SlideShare uma empresa Scribd logo
1 de 38
Evaluation of supervised land-cover classification by PALSAR polarimetric interferometry Masato Ohki and Masanobu Shimada Earth Observation Research Center, Japan Aerospace Exploration Agency
Outline Background Polarimetric interferometry (PolInSAR) PALSAR PolInSAR data Methods and data Result: Land-cover classification by PALSAR PolInSAR Discussion Advantage of PolInSAR for LC classification Comparison between classification methods Comparison with optical sensor data Conclusion and Future work
Background
PALSAR polarimetry data PLR (quad-PoLaRimetric mode) Specification: Off-nadir angle: ≤ 26.1° Ground resolution: ~25m (at 21.5°) Swath width: ~35km (at 21.5°) Capable of interferometry(minimum temporal distance: 46 days) PLR data coverage (2006-2011) PALSAR ALOS ALOS-2 PALSAR-2
PALSAR Polarimetric Interferometry (PolInSAR) Issue: single satellite-> repeat-pass  interferometry Various spatial distance (0.0~2.5km) Long temporal distance (≥46 days) -> Application? Master PolInSARCoherency matrix repeat pass Slave rm rs
The quake hit Tsukuba Space Center What can we do for disasterprevention/mitigation? 3.11 Earthquake
Overview of this study  Feasibility study on land-cover (LC) monitoring by PALSAR 7 classes supervised LC classification by PALSAR PolInSAR data Accuracy evaluation Comparison between four cases of datasets: (1) Quad-PolInSAR (2) Dual-PolInSAR (3) Quad-PolSAR (4) Dual-PolSAR Comparison between classification methods: Wishart SVM Comparison with other LC product ALOS LC product (optical)
Methods and Data
Test data PALSAR data used in this study                   #1 (PLR)             #2 (PLR)                                      Optical (AVNIR-2) Tsukuba city (36.05˚N,140.10˚E) HH-VVHVHH+VV(Pauli) NARITA Int’l Airport(35.77˚N,140.39˚E)
Truth LC data Truth land-cover data was made by interpreting: Land-use 100m mesh data (2006) ©GSI, Japan Optical images (ALOS/AVNIR-2)  Lat Az Training datafor classification(4100 samples) Water Paddy Crop Grass Forest Urban Bare Lon Rg Truth datafor evaluation(4100 samples) 100m mesh land-use, 2006©GSI, Japan (11 classes) AVNIR-2 image(15 MAY 2007)    Truth data(105 polygons, 8200 samples)
Class definition Water Paddy Crop Grass Forest Urban Bare Reference data(105 polygons, 8200 samples) #2 Paddy #4 Grass #3 Crop #7 Bare Ground photographs (Tsukuba city, 09 JUN 2009)
Processing Procedure 1. Pre-processing(imaging, pol. calibration and interferometry) Processor: SIGMA-SAR (by Dr. Shimada) 2. Classification Compared two classificationmethods: Wishart classifier and SVM Processor: developed in this study 3. Post-processing(ortho-rectification and geo-coding) Processor: SIGMA-SAR (by Dr. Shimada) Resolution of the classification map: 60m PALSARL1.0(master) PALSAR L1.0(Slave) Generate SLC Pol. CalibrationCo-registration Slope correction (option) Pol. filtering (option) Trainingdataset Classification (Wishart or SVM) DEM Ortho-rectification(geo-coding) Final classification map
Classifier(1) – Wishart Classifier Maximum likelihood approach assuming that the scattering matrix follows a complex Wishart distribution function (Lee et al., 1994, 1999) The pixel is assigned to the class minimizing the distance measure between the pixel and the training class Scattering matrix for the Wishart classifier (master data) (master data)
Classifier(2) – Support Vector Machine (SVM) Margin maximization approach discriminating a class from other classesin the higher dimensional space(Fukuda and Hirosawa, 2000 for PolSAR data; Shimoni et al., 2009 for PolInSAR data; the SVM core routine is distributed by Chen & Lin, 2005) Feature parameters for the SVM *The Cloude-Pottier decomposition (Cloude & Pottier, 1996; Pottier 1998)
Results and Discussion
Classification result (method: SVM) Quad-PolInSAR       Dual-PolInSAR        Quad-PolSAR             Dual-PolSAR Water Paddy Crop Grass Forest Urban Bare
Comparison with optical image                             Quad-PolInSAR        Optical image(ALOS/AVNIR-2) Water Paddy Crop Grass Forest Urban Bare
Classification result (method: Wishart) Quad-PolInSAR       Dual-PolInSAR        Quad-PolSAR             Dual-PolSAR Water Paddy Crop Grass Forest Urban Bare
Comparison of SVM and Wishart  Quad-PolInSAR(SVM)      Quad-PolInSAR(Wishart) Water Paddy Crop Grass Forest Urban Bare
Evaluation result (confusion matrices)  Quad-PolInSAR (method: SVM)          Quad-PolInSAR (method: Wishart)  Dual-PolInSAR (method: SVM)            Quad-PolSAR (method: SVM) LC# 1:water   2:paddy  3:crop  4:grass  5:forest  6:urban  7:bareU.A.=user’s accuracy(%)    P.A.=producer’s accuracy (%)   Values in Blue=Overall accuracy(%)
Evaluation result – summary Method: SVM Method: Wishart >    >    > >    >    > *Calculation time: CPU elapsed time for training and classifying
Detail – Urban area urban area = high coherence-> PolInSAR effectiveness for discriminating urban Water Paddy Crop Grass Forest Urban Bare Urban area Urban area?  Quad-PolInSAR (SVM)       Quad-PolSAR (SVM) Urban area  Optical        Coherence(HH-VVHVHH+VV)Amplitude
Detail – Paddy paddy area = lower coherence-> PolInSAR effectiveness for detecting paddy areas Water Paddy Crop Grass Forest Urban Bare Paddy areaoverestimated  Quad-PolInSAR (SVM)       Quad-PolSAR (SVM) Paddy Paddy        Coherence(HH-VVHVHH+VV)Amplitude  Optical
Comparison of classification methods Some LC types (esp. urban)can have various scattering mechanism Linear classifier (e.g. Wishart) Assuming a single scattering mechanism for each class Non-linear or non-parametric classifier (e.g. SVM)  More robust for LC types which have various scattering mechanisms Urban areamisclassifiedas Forest Crop fieldsmisclassifiedas Grass Grassmisclassifiedas Bare  Quad-PolInSAR (SVM)  Quad-PolInSAR (Wishart)                 Optical
ALOS Land-cover product (by the optical sensor) Available at http://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm (free) Current version: ver. 11.02 (released on Feb 2011) Classification method: decision tree of multi-seasonal optical sensor images Coverage: Japan area No. of classes: 10 Resolution: 30m Accuracy: 87%(evaluation result) ALOS LC product (optical)
Comparison with ALOS LC product      PolInSAR (this study)    Optical (ALOS LC product) Water Paddy Crop Grass Forest Urban Bare
Comparison with ALOS LC product Advantage of PolInSAR classification: Precise detection ofForest, Urban, Bare and Water Water Paddy Crop Grass Forest Urban Bare Small urban areamisclassified as Forest   PolInSAR (this study)          Optical (ALOS LC)                 AVNIR-2 image Bare groundsmisclassifiedas Water
Comparison with ALOS LC product  Advantage of optical classification Precise detection of low vegetation (Paddy, Crop and Grass) Water Paddy Crop Grass Forest Urban Bare Grass areamisclassifiedas Crop   PolInSAR (this study)          Optical (ALOS LC)                 AVNIR-2 image Paddymisclassifiedas Crop
Summary of results Comparison of datasets Accuracy: Quad-PolInSAR > Dual-PolInSAR> Quad-Pol > Dual-Pol Interferometric coherence plays important roles for discriminating LC types which have confusing scattering mechanisms Comparison of classification methods: Accuracy: SVM > Wishart Computation Speed: Wishart > SVM Non-linear classifier is more robust for LC types which have various scattering mechanisms Comparison of PolInSAR classification and ALOS (optical) LC product PolInSAR classification is good on Forest, Urban, Bare and Water classification ALOS (optical) LC product is good on Low vegetation (Paddy, Crop and Grass) classification
Conclusions PALSAR PolInSAR data has high capability for LC monitoring Quad-PolInSAR classification is more accurate than dual-PolInSAR and quad/dual-PolSAR The SVM is better than the Wishart classifier on classification accuracy Future Works Improvement of classification algorithm Other classification methods Other feature parameters Speckle filtering, terrain correction Extension of the test area Application for monitoring disaster, forest or agriculture PolInSAR data of ALOS-2/PALSAR-2:  higher resolution, smaller and stable orbit distance...
Thank you for your attention… Mt. Tsukuba Tsukuba city Water Paddy Crop Grass Forest Urban Bare
Forest/Urban misclassification issue Scattering mechanism of urban area varies depending on their orientation angle Pi-SAR L-band data ~ 3m resolution Simulated PALSAR’s resolution “Non-orthogonal” urban is confusing with forest Aerial photo ©Yahoo! Japan Forest Urban Urban Orthogonal Non-orthogonal range azimuth ? HH-VVHVHH+VV Urban ?
Detail – Paddy (2) Back-scattering in paddy area changes significantly from April to May #1  02/04/2007 Before flooding #2  18/05/2007 After flooding Optical (AVNIR-2) 15/05/2007 HH-VVHVHH+VV Water surface Soil surface
Reference data Truth land-cover data made by interpreting: Land-use 100m mesh data (FY 2006) ©GSI, Japan Optical images (ALOS/AVNIR-2)  Coordinate conversion (projected on the slant-range coordinate) No. of samples: 8200 (on the slant-range of the PLR mode data)->half of them used as training data, the others used for evaluation Lat Azimuth Lon Range Coordinateconversion
Polarimetric Interferometry (PolInSAR) Combination of PolSAR + InSAR Contains many feature parameters: amplitudes & coherences References Formulation and the model (Cloude & Papathanassiou, 1998) Decomposition (Papathanassiou & Cloude, 2003; Neumann et al., 2005) Application (Forest biomass, urban detection, agriculture…) Land-cover monitoring(e.g. Shimoni et al., 2009) Master Slave
Interferometric coherence for LC types HH VV Water < Bare soil Forest < Urban  HV HH+VV HH–VV
Amplitude for LC types HH VV Water ≈ Bare soil Forest ≈ Urban confusing HV HH+VV HH–VV

Mais conteúdo relacionado

Mais procurados

SAR image interpretation
SAR image interpretationSAR image interpretation
SAR image interpretationElise Colin
 
Synthetic aperture radar
Synthetic aperture radar Synthetic aperture radar
Synthetic aperture radar Cigi Cletus
 
WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...
WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...
WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...grssieee
 
IGARSS_2011_GALLOZA.pptx
IGARSS_2011_GALLOZA.pptxIGARSS_2011_GALLOZA.pptx
IGARSS_2011_GALLOZA.pptxgrssieee
 
Current &amp; Future Spaceborne Sar Systems
Current &amp; Future Spaceborne Sar SystemsCurrent &amp; Future Spaceborne Sar Systems
Current &amp; Future Spaceborne Sar Systemsgpetrie
 
Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930JiyaE
 
Utility Detection &amp; Mapping
Utility Detection &amp; MappingUtility Detection &amp; Mapping
Utility Detection &amp; MappingGiorgio Barsacchi
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORgrssieee
 
ground penetration rader
ground  penetration raderground  penetration rader
ground penetration raderAmir Khan
 
Inertial FOG and acoustic aiding references for Dynamic Positioning applications
Inertial FOG and acoustic aiding references for Dynamic Positioning applicationsInertial FOG and acoustic aiding references for Dynamic Positioning applications
Inertial FOG and acoustic aiding references for Dynamic Positioning applicationsHydrographic Society Benelux
 
Ground penetrating radar
Ground penetrating radarGround penetrating radar
Ground penetrating radarkasarlanaga
 
Ins for dp methods full
Ins for dp methods   fullIns for dp methods   full
Ins for dp methods fullJames Titcomb
 
Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...
Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...
Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...Angelo State University
 
AESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course SamplerAESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course SamplerJim Jenkins
 
Underground utility detection
Underground utility detectionUnderground utility detection
Underground utility detectionptsbsurveyor
 
NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...
NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...
NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...FAO
 
Classification Accuracy for RISAT-1 Hybrid Polarimetric Data
Classification Accuracy for RISAT-1 Hybrid Polarimetric DataClassification Accuracy for RISAT-1 Hybrid Polarimetric Data
Classification Accuracy for RISAT-1 Hybrid Polarimetric DataShaunak De
 
Reeves: Modelling & Estimating Forest Structure Attributes Using LiDAR
Reeves: Modelling & Estimating Forest Structure Attributes Using LiDARReeves: Modelling & Estimating Forest Structure Attributes Using LiDAR
Reeves: Modelling & Estimating Forest Structure Attributes Using LiDARCOGS Presentations
 

Mais procurados (20)

SAR image interpretation
SAR image interpretationSAR image interpretation
SAR image interpretation
 
Synthetic aperture radar
Synthetic aperture radar Synthetic aperture radar
Synthetic aperture radar
 
WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...
WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...
WE3.L10.4: KIYO TOMIYASU, CO-SEISMIC SLIP AND THE KRAFLA VOLCANO: REFLECTIONS...
 
IGARSS_2011_GALLOZA.pptx
IGARSS_2011_GALLOZA.pptxIGARSS_2011_GALLOZA.pptx
IGARSS_2011_GALLOZA.pptx
 
Sar
SarSar
Sar
 
Current &amp; Future Spaceborne Sar Systems
Current &amp; Future Spaceborne Sar SystemsCurrent &amp; Future Spaceborne Sar Systems
Current &amp; Future Spaceborne Sar Systems
 
Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930
 
Utility Detection &amp; Mapping
Utility Detection &amp; MappingUtility Detection &amp; Mapping
Utility Detection &amp; Mapping
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
ground penetration rader
ground  penetration raderground  penetration rader
ground penetration rader
 
Inertial FOG and acoustic aiding references for Dynamic Positioning applications
Inertial FOG and acoustic aiding references for Dynamic Positioning applicationsInertial FOG and acoustic aiding references for Dynamic Positioning applications
Inertial FOG and acoustic aiding references for Dynamic Positioning applications
 
Ground penetrating radar
Ground penetrating radarGround penetrating radar
Ground penetrating radar
 
Ins for dp methods full
Ins for dp methods   fullIns for dp methods   full
Ins for dp methods full
 
Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...
Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...
Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monit...
 
Gpr
GprGpr
Gpr
 
AESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course SamplerAESA Airborne Radar Theory and Operations Technical Training Course Sampler
AESA Airborne Radar Theory and Operations Technical Training Course Sampler
 
Underground utility detection
Underground utility detectionUnderground utility detection
Underground utility detection
 
NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...
NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...
NIR Reflectance Spectroscopy in Soil Surveys oriented Toward Monitoring in Me...
 
Classification Accuracy for RISAT-1 Hybrid Polarimetric Data
Classification Accuracy for RISAT-1 Hybrid Polarimetric DataClassification Accuracy for RISAT-1 Hybrid Polarimetric Data
Classification Accuracy for RISAT-1 Hybrid Polarimetric Data
 
Reeves: Modelling & Estimating Forest Structure Attributes Using LiDAR
Reeves: Modelling & Estimating Forest Structure Attributes Using LiDARReeves: Modelling & Estimating Forest Structure Attributes Using LiDAR
Reeves: Modelling & Estimating Forest Structure Attributes Using LiDAR
 

Semelhante a 201107IGARSS_OHKI.pptx

TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...grssieee
 
IGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptIGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptgrssieee
 
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...grssieee
 
Lecture for landsat
Lecture for landsatLecture for landsat
Lecture for landsatGeoMedeelel
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptxgrssieee
 
NASA HSI Workshop at UCSB 08/05/2008
NASA HSI Workshop at UCSB 08/05/2008NASA HSI Workshop at UCSB 08/05/2008
NASA HSI Workshop at UCSB 08/05/2008pbissett
 
Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)NopphawanTamkuan
 
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...grssieee
 
igarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptxigarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptxgrssieee
 
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEMTU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEMgrssieee
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptgrssieee
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptgrssieee
 
4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.ppt4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.pptgrssieee
 
On_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptOn_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptgrssieee
 
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATIONMO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATIONgrssieee
 
CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...
CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...
CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...grssieee
 
MAIA - the multispectral camera
MAIA - the multispectral cameraMAIA - the multispectral camera
MAIA - the multispectral cameraGiacomo Uguccioni
 
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SARMO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SARgrssieee
 

Semelhante a 201107IGARSS_OHKI.pptx (20)

TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
 
IGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.pptIGARSSAirSWOTv2.ppt
IGARSSAirSWOTv2.ppt
 
Als seminar
Als seminarAls seminar
Als seminar
 
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
 
Lecture for landsat
Lecture for landsatLecture for landsat
Lecture for landsat
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx1 IGARSS 2011 JPSS Monday Goldberg.pptx
1 IGARSS 2011 JPSS Monday Goldberg.pptx
 
NASA HSI Workshop at UCSB 08/05/2008
NASA HSI Workshop at UCSB 08/05/2008NASA HSI Workshop at UCSB 08/05/2008
NASA HSI Workshop at UCSB 08/05/2008
 
Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)
 
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
FR4.L09 - KARIN – THE KA-BAND RADAR INTERFEROMETER ON SWOT: MEASUREMENT PRINC...
 
igarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptxigarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptx
 
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEMTU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.ppt4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.ppt
 
Phase Unwrapping Via Graph Cuts
Phase Unwrapping Via Graph CutsPhase Unwrapping Via Graph Cuts
Phase Unwrapping Via Graph Cuts
 
On_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptOn_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).ppt
 
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATIONMO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
 
CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...
CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...
CLASSIFICATION OF TYPHOON-DESTROYED FORESTS BASED ON TREE HEIGHT CHANGE DETEC...
 
MAIA - the multispectral camera
MAIA - the multispectral cameraMAIA - the multispectral camera
MAIA - the multispectral camera
 
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SARMO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
 

Mais de grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELgrssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESgrssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSgrssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERgrssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdfgrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.pptgrssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptgrssieee
 

Mais de grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

201107IGARSS_OHKI.pptx

  • 1. Evaluation of supervised land-cover classification by PALSAR polarimetric interferometry Masato Ohki and Masanobu Shimada Earth Observation Research Center, Japan Aerospace Exploration Agency
  • 2. Outline Background Polarimetric interferometry (PolInSAR) PALSAR PolInSAR data Methods and data Result: Land-cover classification by PALSAR PolInSAR Discussion Advantage of PolInSAR for LC classification Comparison between classification methods Comparison with optical sensor data Conclusion and Future work
  • 4. PALSAR polarimetry data PLR (quad-PoLaRimetric mode) Specification: Off-nadir angle: ≤ 26.1° Ground resolution: ~25m (at 21.5°) Swath width: ~35km (at 21.5°) Capable of interferometry(minimum temporal distance: 46 days) PLR data coverage (2006-2011) PALSAR ALOS ALOS-2 PALSAR-2
  • 5. PALSAR Polarimetric Interferometry (PolInSAR) Issue: single satellite-> repeat-pass interferometry Various spatial distance (0.0~2.5km) Long temporal distance (≥46 days) -> Application? Master PolInSARCoherency matrix repeat pass Slave rm rs
  • 6. The quake hit Tsukuba Space Center What can we do for disasterprevention/mitigation? 3.11 Earthquake
  • 7. Overview of this study Feasibility study on land-cover (LC) monitoring by PALSAR 7 classes supervised LC classification by PALSAR PolInSAR data Accuracy evaluation Comparison between four cases of datasets: (1) Quad-PolInSAR (2) Dual-PolInSAR (3) Quad-PolSAR (4) Dual-PolSAR Comparison between classification methods: Wishart SVM Comparison with other LC product ALOS LC product (optical)
  • 9. Test data PALSAR data used in this study #1 (PLR) #2 (PLR) Optical (AVNIR-2) Tsukuba city (36.05˚N,140.10˚E) HH-VVHVHH+VV(Pauli) NARITA Int’l Airport(35.77˚N,140.39˚E)
  • 10. Truth LC data Truth land-cover data was made by interpreting: Land-use 100m mesh data (2006) ©GSI, Japan Optical images (ALOS/AVNIR-2) Lat Az Training datafor classification(4100 samples) Water Paddy Crop Grass Forest Urban Bare Lon Rg Truth datafor evaluation(4100 samples) 100m mesh land-use, 2006©GSI, Japan (11 classes) AVNIR-2 image(15 MAY 2007) Truth data(105 polygons, 8200 samples)
  • 11. Class definition Water Paddy Crop Grass Forest Urban Bare Reference data(105 polygons, 8200 samples) #2 Paddy #4 Grass #3 Crop #7 Bare Ground photographs (Tsukuba city, 09 JUN 2009)
  • 12. Processing Procedure 1. Pre-processing(imaging, pol. calibration and interferometry) Processor: SIGMA-SAR (by Dr. Shimada) 2. Classification Compared two classificationmethods: Wishart classifier and SVM Processor: developed in this study 3. Post-processing(ortho-rectification and geo-coding) Processor: SIGMA-SAR (by Dr. Shimada) Resolution of the classification map: 60m PALSARL1.0(master) PALSAR L1.0(Slave) Generate SLC Pol. CalibrationCo-registration Slope correction (option) Pol. filtering (option) Trainingdataset Classification (Wishart or SVM) DEM Ortho-rectification(geo-coding) Final classification map
  • 13. Classifier(1) – Wishart Classifier Maximum likelihood approach assuming that the scattering matrix follows a complex Wishart distribution function (Lee et al., 1994, 1999) The pixel is assigned to the class minimizing the distance measure between the pixel and the training class Scattering matrix for the Wishart classifier (master data) (master data)
  • 14. Classifier(2) – Support Vector Machine (SVM) Margin maximization approach discriminating a class from other classesin the higher dimensional space(Fukuda and Hirosawa, 2000 for PolSAR data; Shimoni et al., 2009 for PolInSAR data; the SVM core routine is distributed by Chen & Lin, 2005) Feature parameters for the SVM *The Cloude-Pottier decomposition (Cloude & Pottier, 1996; Pottier 1998)
  • 16. Classification result (method: SVM) Quad-PolInSAR Dual-PolInSAR Quad-PolSAR Dual-PolSAR Water Paddy Crop Grass Forest Urban Bare
  • 17. Comparison with optical image Quad-PolInSAR Optical image(ALOS/AVNIR-2) Water Paddy Crop Grass Forest Urban Bare
  • 18. Classification result (method: Wishart) Quad-PolInSAR Dual-PolInSAR Quad-PolSAR Dual-PolSAR Water Paddy Crop Grass Forest Urban Bare
  • 19. Comparison of SVM and Wishart Quad-PolInSAR(SVM) Quad-PolInSAR(Wishart) Water Paddy Crop Grass Forest Urban Bare
  • 20. Evaluation result (confusion matrices) Quad-PolInSAR (method: SVM) Quad-PolInSAR (method: Wishart) Dual-PolInSAR (method: SVM) Quad-PolSAR (method: SVM) LC# 1:water 2:paddy 3:crop 4:grass 5:forest 6:urban 7:bareU.A.=user’s accuracy(%) P.A.=producer’s accuracy (%) Values in Blue=Overall accuracy(%)
  • 21. Evaluation result – summary Method: SVM Method: Wishart > > > > > > *Calculation time: CPU elapsed time for training and classifying
  • 22. Detail – Urban area urban area = high coherence-> PolInSAR effectiveness for discriminating urban Water Paddy Crop Grass Forest Urban Bare Urban area Urban area? Quad-PolInSAR (SVM) Quad-PolSAR (SVM) Urban area Optical Coherence(HH-VVHVHH+VV)Amplitude
  • 23. Detail – Paddy paddy area = lower coherence-> PolInSAR effectiveness for detecting paddy areas Water Paddy Crop Grass Forest Urban Bare Paddy areaoverestimated Quad-PolInSAR (SVM) Quad-PolSAR (SVM) Paddy Paddy Coherence(HH-VVHVHH+VV)Amplitude Optical
  • 24. Comparison of classification methods Some LC types (esp. urban)can have various scattering mechanism Linear classifier (e.g. Wishart) Assuming a single scattering mechanism for each class Non-linear or non-parametric classifier (e.g. SVM) More robust for LC types which have various scattering mechanisms Urban areamisclassifiedas Forest Crop fieldsmisclassifiedas Grass Grassmisclassifiedas Bare Quad-PolInSAR (SVM) Quad-PolInSAR (Wishart) Optical
  • 25. ALOS Land-cover product (by the optical sensor) Available at http://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm (free) Current version: ver. 11.02 (released on Feb 2011) Classification method: decision tree of multi-seasonal optical sensor images Coverage: Japan area No. of classes: 10 Resolution: 30m Accuracy: 87%(evaluation result) ALOS LC product (optical)
  • 26. Comparison with ALOS LC product PolInSAR (this study) Optical (ALOS LC product) Water Paddy Crop Grass Forest Urban Bare
  • 27. Comparison with ALOS LC product Advantage of PolInSAR classification: Precise detection ofForest, Urban, Bare and Water Water Paddy Crop Grass Forest Urban Bare Small urban areamisclassified as Forest PolInSAR (this study) Optical (ALOS LC) AVNIR-2 image Bare groundsmisclassifiedas Water
  • 28. Comparison with ALOS LC product Advantage of optical classification Precise detection of low vegetation (Paddy, Crop and Grass) Water Paddy Crop Grass Forest Urban Bare Grass areamisclassifiedas Crop PolInSAR (this study) Optical (ALOS LC) AVNIR-2 image Paddymisclassifiedas Crop
  • 29. Summary of results Comparison of datasets Accuracy: Quad-PolInSAR > Dual-PolInSAR> Quad-Pol > Dual-Pol Interferometric coherence plays important roles for discriminating LC types which have confusing scattering mechanisms Comparison of classification methods: Accuracy: SVM > Wishart Computation Speed: Wishart > SVM Non-linear classifier is more robust for LC types which have various scattering mechanisms Comparison of PolInSAR classification and ALOS (optical) LC product PolInSAR classification is good on Forest, Urban, Bare and Water classification ALOS (optical) LC product is good on Low vegetation (Paddy, Crop and Grass) classification
  • 30. Conclusions PALSAR PolInSAR data has high capability for LC monitoring Quad-PolInSAR classification is more accurate than dual-PolInSAR and quad/dual-PolSAR The SVM is better than the Wishart classifier on classification accuracy Future Works Improvement of classification algorithm Other classification methods Other feature parameters Speckle filtering, terrain correction Extension of the test area Application for monitoring disaster, forest or agriculture PolInSAR data of ALOS-2/PALSAR-2: higher resolution, smaller and stable orbit distance...
  • 31. Thank you for your attention… Mt. Tsukuba Tsukuba city Water Paddy Crop Grass Forest Urban Bare
  • 32.
  • 33. Forest/Urban misclassification issue Scattering mechanism of urban area varies depending on their orientation angle Pi-SAR L-band data ~ 3m resolution Simulated PALSAR’s resolution “Non-orthogonal” urban is confusing with forest Aerial photo ©Yahoo! Japan Forest Urban Urban Orthogonal Non-orthogonal range azimuth ? HH-VVHVHH+VV Urban ?
  • 34. Detail – Paddy (2) Back-scattering in paddy area changes significantly from April to May #1 02/04/2007 Before flooding #2 18/05/2007 After flooding Optical (AVNIR-2) 15/05/2007 HH-VVHVHH+VV Water surface Soil surface
  • 35. Reference data Truth land-cover data made by interpreting: Land-use 100m mesh data (FY 2006) ©GSI, Japan Optical images (ALOS/AVNIR-2) Coordinate conversion (projected on the slant-range coordinate) No. of samples: 8200 (on the slant-range of the PLR mode data)->half of them used as training data, the others used for evaluation Lat Azimuth Lon Range Coordinateconversion
  • 36. Polarimetric Interferometry (PolInSAR) Combination of PolSAR + InSAR Contains many feature parameters: amplitudes & coherences References Formulation and the model (Cloude & Papathanassiou, 1998) Decomposition (Papathanassiou & Cloude, 2003; Neumann et al., 2005) Application (Forest biomass, urban detection, agriculture…) Land-cover monitoring(e.g. Shimoni et al., 2009) Master Slave
  • 37. Interferometric coherence for LC types HH VV Water < Bare soil Forest < Urban  HV HH+VV HH–VV
  • 38. Amplitude for LC types HH VV Water ≈ Bare soil Forest ≈ Urban confusing HV HH+VV HH–VV