1 5
      2     1 3 3       R 4+ R1        0 −3 1 5                             R 3+ R1
20.                            =                = 1 1 −2 3                     =         −5 0 13 = 79
      0     1 −2 3                     0 1 −2 3
                                                    6 −1 3                               3 0 8
      −1    4 −2 4                     0 6 −1 3

            3 4                        1 2 4                        1 3 2
21.   ∆ =       = 1;           x =           = 10,            y =         = −7
            5 7                        ∆1 7                         ∆5 1

            5 8                          1 3 8                        1 5 3
22.   ∆ =        = 1;          x =              = − 1,         y =          = 1
            8 13                         ∆ 5 13                       ∆8 5

            17 7                         1 6 7                      1 17 6
23.   ∆ =        = 1;          x =             = 2,           y =          = −4
            12 5                         ∆4 5                       ∆ 12 4

            11 15                        1 10 15                      1 11 10
24.   ∆ =         = 1;             x =           = 5,           y =           = −3
             8 11                        ∆ 7 11                       ∆ 8 7
5 6                1 12 6              1 5 12
25.   ∆ =       = 2;     x =          = 6,   y =          = −3
            3 4                ∆ 6 4               ∆3 6

            6 7                 1 3 7  1            1 6 3
26.   ∆ =       = − 2;    x =         = ,     y =         = 0
            8 9                 ∆4 9   2            ∆8 4

          5 2 −2                           1 2 −2
                                         1          1
27.   ∆ = 1 5 −3 = 96;              x1 =   −2 5 −3 = ,
                                         ∆          3
          5 −3 5                            2 −3 5

             5 1 −2                          5 2 1
           1            2                  1            1
      x2 =   1 −2 −3 = − ,            x3 =   1 5 −2 = −
           ∆            3                  ∆            3
             5 2 5                           5 −3 2

          5 4 −2                           4 4 −2
                                         1        4
28.   ∆ = 2 0 3 = 35;               x1 =   2 0 3 = ,
                                         ∆        7
          2 −1 1                           1 −1 1

             5 4 −2                        5 4 4
           1        3                    1         2
      x2 =   2 2 3 = ,              x3 =   2 0 2 =
           ∆        7                    ∆         7
             2 1 1                         2 −1 1

          3 −1 −5                           3 −1 − 5
                                         1
29.   ∆ = 4 −4 −3 = 23;             x1 =   −4 −4 −3 = 2,
                                         ∆
          1 0 −5                           2 0 −5

             3 3 −5                        3 −1 3
           1                             1
      x2 =   4 −4 −3 = 3,           x3 =   4 −4 −4 = 0
           ∆                             ∆
             1 2 −5                        1 0 2

          1 4 2                            3 4 2
                                         1          1
30.   ∆ = 4 2 1 = 56;               x1 =   1 2 1 = − ,
                                         ∆          7
          2 −2 −5                          −3 −2 −5

             1 3 2                          1 4 3
           1          9                   1         2
      x2 =   4 1 1 =    ,            x3 =   4 2 1 =
           ∆         14                   ∆         7
             2 −3 −5                        2 −2 −3
2 0 −5                            −3 0 −5
                                          1           8
31.   ∆ = 4 −5 3 = 14;               x1 =   3 −5 3 = − ,
                                          ∆           7
          −2 1 1                            1 1 1

              2 −3 −5                            2 0 −3
           1           10                     1           1
      x2 =    4 3 3 = − ,                x3 =    4 −5 3 =
           ∆            7                     ∆           7
             −2 1 1                             −2 1 1

          3 4 −3                          5 4 −3
                                        1           7
32.   ∆ = 3 −2 4 = 6;              x1 =   7 −2 4 = − ,
                                        ∆           3
          3 2 −1                          3 2 −1

             3 5 −3                       3 4 5
           1                            1
      x2 =   3 7 4 = 9,            x3 =   3 −2 7 = 8
           ∆                            ∆
             3 3 −1                       3 2 3

                                 4 4 4
                              = 16 15 13 
                         −1    1
33.   det A = − 4,   A                     
                               4
                                  28 25 23
                                          

                                    −2 −3 12 
                                 1 
34.   det A = 35,    A   −1
                              =      9 −4 −19
                                35           
                                   13 2 −8 
                                             

                                    −15 25 −26 
                                1 
35.   det A = 35,    A   −1
                              =     10 −5   8 
                                35
                                    15 −25 19 
                                               

                                    5 20 −17 
                                1 
36.   det A = 23,    A −1     =     10 17 −11
                                23           
                                    1 4 −8 
                                             

                                    11 −14 −15
                         −1     1             
37.   det A = 29,    A        =     −17 19 10 
                                29
                                    18 −15 −14
                                              
 −6 10  2
                                      = 15 −21 −6 
                                −1     1
38.   det A = 6,            A                       
                                       6
                                         12 −18 −6 
                                                   

                                                −21 −1 −13
                                             1 
39.   det A = 37,            A   −1
                                          =     4   9   6 
                                                           
                                            37
                                                −6 5 −9 
                                                          

                                                 9   12 −13
                                     −1      1               
40.   det A = 107,              A         =      11 −21 −4 
                                            107
                                                 −15 −20 −14 
                                                             

              a1 
41.   If A =   and B = [b1 b 2 ] in terms of the two row vectors of A and the two column
             a 2 

                               a1b1 a1b 2 
      vectors of B, then AB =               , so
                              a 2b1 a 2b 2 

                          a b             a 2b1     b1  T
                                                        T

             ( AB )     =  1 1                     =  T  a1    a1  = BT AT ,
                    T                                               T

                          a1b 2           a 2b 2 
                                                     b 2 
                                                                     


      because the rows of A are the columns of AT and the columns of B are the rows of BT.

                    a b   x     ax + by     ax      by
42.   det AB = det            =         =        +
                     c d  y     cx + dy   cx + dy cx + dy

                        x             x           y          y           x          y
              = ac          + ad           + bc       + bd        = ad       + bc
                        x             y           x          y           y          x

                        x      x             x
              = ad        − bc   = (ad − bc)   = (det A)(det B)
                        y      y             y
43.   We expand the left-hand determinant along its first column:

              ka11 a12         a13
              ka21 a22         a23
              ka31 a32         a33
                         = ka11 ( a12 a23 − a22 a13 ) − ka21 ( a12 a33 − a32 a13 ) + ka31 ( a12 a23 − a22 a13 )
                         = k  a11 ( a12 a23 − a22 a13 ) − a21 ( a12 a33 − a32 a13 ) + a31 ( a12 a23 − a22 a13 )
                                                                                                               
                             a11 a12 a13
                         = k a21 a22 a23
                             a31 a32 a33

44.   We expand the left-hand determinant along its third row:

              a21   a22       a23
              a11   a12       a13
              a31   a32       a33
                         = a31 ( a22 a13 − a23a12 ) − a32 ( a21a13 − a23 a11 ) + a33 ( a21a13 − a22 a11 )
                         = −  a31 ( a23a12 − a22 a13 ) − a32 ( a23a11 − a21a13 ) + a33 ( a22 a11 − a21a13 )
                                                                                                           
                             a11 a12 a13
                         = k a21 a22 a23
                             a31 a32 a33

45.   We expand the left-hand determinant along its third column:

              a1    b1      c1 + d1
              a2    b2      c2 + d 2
              a3    b3      c3 + d3
                         = ( c1 + d1 )( a2b3 − a3b2 ) − ( c2 + d 2 )( a1b3 − a3b1 ) + (c3 + d3 )( a1b2 − a2b1 )
                         = c1 ( a2b3 − a3b2 ) − c2 ( a1b3 − a3b1 ) + c3 ( a1b2 − a2b1 )
                                + d1 ( a2b3 − a3b2 ) − d 2 ( a1b3 − a3b1 ) + d3 ( a1b2 − a2b1 )
                           a1       b1   c1   a1        b1    d1
                         = a2       b2   c2 + a2        b2    d2
                           a3       b3   c3   a3        b3    d3
46.   We expand the left-hand determinant along its first column:

                a1 + kb1       b1    c1
                a2 + kb2       b2    c2
                a3 + kb3       b3    c3
                           = ( a1 + kb1 )(b2c3 − b3c2 ) − ( a2 + kb2 )(b1c3 − c3b3 ) + ( a3 + kb3 )(b1c2 − b2 c1 )
                           =  a1 (b2 c3 − b3c2 ) − a2 (b1c3 − c3b3 ) + a3 (b1c2 − b2c1 )
                                                                                        
                                 + k b1 (b2 c3 − b3c2 ) − b2 (b1c3 − c3b3 ) + b3 (b1c2 − b2 c1 )
                                                                                                
                             a1      b1      c1     b1          b1       d1    a1     b1   c1
                           = a2      b2      c2 + k b2          b2       d 2 = a2     b2   c2
                             a3      b3      c3     b3          b3       d3    a3     b3   c3

47.   We illustrate these properties with 2 × 2 matrices A =  aij  and B = bij  .
                                                                            
                                                  T
                             a           a21          a      a12 
               (A )
                       T
                   T
                           =  11                     =  11          = A
                                          a22                  a22 
      (a)
                              a12                      a22       
                                                      T
                              ca  ca12                     ca        ca21       a11   a21 
               (cA )       =  11                         =  11              = c a           = cA
                       T                                                                              T
      (b)                               
                             ca21 ca22                    ca12       ca22       12    a22 

                                 a + b         a12 + b12     a11 + b11 a21 + b21 
                                                                    T

               (A + B)         =  11 11                   = a + b
                           T
      (c)                                                                           
                                  a21 + b21 a22 + b22        12 12 a22 + b22 
                                 a      a21  b11 b21 
                               =  11         + b b  = A + B
                                                                  T     T

                                  a12 a22   12 22 

48.   The ijth element of ( AB)T is the jith element of AB, and hence is the product of the jth
      row of A and the ith column of B. The ijth element of BT AT is the product of the ith row
      of BT and the jth column of AT . Because transposition of a matrix changes the ith row to
      the ith column and vice versa, it follows that the ijth element of BT AT is the product of the
      jth row of A and the ith column of B. Thus the matrices ( AB)T and BT AT have the
      same ijth elements, and hence are equal matrices.

                      a1             b1      c1         a1                   a2   a3
49.   If we write A = a2             b2      c2 and A = b1
                                                     T
                                                                             b2   b3 , then expansion of A along its
                      a3             b3      c3         c1                   c2   c3
      first row and of AT along its first column both give the result
      a1 (b2 c3 − b3c2 ) + b1 ( a2 c3 − a3c2 ) + c1 ( a2b3 − a3b2 ).
If A 2 = A then A = A , so A − A = A ( A − 1) = 0, and hence it follows
                              2           2
50.
      immediately that either A = 0 or A = 1.

      If A n = 0 then A = 0, so it follows immediately that A = 0.
                          n
51.

                                               −1
      If AT = A −1 then A = AT = A −1 = A . Hence A
                                                                2
52.                                                                 = 1, so it follows that A = ±1.

                                                          −1
53.   If A = P −1BP then A = P −1BP = P −1 B P = P             B P = B.

54.   If A and B are invertible, then A ≠ 0 and B ≠ 0. Hence AB = A B ≠ 0, so it
      follows that AB is invertible. Conversely, AB invertible implies that AB = A B ≠ 0,
      so it follows that both A ≠ 0 and B ≠ 0, and therefore that both A and B are
      invertible.

55.   If either AB = I or BA = I is given, then it follows from Problem 54 that A and B are
      both invertible because their product (one way or the other) is invertible. Hence A–1 exists.
      So if (for instance) it is AB = I that is given, then multiplication by A–1 on the right
      yields B = A −1.

56.   The matrix A–1 in part (a) and the solution vector x in part (b) have only integer entries
      because the only division involved in their calculation — using the adjoint formula for the
      inverse matrix or Cramer's rule for the solution vector — is by the determinant A = 1.

             a d       f                  bc −cd        de − bf 
      If A =  0 b      e  then A −1 =
                                         1 
57.                                         0 ac          −ae  .
                                        abc                       
             0 0
                       b                 0
                                                0           ab   

58.   The coefficient determinant of the linear system

                               c cos B + b cos C = a
                     c cos A           + a cos C = b
                     b cos A + a cos B           = c

      in the unknowns {cos A, cos B, cos C} is
0 c b
                              c 0 a = 2abc.
                              b a 0

      Hence Cramer's rule gives

                           a c b
                       1           ab 2 − a 3 + ac 2   b2 − a 2 + c2
              cos A =      b 0 a =                   =               ,
                      2abc              2abc               2bc
                           c a 0

      whence a 2 = b 2 + c 2 − 2bc cos A.

59.   These are almost immediate computations.

60.   (a)    In the 4 × 4 case, expansion along the first row gives

              2   1   0   0
                               2 1 0  1 1 0    2 1 0
              1   2   1   0                           2 1
                            = 21 2 1 −0 2 1 = 21 2 1−     ,
              0   1   2   1                           1 2
                               0 1 2  0 1 2    0 1 2
              0   0   1   2

      so B4 = 2 B3 − B2 = 2(4) − (3) = 5. The general recursion formula Bn = 2 Bn −1 − Bn − 2
      results in the same way upon expansion along the first row.
      (b)    If we assume inductively that

                      Bn −1 = (n − 1) + 1 = n and Bn − 2 = (n − 2) + 1 = n − 1,

      then the recursion formula of part (a) yields

                      Bn = 2 Bn −1 − Bn − 2 = 2(n ) − (n − 1) = n + 1.

61.   Subtraction of the first row from both the second and the third row gives

              1 a a2    1   a      a2
              1 b b 2 = 0 b − a b 2 − a 2 = (b − a)(c 2 − a 2 ) − (c − a )(b 2 − a 2 )
              1 c c2    0 c − a c2 − a2
                          = (b − a)(c − a)(c + a) − (c − a)(b − a)(b + a)
                          = (b − a)(c − a) [(c + a) − (b + a)] = (b − a)(c − a)(c − b).
62.   Expansion of the 4 × 4 determinant defining P ( y ) along its 4th row yields


                           1 x1           x12
               P( y ) = y 1 x2
                         3
                                          x2 +  = y 3V ( x1 , x2 , x3 ) + lower-degree terms in y.
                                            2

                                            2
                           1 x3           x3

      Because it is clear from the determinant definition of P ( y ) that
      P( x1 ) = P( x2 ) = P( x3 ) = 0, the three roots of the cubic polynomial P( y ) are x1 , x2 , x3 .
      The factor theorem therefore says that P( y ) = k ( y − x1 )( y − x2 )( y − x3 ) for some constant
      k, and the calculation above implies that

                         k = V ( x1 , x2 , x3 ) = ( x3 − x1 )( x3 − x2 )( x2 − x1 ).

      Finally we see that

               V ( x1 , x2 , x3 , x4 ) = P( x4 ) = V ( x1 , x2 , x3 ) ⋅ ( x4 − x1 )( x4 − x2 )( x4 − x1 )
                                     = ( x4 − x1 )( x4 − x2 )( x4 − x1 )( x3 − x1 )( x3 − x2 )( x2 − x1 ),

      which is the desired formula for V ( x1 , x2 , x3 , x4 ) .

63.   The same argument as in Problem 62 yields

               P( y ) = V ( x1 , x2 ,  , xn −1 ) ⋅ ( y − x1 )( y − x2 ) ⋅  ⋅ ( y − xn −1 ).
      Therefore
               V ( x1 , x2 ,  , xn ) = ( xn − x1 )( xn − x2 ) ⋅ ⋅ ( xn − xn −1 )V ( x1 , x2 ,  , xn−1 )
                                                                                     n −1
                                      = ( xn − x1 )( xn − x2 ) ⋅ ⋅ ( xn − xn −1 ) ∏ ( xi − x j )
                                                                                     i j
                                           n
                                      =   ∏ ( x − x ).
                                          i j
                                                 i     j




64.   (a)      V(1, 2, 3, 4) = (4 – 1)(4 – 2)(4 – 3)(3 – 1)(3 – 2)(2 – 1) = 12
      (b)      V(–1, 2,–2, 3) =
                         3 − ( −1) [3 − 2] 3 − ( −2 ) ( −2 ) − ( −1) ( −2 ) − 2   2 − ( −1) = 240
                                                                                           

Mais conteúdo relacionado

Mais procurados

To mat diknas 1112 02
To mat diknas 1112 02To mat diknas 1112 02
To mat diknas 1112 02
Tri Bagus
 
7-7 Equivalent Fractions
7-7 Equivalent Fractions7-7 Equivalent Fractions
7-7 Equivalent Fractions
Rudy Alfonso
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brain
Jamescoolboy
 

Mais procurados (18)

Los atomos-t4
Los atomos-t4Los atomos-t4
Los atomos-t4
 
To mat diknas 1112 02
To mat diknas 1112 02To mat diknas 1112 02
To mat diknas 1112 02
 
IIT-JEE Mains 2017 Online Mathematics Previous Paper Day 1
IIT-JEE Mains 2017 Online Mathematics Previous Paper Day 1IIT-JEE Mains 2017 Online Mathematics Previous Paper Day 1
IIT-JEE Mains 2017 Online Mathematics Previous Paper Day 1
 
Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation II
 
Sietmas de 4x4
Sietmas de 4x4Sietmas de 4x4
Sietmas de 4x4
 
Tugas blog-matematika
Tugas blog-matematikaTugas blog-matematika
Tugas blog-matematika
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
Bazmapatkum gcerov
Bazmapatkum gcerovBazmapatkum gcerov
Bazmapatkum gcerov
 
7-7 Equivalent Fractions
7-7 Equivalent Fractions7-7 Equivalent Fractions
7-7 Equivalent Fractions
 
r for data science 4. exploratory data analysis clean -rev -ref
r for data science 4. exploratory data analysis  clean -rev -refr for data science 4. exploratory data analysis  clean -rev -ref
r for data science 4. exploratory data analysis clean -rev -ref
 
Inecuaciones - matematicas
Inecuaciones - matematicasInecuaciones - matematicas
Inecuaciones - matematicas
 
Maths butterflies
Maths butterfliesMaths butterflies
Maths butterflies
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brain
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
 
Ejercicios limites
Ejercicios limitesEjercicios limites
Ejercicios limites
 
Re call basic operations in mathematics
Re call basic operations in mathematics Re call basic operations in mathematics
Re call basic operations in mathematics
 
Trial terengganu 2014 spm add math k1 skema [scan]
Trial terengganu 2014 spm add math k1 skema [scan]Trial terengganu 2014 spm add math k1 skema [scan]
Trial terengganu 2014 spm add math k1 skema [scan]
 
Trabajo matemáticas 7
Trabajo matemáticas 7Trabajo matemáticas 7
Trabajo matemáticas 7
 

Destaque (9)

Tb13
Tb13Tb13
Tb13
 
Tb15
Tb15Tb15
Tb15
 
☆FRASES PARA TWITTER☆¡¡PENSAMIENTO Y ÁNIMO!!
☆FRASES PARA TWITTER☆¡¡PENSAMIENTO Y ÁNIMO!!☆FRASES PARA TWITTER☆¡¡PENSAMIENTO Y ÁNIMO!!
☆FRASES PARA TWITTER☆¡¡PENSAMIENTO Y ÁNIMO!!
 
Tb10
Tb10Tb10
Tb10
 
Tb12
Tb12Tb12
Tb12
 
Tb18
Tb18Tb18
Tb18
 
Tb16
Tb16Tb16
Tb16
 
Tb14
Tb14Tb14
Tb14
 
Tb17
Tb17Tb17
Tb17
 

Semelhante a Sect3 6

Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiro
Antonio Carneiro
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiro
Antonio Carneiro
 

Semelhante a Sect3 6 (20)

07 números relativos
07 números relativos07 números relativos
07 números relativos
 
Texto de matemática y lógica
Texto de matemática y lógicaTexto de matemática y lógica
Texto de matemática y lógica
 
Texto de matemática y lógica
Texto de matemática y lógicaTexto de matemática y lógica
Texto de matemática y lógica
 
Alg lesson 10
Alg lesson 10Alg lesson 10
Alg lesson 10
 
Matrix opt
Matrix optMatrix opt
Matrix opt
 
SUEC 高中 Adv Maths (Locus) (Part 2).pptx
SUEC 高中 Adv Maths (Locus) (Part 2).pptxSUEC 高中 Adv Maths (Locus) (Part 2).pptx
SUEC 高中 Adv Maths (Locus) (Part 2).pptx
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
ejercicio 211 del libro de Baldor
ejercicio 211 del libro de Baldorejercicio 211 del libro de Baldor
ejercicio 211 del libro de Baldor
 
Matemática
MatemáticaMatemática
Matemática
 
College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2
 
Espressioni
EspressioniEspressioni
Espressioni
 
Ejercicio 211 del libro de Baldor
Ejercicio 211 del libro de BaldorEjercicio 211 del libro de Baldor
Ejercicio 211 del libro de Baldor
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiro
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiro
 
Ejercicio 211 del libro de baldor
Ejercicio 211 del libro de baldorEjercicio 211 del libro de baldor
Ejercicio 211 del libro de baldor
 
Ejercicios 7
Ejercicios 7Ejercicios 7
Ejercicios 7
 
Sect3 3
Sect3 3Sect3 3
Sect3 3
 
Intermediate algebra 8th edition tobey solutions manual
Intermediate algebra 8th edition tobey solutions manualIntermediate algebra 8th edition tobey solutions manual
Intermediate algebra 8th edition tobey solutions manual
 
SUEC 高中 Adv Maths (Locus) (Part 1).pptx
SUEC 高中 Adv Maths (Locus) (Part 1).pptxSUEC 高中 Adv Maths (Locus) (Part 1).pptx
SUEC 高中 Adv Maths (Locus) (Part 1).pptx
 
matrices y determinantes 3x3.pptx
matrices y determinantes 3x3.pptxmatrices y determinantes 3x3.pptx
matrices y determinantes 3x3.pptx
 

Mais de inKFUPM (20)

Tb11
Tb11Tb11
Tb11
 
Tb09
Tb09Tb09
Tb09
 
Tb05
Tb05Tb05
Tb05
 
Tb07
Tb07Tb07
Tb07
 
Tb04
Tb04Tb04
Tb04
 
Tb02
Tb02Tb02
Tb02
 
Tb03
Tb03Tb03
Tb03
 
Tb06
Tb06Tb06
Tb06
 
Tb01
Tb01Tb01
Tb01
 
Tb08
Tb08Tb08
Tb08
 
21221
2122121221
21221
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Sect5 5
Sect5 5Sect5 5
Sect5 5
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Sect5 3
Sect5 3Sect5 3
Sect5 3
 
Sect5 2
Sect5 2Sect5 2
Sect5 2
 
Sect5 1
Sect5 1Sect5 1
Sect5 1
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 
Sect4 3
Sect4 3Sect4 3
Sect4 3
 

Último

Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...
Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...
Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...
Amil Baba Naveed Bangali
 
Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...
Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...
Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...
baharayali
 
Authentic Black magic, Kala ilam expert in UAE and Kala ilam specialist in S...
Authentic Black magic, Kala ilam expert in UAE  and Kala ilam specialist in S...Authentic Black magic, Kala ilam expert in UAE  and Kala ilam specialist in S...
Authentic Black magic, Kala ilam expert in UAE and Kala ilam specialist in S...
baharayali
 
Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...
Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...
Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...
baharayali
 
Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...
Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...
Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...
baharayali
 

Último (20)

Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...
Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...
Verified Amil baba in Pakistan Amil baba in Islamabad Famous Amil baba in Ger...
 
Genesis 1:10 || Meditate the Scripture daily verse by verse
Genesis 1:10  ||  Meditate the Scripture daily verse by verseGenesis 1:10  ||  Meditate the Scripture daily verse by verse
Genesis 1:10 || Meditate the Scripture daily verse by verse
 
Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...
Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...
Famous Kala Jadu, Black magic expert in UK and Kala ilam expert in Saudi Arab...
 
St. Louise de Marillac and Abandoned Children
St. Louise de Marillac and Abandoned ChildrenSt. Louise de Marillac and Abandoned Children
St. Louise de Marillac and Abandoned Children
 
Authentic Black magic, Kala ilam expert in UAE and Kala ilam specialist in S...
Authentic Black magic, Kala ilam expert in UAE  and Kala ilam specialist in S...Authentic Black magic, Kala ilam expert in UAE  and Kala ilam specialist in S...
Authentic Black magic, Kala ilam expert in UAE and Kala ilam specialist in S...
 
St John's Church Parish Diary for May 2024
St John's Church Parish Diary for May 2024St John's Church Parish Diary for May 2024
St John's Church Parish Diary for May 2024
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Genesis 1:2 - Meditate the Scripture Daily bit by bit
Genesis 1:2 - Meditate the Scripture Daily bit by bitGenesis 1:2 - Meditate the Scripture Daily bit by bit
Genesis 1:2 - Meditate the Scripture Daily bit by bit
 
Sabbath Cooking seventh-day sabbath.docx
Sabbath Cooking seventh-day sabbath.docxSabbath Cooking seventh-day sabbath.docx
Sabbath Cooking seventh-day sabbath.docx
 
+92343-7800299 No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Ka...
+92343-7800299 No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Ka...+92343-7800299 No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Ka...
+92343-7800299 No.1 Amil baba in Pakistan amil baba in Lahore amil baba in Ka...
 
Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...
Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...
Top Kala Jadu, Bangali Amil baba in Lahore and Kala jadu specialist in Lahore...
 
A Spiritual Guide To Truth v10.pdf xxxxxxx
A Spiritual Guide To Truth v10.pdf xxxxxxxA Spiritual Guide To Truth v10.pdf xxxxxxx
A Spiritual Guide To Truth v10.pdf xxxxxxx
 
St. Louise de Marillac and Care of the Sick Poor
St. Louise de Marillac and Care of the Sick PoorSt. Louise de Marillac and Care of the Sick Poor
St. Louise de Marillac and Care of the Sick Poor
 
MEIDUNIDADE COM JESUS PALESTRA ESPIRITA1.pptx
MEIDUNIDADE COM JESUS  PALESTRA ESPIRITA1.pptxMEIDUNIDADE COM JESUS  PALESTRA ESPIRITA1.pptx
MEIDUNIDADE COM JESUS PALESTRA ESPIRITA1.pptx
 
Amil baba in Lahore /Amil baba in Karachi /Amil baba in Pakistan
Amil baba in Lahore /Amil baba in Karachi /Amil baba in PakistanAmil baba in Lahore /Amil baba in Karachi /Amil baba in Pakistan
Amil baba in Lahore /Amil baba in Karachi /Amil baba in Pakistan
 
St. Louise de Marillac and Galley Prisoners
St. Louise de Marillac and Galley PrisonersSt. Louise de Marillac and Galley Prisoners
St. Louise de Marillac and Galley Prisoners
 
Hire Best Next Js Developer For Your Project
Hire Best Next Js Developer For Your ProjectHire Best Next Js Developer For Your Project
Hire Best Next Js Developer For Your Project
 
Flores de Mayo-history and origin we need to understand
Flores de Mayo-history and origin we need to understandFlores de Mayo-history and origin we need to understand
Flores de Mayo-history and origin we need to understand
 
Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...
Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...
Popular Kala Jadu, Black magic specialist in Sialkot and Kala ilam specialist...
 
Zulu - The Epistle of Ignatius to Polycarp.pdf
Zulu - The Epistle of Ignatius to Polycarp.pdfZulu - The Epistle of Ignatius to Polycarp.pdf
Zulu - The Epistle of Ignatius to Polycarp.pdf
 

Sect3 6

  • 1. SECTION 3.6 DETERMINANTS 0 0 3 4 0 1. 4 0 0 = + (3) = 3 ⋅ 4 ⋅ 5 = 60 0 5 0 5 0 2 1 0 2 1 1 1 2. 1 2 1 = + (2) − (1) = 2(4 − 1) − (2 − 0) = 4 1 2 0 2 0 1 2 1 0 0 0 0 5 0 2 0 5 0 6 8 3. = + (1) 6 9 8 = − (5) = − 5(42 − 0) = − 210 3 6 9 8 0 7 0 10 7 4 0 10 7 5 11 8 7 5 11 8 3 −2 6 23 5 8 4. = − (−3) 3 −2 6 = 3(−4) = − 12(30 − 24) = − 72 0 0 0 −3 3 6 0 4 0 0 4 0 17 0 0 1 0 0 2 0 0 0 2 0 0 0 0 0 3 0 0 0 3 0 3 0 5. 0 0 0 3 0 = +1 = + 2 0 0 4 = 2( +5) = 2 ⋅ 5 ⋅ 3 ⋅ 4 = 120 0 0 0 4 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 5 0 0 0 3 0 11 −5 0 3 0 −5 0 −2 4 13 6 5 3 0 0 −2 4 6 5 4 5 6. 0 0 5 0 0 = +5 = 5(−2) −2 4 5 = − 10(+3) = 60 7 6 17 7 6 7 7 6 −9 17 7 7 6 7 0 0 2 0 0 0 8 2 0 1 1 1 1 1 1 R 2− 2 R1 7. 2 2 2 = 0 0 0 = 0 3 3 3 3 3 3
  • 2. 2 3 4 2 3 4 R 2 + R1 2 3 8. −2 −3 1 = 0 0 5 = −5 = − 5(4 − 9) = 25 3 2 3 2 7 3 2 7 3 −2 5 3 −2 5 R 3− 2 R1 3 5 9. 0 5 17 = 0 5 17 = + 2 = 5(6 − 0) = 30 0 2 6 −4 12 0 0 2 −3 6 5 0 0 −7 R1+ 3 R 2 1 −2 10. 1 −2 −4 = 1 −2 −4 = + ( −7) = − 7( −5 + 4) = 7 2 −5 2 −5 12 2 −5 12 1 2 3 4 1 2 3 4 5 6 7 0 5 6 7 R 4− 2 R1 0 5 6 7 8 9 11. = = +1 0 8 9 = + 5 = 5 ⋅ 8 = 40 0 0 8 9 0 0 8 9 0 1 0 0 1 2 4 6 9 0 0 0 1 2 0 0 −3 2 0 0 −3 1 11 12 0 1 11 12 R 4 + 2 R1 0 1 11 12 5 13 12. = = + 2 0 5 13 = + 2 = 2 ⋅ 5 = 10 0 0 5 13 0 0 5 13 0 1 0 0 1 −4 0 0 7 0 0 0 1 −4 4 −1 −4 4 −1 0 20 11 R 2+ R3 R1+ 4 R 3 20 11 13. −1 −2 2 = 0 2 5 = 0 2 5 = +1 = 100 − 22 = 78 2 5 1 4 3 1 4 3 1 4 3 4 2 −2 1 1 3 R 2−3 R1 1 1 3 R1− R 2 R 3+ 5 R1 −2 −14 14. 3 1 −5 = 3 1 −5 = 0 −2 −14 = + 1 = − 22 1 18 −5 −4 3 −5 −4 3 0 1 18 −2 5 4 0 13 14 0 13 14 R1+ 2 R 3 R 2−5 R 3 13 14 15. 5 3 1 = 5 3 1 = 0 −17 −24 = + 1 = − 74 −17 −24 1 4 5 1 4 5 1 4 5
  • 3. 2 4 −2 10 0 −4 10 0 −4 R1− 2 R 3 R 2+ 2 R 3 10 −4 16. −5 −4 −1 = −5 −4 −1 = −13 0 1 = − 2 = 84 −13 1 −4 2 1 −4 2 1 −4 2 1 2 3 3 1 2 3 3 1 4 3 −3 R 2+ R1 4 3 −3 0 4 3 −3 R 3− R1 0 4 3 −3 R 3+ R1 17. = = 2 −4 −4 −4 = 2 0 −1 −7 = 8 2 −1 −1 −3 0 −4 −4 −4 −4 −3 2 0 0 −1 0 −4 −3 2 0 −4 −3 2 1 4 4 1 1 4 4 1 1 −2 2 R 2+ 9 R1 1 −2 2 0 1 −2 2 R 3−3 R1 0 1 −2 2 R 3− R1 18. = = 1 −9 −11 1 = 0 −29 19 = 135 3 3 1 4 0 −9 −11 1 1 −3 −2 0 −1 −4 0 1 −3 −2 0 1 −3 −2 1 0 0 3 1 0 0 3 1 −2 0 1 0 0 0 1 −2 0 R 3+ 2 R1 0 1 −2 0 C 2+ 2 C1 19. = = 1 3 −2 9 = 3 4 9 = 39 −2 3 −2 3 0 3 −2 9 −3 3 3 −3 −3 3 0 −3 3 3 0 −3 3 3 1 2 1 −1 1 2 1 −1 R 2− 2 R1 −3 1 5 R 2+ 2 R1 −3 1 5 2 1 3 3 R 4+ R1 0 −3 1 5 R 3+ R1 20. = = 1 1 −2 3 = −5 0 13 = 79 0 1 −2 3 0 1 −2 3 6 −1 3 3 0 8 −1 4 −2 4 0 6 −1 3 3 4 1 2 4 1 3 2 21. ∆ = = 1; x = = 10, y = = −7 5 7 ∆1 7 ∆5 1 5 8 1 3 8 1 5 3 22. ∆ = = 1; x = = − 1, y = = 1 8 13 ∆ 5 13 ∆8 5 17 7 1 6 7 1 17 6 23. ∆ = = 1; x = = 2, y = = −4 12 5 ∆4 5 ∆ 12 4 11 15 1 10 15 1 11 10 24. ∆ = = 1; x = = 5, y = = −3 8 11 ∆ 7 11 ∆ 8 7
  • 4. 5 6 1 12 6 1 5 12 25. ∆ = = 2; x = = 6, y = = −3 3 4 ∆ 6 4 ∆3 6 6 7 1 3 7 1 1 6 3 26. ∆ = = − 2; x = = , y = = 0 8 9 ∆4 9 2 ∆8 4 5 2 −2 1 2 −2 1 1 27. ∆ = 1 5 −3 = 96; x1 = −2 5 −3 = , ∆ 3 5 −3 5 2 −3 5 5 1 −2 5 2 1 1 2 1 1 x2 = 1 −2 −3 = − , x3 = 1 5 −2 = − ∆ 3 ∆ 3 5 2 5 5 −3 2 5 4 −2 4 4 −2 1 4 28. ∆ = 2 0 3 = 35; x1 = 2 0 3 = , ∆ 7 2 −1 1 1 −1 1 5 4 −2 5 4 4 1 3 1 2 x2 = 2 2 3 = , x3 = 2 0 2 = ∆ 7 ∆ 7 2 1 1 2 −1 1 3 −1 −5 3 −1 − 5 1 29. ∆ = 4 −4 −3 = 23; x1 = −4 −4 −3 = 2, ∆ 1 0 −5 2 0 −5 3 3 −5 3 −1 3 1 1 x2 = 4 −4 −3 = 3, x3 = 4 −4 −4 = 0 ∆ ∆ 1 2 −5 1 0 2 1 4 2 3 4 2 1 1 30. ∆ = 4 2 1 = 56; x1 = 1 2 1 = − , ∆ 7 2 −2 −5 −3 −2 −5 1 3 2 1 4 3 1 9 1 2 x2 = 4 1 1 = , x3 = 4 2 1 = ∆ 14 ∆ 7 2 −3 −5 2 −2 −3
  • 5. 2 0 −5 −3 0 −5 1 8 31. ∆ = 4 −5 3 = 14; x1 = 3 −5 3 = − , ∆ 7 −2 1 1 1 1 1 2 −3 −5 2 0 −3 1 10 1 1 x2 = 4 3 3 = − , x3 = 4 −5 3 = ∆ 7 ∆ 7 −2 1 1 −2 1 1 3 4 −3 5 4 −3 1 7 32. ∆ = 3 −2 4 = 6; x1 = 7 −2 4 = − , ∆ 3 3 2 −1 3 2 −1 3 5 −3 3 4 5 1 1 x2 = 3 7 4 = 9, x3 = 3 −2 7 = 8 ∆ ∆ 3 3 −1 3 2 3 4 4 4 = 16 15 13  −1 1 33. det A = − 4, A  4  28 25 23    −2 −3 12  1  34. det A = 35, A −1 = 9 −4 −19 35   13 2 −8     −15 25 −26  1  35. det A = 35, A −1 =  10 −5 8  35  15 −25 19     5 20 −17  1  36. det A = 23, A −1 = 10 17 −11 23    1 4 −8     11 −14 −15 −1 1   37. det A = 29, A =  −17 19 10  29  18 −15 −14  
  • 6.  −6 10 2 = 15 −21 −6  −1 1 38. det A = 6, A  6 12 −18 −6     −21 −1 −13 1  39. det A = 37, A −1 =  4 9 6   37  −6 5 −9     9 12 −13 −1 1   40. det A = 107, A =  11 −21 −4  107  −15 −20 −14     a1  41. If A =   and B = [b1 b 2 ] in terms of the two row vectors of A and the two column a 2   a1b1 a1b 2  vectors of B, then AB =   , so a 2b1 a 2b 2  a b a 2b1  b1  T T ( AB ) =  1 1 =  T  a1 a1  = BT AT , T T a1b 2 a 2b 2   b 2    because the rows of A are the columns of AT and the columns of B are the rows of BT.  a b   x   ax + by ax by 42. det AB = det      = = +   c d  y   cx + dy cx + dy cx + dy x x y y x y = ac + ad + bc + bd = ad + bc x y x y y x x x x = ad − bc = (ad − bc) = (det A)(det B) y y y
  • 7. 43. We expand the left-hand determinant along its first column: ka11 a12 a13 ka21 a22 a23 ka31 a32 a33 = ka11 ( a12 a23 − a22 a13 ) − ka21 ( a12 a33 − a32 a13 ) + ka31 ( a12 a23 − a22 a13 ) = k  a11 ( a12 a23 − a22 a13 ) − a21 ( a12 a33 − a32 a13 ) + a31 ( a12 a23 − a22 a13 )   a11 a12 a13 = k a21 a22 a23 a31 a32 a33 44. We expand the left-hand determinant along its third row: a21 a22 a23 a11 a12 a13 a31 a32 a33 = a31 ( a22 a13 − a23a12 ) − a32 ( a21a13 − a23 a11 ) + a33 ( a21a13 − a22 a11 ) = −  a31 ( a23a12 − a22 a13 ) − a32 ( a23a11 − a21a13 ) + a33 ( a22 a11 − a21a13 )   a11 a12 a13 = k a21 a22 a23 a31 a32 a33 45. We expand the left-hand determinant along its third column: a1 b1 c1 + d1 a2 b2 c2 + d 2 a3 b3 c3 + d3 = ( c1 + d1 )( a2b3 − a3b2 ) − ( c2 + d 2 )( a1b3 − a3b1 ) + (c3 + d3 )( a1b2 − a2b1 ) = c1 ( a2b3 − a3b2 ) − c2 ( a1b3 − a3b1 ) + c3 ( a1b2 − a2b1 ) + d1 ( a2b3 − a3b2 ) − d 2 ( a1b3 − a3b1 ) + d3 ( a1b2 − a2b1 ) a1 b1 c1 a1 b1 d1 = a2 b2 c2 + a2 b2 d2 a3 b3 c3 a3 b3 d3
  • 8. 46. We expand the left-hand determinant along its first column: a1 + kb1 b1 c1 a2 + kb2 b2 c2 a3 + kb3 b3 c3 = ( a1 + kb1 )(b2c3 − b3c2 ) − ( a2 + kb2 )(b1c3 − c3b3 ) + ( a3 + kb3 )(b1c2 − b2 c1 ) =  a1 (b2 c3 − b3c2 ) − a2 (b1c3 − c3b3 ) + a3 (b1c2 − b2c1 )   + k b1 (b2 c3 − b3c2 ) − b2 (b1c3 − c3b3 ) + b3 (b1c2 − b2 c1 )   a1 b1 c1 b1 b1 d1 a1 b1 c1 = a2 b2 c2 + k b2 b2 d 2 = a2 b2 c2 a3 b3 c3 b3 b3 d3 a3 b3 c3 47. We illustrate these properties with 2 × 2 matrices A =  aij  and B = bij  .     T a a21  a a12  (A ) T T =  11 =  11 = A a22  a22  (a)  a12   a22  T  ca ca12   ca ca21   a11 a21  (cA ) =  11 =  11  = c a  = cA T T (b)  ca21 ca22  ca12 ca22   12 a22  a + b a12 + b12   a11 + b11 a21 + b21  T (A + B) =  11 11  = a + b T (c)   a21 + b21 a22 + b22   12 12 a22 + b22  a a21  b11 b21  =  11  + b b  = A + B T T  a12 a22   12 22  48. The ijth element of ( AB)T is the jith element of AB, and hence is the product of the jth row of A and the ith column of B. The ijth element of BT AT is the product of the ith row of BT and the jth column of AT . Because transposition of a matrix changes the ith row to the ith column and vice versa, it follows that the ijth element of BT AT is the product of the jth row of A and the ith column of B. Thus the matrices ( AB)T and BT AT have the same ijth elements, and hence are equal matrices. a1 b1 c1 a1 a2 a3 49. If we write A = a2 b2 c2 and A = b1 T b2 b3 , then expansion of A along its a3 b3 c3 c1 c2 c3 first row and of AT along its first column both give the result a1 (b2 c3 − b3c2 ) + b1 ( a2 c3 − a3c2 ) + c1 ( a2b3 − a3b2 ).
  • 9. If A 2 = A then A = A , so A − A = A ( A − 1) = 0, and hence it follows 2 2 50. immediately that either A = 0 or A = 1. If A n = 0 then A = 0, so it follows immediately that A = 0. n 51. −1 If AT = A −1 then A = AT = A −1 = A . Hence A 2 52. = 1, so it follows that A = ±1. −1 53. If A = P −1BP then A = P −1BP = P −1 B P = P B P = B. 54. If A and B are invertible, then A ≠ 0 and B ≠ 0. Hence AB = A B ≠ 0, so it follows that AB is invertible. Conversely, AB invertible implies that AB = A B ≠ 0, so it follows that both A ≠ 0 and B ≠ 0, and therefore that both A and B are invertible. 55. If either AB = I or BA = I is given, then it follows from Problem 54 that A and B are both invertible because their product (one way or the other) is invertible. Hence A–1 exists. So if (for instance) it is AB = I that is given, then multiplication by A–1 on the right yields B = A −1. 56. The matrix A–1 in part (a) and the solution vector x in part (b) have only integer entries because the only division involved in their calculation — using the adjoint formula for the inverse matrix or Cramer's rule for the solution vector — is by the determinant A = 1. a d f bc −cd de − bf  If A =  0 b e  then A −1 = 1  57.   0 ac −ae  . abc   0 0  b 0  0 ab   58. The coefficient determinant of the linear system c cos B + b cos C = a c cos A + a cos C = b b cos A + a cos B = c in the unknowns {cos A, cos B, cos C} is
  • 10. 0 c b c 0 a = 2abc. b a 0 Hence Cramer's rule gives a c b 1 ab 2 − a 3 + ac 2 b2 − a 2 + c2 cos A = b 0 a = = , 2abc 2abc 2bc c a 0 whence a 2 = b 2 + c 2 − 2bc cos A. 59. These are almost immediate computations. 60. (a) In the 4 × 4 case, expansion along the first row gives 2 1 0 0 2 1 0 1 1 0 2 1 0 1 2 1 0 2 1 = 21 2 1 −0 2 1 = 21 2 1− , 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 0 1 2 so B4 = 2 B3 − B2 = 2(4) − (3) = 5. The general recursion formula Bn = 2 Bn −1 − Bn − 2 results in the same way upon expansion along the first row. (b) If we assume inductively that Bn −1 = (n − 1) + 1 = n and Bn − 2 = (n − 2) + 1 = n − 1, then the recursion formula of part (a) yields Bn = 2 Bn −1 − Bn − 2 = 2(n ) − (n − 1) = n + 1. 61. Subtraction of the first row from both the second and the third row gives 1 a a2 1 a a2 1 b b 2 = 0 b − a b 2 − a 2 = (b − a)(c 2 − a 2 ) − (c − a )(b 2 − a 2 ) 1 c c2 0 c − a c2 − a2 = (b − a)(c − a)(c + a) − (c − a)(b − a)(b + a) = (b − a)(c − a) [(c + a) − (b + a)] = (b − a)(c − a)(c − b).
  • 11. 62. Expansion of the 4 × 4 determinant defining P ( y ) along its 4th row yields 1 x1 x12 P( y ) = y 1 x2 3 x2 + = y 3V ( x1 , x2 , x3 ) + lower-degree terms in y. 2 2 1 x3 x3 Because it is clear from the determinant definition of P ( y ) that P( x1 ) = P( x2 ) = P( x3 ) = 0, the three roots of the cubic polynomial P( y ) are x1 , x2 , x3 . The factor theorem therefore says that P( y ) = k ( y − x1 )( y − x2 )( y − x3 ) for some constant k, and the calculation above implies that k = V ( x1 , x2 , x3 ) = ( x3 − x1 )( x3 − x2 )( x2 − x1 ). Finally we see that V ( x1 , x2 , x3 , x4 ) = P( x4 ) = V ( x1 , x2 , x3 ) ⋅ ( x4 − x1 )( x4 − x2 )( x4 − x1 ) = ( x4 − x1 )( x4 − x2 )( x4 − x1 )( x3 − x1 )( x3 − x2 )( x2 − x1 ), which is the desired formula for V ( x1 , x2 , x3 , x4 ) . 63. The same argument as in Problem 62 yields P( y ) = V ( x1 , x2 , , xn −1 ) ⋅ ( y − x1 )( y − x2 ) ⋅ ⋅ ( y − xn −1 ). Therefore V ( x1 , x2 , , xn ) = ( xn − x1 )( xn − x2 ) ⋅ ⋅ ( xn − xn −1 )V ( x1 , x2 , , xn−1 ) n −1 = ( xn − x1 )( xn − x2 ) ⋅ ⋅ ( xn − xn −1 ) ∏ ( xi − x j ) i j n = ∏ ( x − x ). i j i j 64. (a) V(1, 2, 3, 4) = (4 – 1)(4 – 2)(4 – 3)(3 – 1)(3 – 2)(2 – 1) = 12 (b) V(–1, 2,–2, 3) = 3 − ( −1) [3 − 2] 3 − ( −2 ) ( −2 ) − ( −1) ( −2 ) − 2   2 − ( −1) = 240       