SlideShare uma empresa Scribd logo
1 de 54
13 th  .Apr. 2010 In-myoung Song Tel : 82)10-9034-8480 E-mail : imsong91@gmail.com Introduction of Signal Integrity
Agenda ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Before Start Where is the signal path according to V(t) ? + V(t)
Before Start ,[object Object],[object Object]
Before Start RC Single-pole pulse
What is the Signal Integrity ? ,[object Object],Artwork Or  Layout Same schematic? Same performance?
What is the Signal Integrity ? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why SI ? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Signal Integrity Analysis Method ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why wave equation ? ,[object Object],[object Object]
Reflection Example ,[object Object]
Reflection Example
Reflection Example ,[object Object],[object Object]
Reflection Example
Transmission line ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Dielectric Constant is a function of frequency and dependant on manufacturing even if same material.
Transmission line ,[object Object],[object Object],[object Object],[object Object]
Power Plane Analysis ,[object Object],[object Object],[object Object]
Electrical Design Setup Process ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Characterization, Modeling, and Simulation for System Design * Ref : Gigalab Hanyang Univ. Parasitic RLC Power Integrity ,[object Object],[object Object],Signal Integrity ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],< General SOP Package System > < Circuit Model for Design > Circuit Model Parameter Characterization Simulation  Simulation  Modeling !!   Characterization !!
“ Electrical Design” means “Performance Estimation” based on    Accurate Characterization, Modeling, and Simulation !! System Design for Signal Integrity Verification * Ref : Gigalab Hanyang Univ.
Impedance Analyzer RF Probe Station TDR/TDT VNA Network Analyzer - High-Freq. S-Parameter  - Freq.-Variant Parameters - Signal Transient Char. Impedance Analyzer - Low-Freq. Impedance  - Capacitance - Long Line Inductance TDR/TDT - Time-Domain Reflection  - Time-Domain Trans.   - Discontinuity Charac. Measurements System Set-Up * Ref : Gigalab Hanyang Univ.
What you need for SI analysis ? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What you need for PI analysis ? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Think from example (Star) ,[object Object],[object Object],Vt Rt TL0 DRV TL1 RCV A TL2 RCV B TL3 RCV C TL4 RCV D TL5 Item TL0 TL1 TL2 TL3 TL4 TL5 Vt Rt Z 0 ( Ω ) 51 50 50 50 50 50 0.75 16.66 Length (mm) 470 51 51 51 51 15 Item TL0 TL1 TL2 TL3 TL4 TL5 Vt Rt Z 0 ( Ω ) 51 50 50 50 50 50 0.75 16.66 Length (mm) 470 79 79 79 79 15
Think from example (Star) ,[object Object],Blue? Low Overshoot?
Think from example (Star) ,[object Object]
Think from example (H-Tree) Item TL0 TL1, TL2 TL3~TL6 Z 0 ( Ω ) 51 70 110 Length (mm) 470 30 26 TL0 DRV TL3 RCV A TL4 RCV B TL5 RCV C TL6 RCV D TL1 TL2
Think from example (H-Tree) ,[object Object]
ISI ,[object Object],[object Object]
Transmission Line Modeling ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],*SYSTEM_NAME : cond_sys * *  Half Space, AIR *  ------------------------------------ Z = 3.045200e-001 *  AIR  H = 3.000000e-001 *  ------------------------------------ Z = 4.520000e-003 *  al2o3  H = 4.500000e-003 *  ------------------------------------ Z = 2.000000e-005 *  //// Bottom Ground Plane /////////// *  ------------------------------------ Z = 0 * L(H/m), C(F/m), Ro(Ohm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz)) .MODEL cond_sys W MODELTYPE=RLGC, N=1 + Lo = 1.081618e-006 + Co = 5.764322e-011 + Ro = 2.625003e+002 + Go = 0.000000e+000 + Rs = 1.226710e-002 + Gd = 2.414554e-014
Transmission Line Modeling ,[object Object],[object Object]
Transmission Line Modeling
Transmission Line Modeling
Different Edge rate w/ Same Frequency
Different Edge rate w/ Same Frequency
Common Clock System ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Clock Driver clkA T co_clkA clkB Clk_in T flt_clkA T flt_clkB T co_clkB D c T co_data Controller clkC clkM D m T flt_data Memory T co_min T co_max clkC D c T su T hd clkM D m
Common Clock System ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Power Integrity ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],IDD7 : The maximum current drawn by each chip IDD2 : The minimum current is associated with the idle current http://www.jedec.org/download/search/JESD79-2B.pdf
Power Integrity 10   x 10 2  pF =  1 nF 12   x 10 2  pF =  1.2 nF 10   x 10 3  pF =  10 nF 10   x 10 4  pF =  100 nF 10   x 10 5  pF =  1 uF 22   x 10 5  pF =  2.2 uF
Power Integrity (Example) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Power Integrity (Example) M O R E C A P.
SSN (Example) ,[object Object],[object Object],[object Object],[object Object]
SSN (Example) 6 Bits Switching 3 Bits Switching 6 Bits Switching w/ 2 Dec_Cap
Return Path (Example) ,[object Object],Plane has no gap Plane has a gap S21 Port1 Port2 Port14 Port15 Plane has no gap Plane has a gap S1514
Return Path (Example) ,[object Object],Plane has no gap Plane has a gap S21 Rerouting
Power Z vs. SSN(Example) A1 – Blue A2 - Red
Power Z vs. SSN(Example) 400 Mhz (PRBS) : Power
Power Z vs. SSN(Example) 400 Mhz (PRBS) : Signal
Power Z vs. SSN(Example) 1000 Mhz (PRBS) : Power
Power Z vs. SSN(Example) 1000 Mhz (PRBS) : Signal
Power Z vs. SSN(Example) ,[object Object],[object Object],[object Object]
Further Study ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Reference Book ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Q & A *** Thank you *** http://www.signalintegrity.co.kr Theory : Inductance, Capacitance, Loss, Energy, Digital Design, System operation, Spice, IBIS, Field Solving, 2D Modeling, 3D Modeling, 2.5D Modeling, CAD Tool, Maxwell Equation, Wave Velocity, TEM/TE/TM Mode, Quasi-static, Resonance, Coupling, Radiation, Common mode noise, Differential mode noise, Differential Signal, DDR, Common clock, Source-Sync. clock, Dielectric, Skin depth, Fringing effect, Artwork, PCB, Connector, Cable, Return path, FFT, Knee frequency, Network parameter, TDR/TDT, VNA, Transmission Line, Characteristic Impedance, Jitter, Skew, ISI, SSN,  BER, Return path, Proximity effect, Threshold level, Dynamic current, Timing, Capacitive Coupling, Inductive Coupling, and etc

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Signal Integrity (SI glitch)
Signal Integrity (SI glitch)Signal Integrity (SI glitch)
Signal Integrity (SI glitch)
 
Physical design
Physical design Physical design
Physical design
 
Physical design-complete
Physical design-completePhysical design-complete
Physical design-complete
 
An Introduction to Crosstalk Measurements
An Introduction to Crosstalk MeasurementsAn Introduction to Crosstalk Measurements
An Introduction to Crosstalk Measurements
 
Low power in vlsi with upf basics part 1
Low power in vlsi with upf basics part 1Low power in vlsi with upf basics part 1
Low power in vlsi with upf basics part 1
 
Crosstalk
CrosstalkCrosstalk
Crosstalk
 
Receiver design
Receiver designReceiver design
Receiver design
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
 
Delta Modulation
Delta ModulationDelta Modulation
Delta Modulation
 
Low power VLSI design
Low power VLSI designLow power VLSI design
Low power VLSI design
 
Analog communication
Analog communicationAnalog communication
Analog communication
 
Finfet
FinfetFinfet
Finfet
 
Study of inter and intra chip variations
Study of inter and intra chip variationsStudy of inter and intra chip variations
Study of inter and intra chip variations
 
Eye diagram in Communication
Eye diagram in CommunicationEye diagram in Communication
Eye diagram in Communication
 
Eco
EcoEco
Eco
 
Nanometer layout handbook at high speed design
Nanometer layout handbook at high speed designNanometer layout handbook at high speed design
Nanometer layout handbook at high speed design
 
Power dissipation cmos
Power dissipation cmosPower dissipation cmos
Power dissipation cmos
 
MIMO-OFDM
MIMO-OFDMMIMO-OFDM
MIMO-OFDM
 
Vlsi power estimation
Vlsi power estimationVlsi power estimation
Vlsi power estimation
 
Fm generation
Fm generationFm generation
Fm generation
 

Destaque

Configure my wordpress web programming job
Configure my wordpress   web programming jobConfigure my wordpress   web programming job
Configure my wordpress web programming jobJennifer Hampton
 
Signal processing and linear systems b.p.lathi
Signal processing and linear systems b.p.lathiSignal processing and linear systems b.p.lathi
Signal processing and linear systems b.p.lathiSwathi Padimi
 
Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...
Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...
Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...Ansys
 
Introduction to signal &system
Introduction to signal &system Introduction to signal &system
Introduction to signal &system patel andil
 
Zuken - Improve pcb quality and cost with concurrent power integrity analysis...
Zuken - Improve pcb quality and cost with concurrent power integrity analysis...Zuken - Improve pcb quality and cost with concurrent power integrity analysis...
Zuken - Improve pcb quality and cost with concurrent power integrity analysis...Zuken
 
Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...
Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...
Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...FPGA Central
 
Analog and digital signal system : digital logic
Analog and digital signal system : digital logicAnalog and digital signal system : digital logic
Analog and digital signal system : digital logicSatya P. Joshi
 
Signal & systems
Signal & systemsSignal & systems
Signal & systemsAJAL A J
 
railway presentation Ppt
railway presentation Pptrailway presentation Ppt
railway presentation PptSachin Singh
 

Destaque (12)

Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 
Configure my wordpress web programming job
Configure my wordpress   web programming jobConfigure my wordpress   web programming job
Configure my wordpress web programming job
 
signals
signalssignals
signals
 
Signal processing and linear systems b.p.lathi
Signal processing and linear systems b.p.lathiSignal processing and linear systems b.p.lathi
Signal processing and linear systems b.p.lathi
 
Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...
Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...
Full DDR Bank Power and Signal Integrity Analysis with Chip-Package-System Co...
 
Introduction to signal &system
Introduction to signal &system Introduction to signal &system
Introduction to signal &system
 
Zuken - Improve pcb quality and cost with concurrent power integrity analysis...
Zuken - Improve pcb quality and cost with concurrent power integrity analysis...Zuken - Improve pcb quality and cost with concurrent power integrity analysis...
Zuken - Improve pcb quality and cost with concurrent power integrity analysis...
 
Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...
Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...
Fcamp may2010-tech2-fpga high speed io trends-alteraTrends & Challenges in De...
 
Analog and digital signal system : digital logic
Analog and digital signal system : digital logicAnalog and digital signal system : digital logic
Analog and digital signal system : digital logic
 
High speed-pcb-board-design-and-analysis
High speed-pcb-board-design-and-analysis High speed-pcb-board-design-and-analysis
High speed-pcb-board-design-and-analysis
 
Signal & systems
Signal & systemsSignal & systems
Signal & systems
 
railway presentation Ppt
railway presentation Pptrailway presentation Ppt
railway presentation Ppt
 

Semelhante a Si Intro(100413)

Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basicss.p.c.e.t.
 
Class06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.pptClass06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.pptDOAFCLF
 
1999 si pi_dws_training_course
1999 si pi_dws_training_course1999 si pi_dws_training_course
1999 si pi_dws_training_coursePiero Belforte
 
Relays and its types - complete guide
Relays and its types - complete guideRelays and its types - complete guide
Relays and its types - complete guideSlides Hub
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & MohammadKaveh Dehno
 
Exp no 1 edited Analog electronics
Exp no 1 edited Analog electronicsExp no 1 edited Analog electronics
Exp no 1 edited Analog electronicsOmkar Rane
 
The wire
The wireThe wire
The wiresdpable
 
Interconnect timing model
Interconnect  timing modelInterconnect  timing model
Interconnect timing modelPrachi Pandey
 
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...IJERA Editor
 
CT design aspects - Nageswar-6
CT design aspects - Nageswar-6CT design aspects - Nageswar-6
CT design aspects - Nageswar-6Nageswar Rao
 
Electrical Systems Safety
Electrical Systems SafetyElectrical Systems Safety
Electrical Systems SafetyTalia Carbis
 
pi-fp-man-2015
pi-fp-man-2015pi-fp-man-2015
pi-fp-man-2015Raj Nair
 
Facts (flexible ac transmission) by tsr
Facts (flexible ac transmission) by tsrFacts (flexible ac transmission) by tsr
Facts (flexible ac transmission) by tsrEdgefxkits & Solutions
 
Power electronics
Power electronicsPower electronics
Power electronicsFemi Prince
 

Semelhante a Si Intro(100413) (20)

Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basics
 
Class06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.pptClass06_Transmission_line_basics.ppt
Class06_Transmission_line_basics.ppt
 
1999 si pi_dws_training_course
1999 si pi_dws_training_course1999 si pi_dws_training_course
1999 si pi_dws_training_course
 
Relays and its types - complete guide
Relays and its types - complete guideRelays and its types - complete guide
Relays and its types - complete guide
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & Mohammad
 
Exp no 1 edited Analog electronics
Exp no 1 edited Analog electronicsExp no 1 edited Analog electronics
Exp no 1 edited Analog electronics
 
The wire
The wireThe wire
The wire
 
Interconnect timing model
Interconnect  timing modelInterconnect  timing model
Interconnect timing model
 
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wirele...
 
CT design aspects - Nageswar-6
CT design aspects - Nageswar-6CT design aspects - Nageswar-6
CT design aspects - Nageswar-6
 
Electrical Systems Safety
Electrical Systems SafetyElectrical Systems Safety
Electrical Systems Safety
 
pi-fp-man-2015
pi-fp-man-2015pi-fp-man-2015
pi-fp-man-2015
 
DC Component of Fault Current
DC Component of Fault CurrentDC Component of Fault Current
DC Component of Fault Current
 
Hi speed board design for signal integrity and emc- intro-2021 by shlomi zigdon
Hi speed board design for signal integrity and emc- intro-2021 by shlomi zigdonHi speed board design for signal integrity and emc- intro-2021 by shlomi zigdon
Hi speed board design for signal integrity and emc- intro-2021 by shlomi zigdon
 
Scada1
Scada1Scada1
Scada1
 
Terminaters
TerminatersTerminaters
Terminaters
 
Facts (flexible ac transmission) by tsr
Facts (flexible ac transmission) by tsrFacts (flexible ac transmission) by tsr
Facts (flexible ac transmission) by tsr
 
Power electronics
Power electronicsPower electronics
Power electronics
 
1 power electric
1 power electric1 power electric
1 power electric
 
Vimal
VimalVimal
Vimal
 

Si Intro(100413)

  • 1. 13 th .Apr. 2010 In-myoung Song Tel : 82)10-9034-8480 E-mail : imsong91@gmail.com Introduction of Signal Integrity
  • 2.
  • 3. Before Start Where is the signal path according to V(t) ? + V(t)
  • 4.
  • 5. Before Start RC Single-pole pulse
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 13.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. “ Electrical Design” means “Performance Estimation” based on Accurate Characterization, Modeling, and Simulation !! System Design for Signal Integrity Verification * Ref : Gigalab Hanyang Univ.
  • 21. Impedance Analyzer RF Probe Station TDR/TDT VNA Network Analyzer - High-Freq. S-Parameter - Freq.-Variant Parameters - Signal Transient Char. Impedance Analyzer - Low-Freq. Impedance - Capacitance - Long Line Inductance TDR/TDT - Time-Domain Reflection - Time-Domain Trans. - Discontinuity Charac. Measurements System Set-Up * Ref : Gigalab Hanyang Univ.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. Think from example (H-Tree) Item TL0 TL1, TL2 TL3~TL6 Z 0 ( Ω ) 51 70 110 Length (mm) 470 30 26 TL0 DRV TL3 RCV A TL4 RCV B TL5 RCV C TL6 RCV D TL1 TL2
  • 28.
  • 29.
  • 30.
  • 31.
  • 34. Different Edge rate w/ Same Frequency
  • 35. Different Edge rate w/ Same Frequency
  • 36.
  • 37.
  • 38.
  • 39. Power Integrity 10 x 10 2 pF = 1 nF 12 x 10 2 pF = 1.2 nF 10 x 10 3 pF = 10 nF 10 x 10 4 pF = 100 nF 10 x 10 5 pF = 1 uF 22 x 10 5 pF = 2.2 uF
  • 40.
  • 41. Power Integrity (Example) M O R E C A P.
  • 42.
  • 43. SSN (Example) 6 Bits Switching 3 Bits Switching 6 Bits Switching w/ 2 Dec_Cap
  • 44.
  • 45.
  • 46. Power Z vs. SSN(Example) A1 – Blue A2 - Red
  • 47. Power Z vs. SSN(Example) 400 Mhz (PRBS) : Power
  • 48. Power Z vs. SSN(Example) 400 Mhz (PRBS) : Signal
  • 49. Power Z vs. SSN(Example) 1000 Mhz (PRBS) : Power
  • 50. Power Z vs. SSN(Example) 1000 Mhz (PRBS) : Signal
  • 51.
  • 52.
  • 53.
  • 54. Q & A *** Thank you *** http://www.signalintegrity.co.kr Theory : Inductance, Capacitance, Loss, Energy, Digital Design, System operation, Spice, IBIS, Field Solving, 2D Modeling, 3D Modeling, 2.5D Modeling, CAD Tool, Maxwell Equation, Wave Velocity, TEM/TE/TM Mode, Quasi-static, Resonance, Coupling, Radiation, Common mode noise, Differential mode noise, Differential Signal, DDR, Common clock, Source-Sync. clock, Dielectric, Skin depth, Fringing effect, Artwork, PCB, Connector, Cable, Return path, FFT, Knee frequency, Network parameter, TDR/TDT, VNA, Transmission Line, Characteristic Impedance, Jitter, Skew, ISI, SSN, BER, Return path, Proximity effect, Threshold level, Dynamic current, Timing, Capacitive Coupling, Inductive Coupling, and etc