SlideShare uma empresa Scribd logo
1 de 24
FOURIER ANALYSIS
PART 1: Fourier Series
Maria Elena Angoletta,
AB/BDI
DISP 2003, 20 February 2003
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 2 / 24
TOPICS
1. Frequency analysis: a powerful tool
2. A tour of Fourier Transforms
3. Continuous Fourier Series (FS)
4. Discrete Fourier Series (DFS)
5. Example: DFS by DDCs & DSP
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 3 / 24
Frequency analysis: why?
 Fast & efficient insight on signal’s building blocks.
 Simplifies original problem - ex.: solving Part. Diff. Eqns. (PDE).
 Powerful & complementary to time domain analysis techniques.
 Several transforms in DSPing: Fourier, Laplace, z, etc.
time, t frequency, f
F
s(t) S(f) = F[s(t)]
analysis
synthesis
s(t), S(f) :
Transform Pair
General Transform as
problem-solving tool
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 4 / 24
Fourier analysis - applications
Applications wide ranging and ever present in modern life
• Telecomms - GSM/cellular phones,
• Electronics/IT - most DSP-based applications,
• Entertainment - music, audio, multimedia,
• Accelerator control (tune measurement for beam steering/control),
• Imaging, image processing,
• Industry/research - X-ray spectrometry, chemical analysis (FT
spectrometry), PDE solution, radar design,
• Medical - (PET scanner, CAT scans & MRI interpretation for sleep
disorder & heart malfunction diagnosis,
• Speech analysis (voice activated “devices”, biometry, …).
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 5 / 24
Fourier analysis - tools
Input Time Signal Frequency spectrum






1
N
0
n
N
n
k
π
2
j
e
s[n]
N
1
k
c
~
Discrete
Discrete
DFS
Periodic
(period T)
Continuous
DTFT
Aperiodic
Discrete
DFT
n
f
π
2
j
e
n
s[n]
S(f) 





 
0
0.5
1
1.5
2
2.5
0 2 4 6 8 10 12
time, tk
0
0.5
1
1.5
2
2.5
0 1 2 3 4 5 6 7 8
time, tk






1
N
0
n
N
n
k
π
2
j
e
s[n]
N
1
k
c
~
**
**
Calculated via FFT
**
dt
t
f
π
j2
e
s(t)
S(f)






 
dt
T
0
t
ω
k
j
e
s(t)
T
1
k
c 




Periodic
(period T)
Discrete
Continuous
FT
Aperiodic
FS
Continuous
0
0.5
1
1.5
2
2.5
0 1 2 3 4 5 6 7 8
time, t
0
0.5
1
1.5
2
2.5
0 2 4 6 8 10 12
time, t
Note: j =-1,  = 2/T, s[n]=s(tn), N = No. of samples
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 6 / 24
A little history
 Astronomic predictions by Babylonians/Egyptians likely via trigonometric sums.
 1669: Newton stumbles upon light spectra (specter = ghost) but fails to
recognise “frequency” concept (corpuscular theory of light, & no waves).
 18th century: two outstanding problems
 celestial bodies orbits: Lagrange, Euler & Clairaut approximate observation data
with linear combination of periodic functions; Clairaut,1754(!) first DFT formula.
 vibrating strings: Euler describes vibrating string motion by sinusoids (wave
equation). BUT peers’ consensus is that sum of sinusoids only represents smooth
curves. Big blow to utility of such sums for all but Fourier ...
 1807: Fourier presents his work on heat conduction  Fourier analysis born.
 Diffusion equation  series (infinite) of sines & cosines. Strong criticism by peers
blocks publication. Work published, 1822 (“Theorie Analytique de la chaleur”).
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 7 / 24
A little history -2
 19th / 20th century: two paths for Fourier analysis - Continuous & Discrete.
CONTINUOUS
 Fourier extends the analysis to arbitrary function (Fourier Transform).
 Dirichlet, Poisson, Riemann, Lebesgue address FS convergence.
 Other FT variants born from varied needs (ex.: Short Time FT - speech analysis).
DISCRETE: Fast calculation methods (FFT)
 1805 - Gauss, first usage of FFT (manuscript in Latin went unnoticed!!!
Published 1866).
 1965 - IBM’s Cooley & Tukey “rediscover” FFT algorithm (“An algorithm for
the machine calculation of complex Fourier series”).
 Other DFT variants for different applications (ex.: Warped DFT - filter design &
signal compression).
 FFT algorithm refined & modified for most computer platforms.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 8 / 24
Fourier Series (FS)
* see next slide
A periodic function s(t) satisfying Dirichlet’s conditions * can be expressed
as a Fourier series, with harmonically related sine/cosine terms.
 









1
k
t)
ω
(k
sin
k
b
t)
ω
(k
cos
k
a
0
a
s(t)
a0, ak, bk : Fourier coefficients.
k: harmonic number,
T: period,  = 2/T
For all t but discontinuities
Note: {cos(kωt), sin(kωt) }k
form orthogonal base of
function space.



T
0
s(t)dt
T
1
0
a
 


T
0
dt
t)
ω
sin(k
s(t)
T
2
k
b
-
 


T
0
dt
t)
ω
cos(k
s(t)
T
2
k
a
(signal average over a period, i.e. DC term &
zero-frequency component.)
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 9 / 24
FS convergence
s(t) piecewise-continuous;
s(t) piecewise-monotonic;
s(t) absolutely integrable , 


T
0
dt
s(t)
(a)
(b)
(c)
Dirichlet conditions
In any period:
Example:
square wave
T
(a) (b)
T
s(t)
(c)
if s(t) discontinuous then
|ak|<M/k for large k (M>0)
Rate of convergence
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 10 / 24
FS analysis - 1
* Even & Odd functions
Odd :
s(-x) = -s(x)
x
s(x)
s(x)
x
Even :
s(-x) = s(x)
FS of odd* function: square wave.
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10 t
square
signal,
sw(t)

0
π
0
2π
π
1)dt
(
dt
2π
1
0
a 













  
0
π
0
2π
π
dt
kt
cos
dt
kt
cos
π
1
k
a 












  
 

















   kπ
cos
1
π
k
2
...
π
0
2π
π
dt
kt
sin
dt
kt
sin
π
1
k
b
-









even
k
,
0
odd
k
,
π
k
4
1
ω
2π
T 


(zero average)
(odd function)
...
t
5
sin
π
5
4
t
3
sin
π
3
4
t
sin
π
4
sw(t) 










M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 11 / 24
FS analysis - 2
-π/2
f1 3f1 5f1 f
f1 3f1 5f1 f
rk
θk
4/π
4/3π
fk=k /2
rK = amplitude,
K = phase
rk
k
ak
bk
k = arctan(bk/ak)
rk = ak
2
+ bk
2
zk = (rk , k)
vk = rk cos (k t + k)
Polar
Fourier spectrum
representations




0
k
(t)
k
v
s(t)
Rectangular
vk = akcos(k t) - bksin(k t)
4/π
f1 2f1 3f1 4f1 5f1 6f1 f
f1 2f1 3f1 4f1 5f1 6f1 f
4/3π
ak
-bk
Fourier spectrum
of square-wave.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 12 / 24
 




7
1
k
sin(kt)
k
b
-
(t)
7
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




5
1
k
sin(kt)
k
b
-
(t)
5
sw  




3
1
k
sin(kt)
k
b
-
(t)
3
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




1
1
k
sin(kt)
k
b
-
(t)
1
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




9
1
k
sin(kt)
k
b
-
(t)
9
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




11
1
k
sin(kt)
k
b
-
(t)
11
sw
FS synthesis
Square wave reconstruction
from spectral terms
Convergence may be slow (~1/k) - ideally need infinite terms.
Practically, series truncated when remainder below computer tolerance
( error). BUT … Gibbs’ Phenomenon.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 13 / 24
Gibbs phenomenon
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




79
1
k
k
79 sin(kt)
b
-
(t)
sw
Overshoot exist @
each discontinuity
• Max overshoot pk-to-pk = 8.95% of discontinuity magnitude.
Just a minor annoyance.
• FS converges to (-1+1)/2 = 0 @ discontinuities, in this case.
• First observed by Michelson, 1898. Explained by Gibbs.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 14 / 24
FS time shifting
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10 t
square
signal,
sw(t)

FS of even function:
/2-advanced square-wave
π
f1 3f1 5f1 7f1 f
f1 3f1 5f1 7f1 f
rk
θk
4/π
4/3π
0
0
a 
0

k
b
-















even.
k
,
0
11...
7,
3,
k
odd,
k
,
π
k
4
9...
5,
1,
k
odd,
k
,
π
k
4
k
a
(even function)
(zero average)
Note: amplitudes unchanged BUT
phases advance by k/2.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 15 / 24
Complex FS
Complex form of FS (Laplace 1782). Harmonics
ck separated by f = 1/T on frequency plot.
r

a
b
 = arctan(b/a)
r = a2
+ b2
z = r e
j
2
e
e
cos(t)
jt
jt 


j
2
e
e
sin(t)
jt
jt




Euler’s notation:
e-jt = (ejt)* = cos(t) - j·sin(t) “phasor”
Note: c-k = (ck)*
   
k
b
j
k
a
2
1
k
b
j
k
a
2
1
k
c 









0
a
0
c 
Link to FS real coeffs.






k
t
ω
k
j
e
k
c
s(t)
 


T
0
dt
t
ω
k
j
-
e
s(t)
T
1
k
c
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 16 / 24
FS properties
Time Frequency
* Explained in next week’s lecture
Homogeneity a·s(t) a·S(k)
Additivity s(t) + u(t) S(k)+U(k)
Linearity a·s(t) + b·u(t) a·S(k)+b·U(k)
Time reversal s(-t) S(-k)
Multiplication * s(t)·u(t)
Convolution * S(k)·U(k)
Time shifting
Frequency shifting S(k - m)





m
m)U(m)
S(k
t
d
)
t
T
0
u(
)
t
s(t
T
1
 


S(k)
e T
t
k
2π
j



s(t)
T
t
m
2π
j
e 

)
t
s(t 
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 17 / 24
FS - “oddities”
k = - , … -2,-1,0,1,2, …+ , ωk = kω, k = ωkt, phasor turns anti-clockwise.
Negative k  phasor turns clockwise (negative phase k ), equivalent to negative time t,
 time reversal.
Negative frequencies & time reversal
Fourier components {uk} form orthonormal base of signal space:
uk = (1/T) exp(jkωt) (|k| = 0,1 2, …+) Def.: Internal product :
uk  um = δk,m (1 if k = m, 0 otherwise). (Remember (ejt)* = e-jt )
Then ck = (1/T) s(t)  uk i.e. (1/T) times projection of signal s(t) on component uk
Orthonormal base
 


T
o
*
m
k
m
k dt
u
u
u
u
Careful: phases important when combining several signals!
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 18 / 24
0 50 100 150 200
k f
Wk/W0
10-3
10-2
10-1
1
2
Wk = 2 W0 sync2(k )
W0 = ( sMAX)2









 



 
1
k 0
W
k
W
1
0
W
W
FS - power
• FS convergence ~1/k
 lower frequency terms
Wk = |ck|2 carry most power.
• Wk vs. ωk: Power density spectrum.
Example
sync(u) = sin( u)/( u)
Pulse train, duty cycle  = 2 t/ T
T
2 t
t
s(t)
bk = 0 a0 =  sMAX
ak = 2sMAX sync(k )
Average power W : s(t)
s(t)
T
o
dt
2
s(t)
T
1
W 

 









 






1
k
2
k
b
2
k
a
2
1
2
0
a
k
2
k
c
W
Parseval’s Theorem
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 19 / 24
FS of main waveforms
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 20 / 24
Discrete Fourier Series (DFS)
N consecutive samples of s[n]
completely describe s in time
or frequency domains.
DFS generate periodic ck
with same signal period





1
N
0
k
N
n
k
2π
j
e
k
c
s[n] ~
Synthesis: finite sum  band-limited s[n]
Band-limited signal s[n], period = N.
m
k,
δ
1
N
0
n
N
-m)
n(k
2π
j
e
N
1




Kronecker’s delta
Orthogonality in DFS:






1
N
0
n
N
n
k
2π
j
e
s[n]
N
1
k
c
~
Note: ck+N = ck  same period N
i.e. time periodicity propagates to frequencies!
DFS defined as:
~
~
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 21 / 24
DFS analysis
DFS of periodic discrete
1-Volt square-wave






























otherwise
,
N
k
π
sin
N
kL
π
sin
N
N
1)
(L
k
π
j
e
2N,...
N,
0,
k
,
N
L
k
c
~
0.6
0 1 2 3 4 5 6 7 8 9 10 k
1
0 2 4 5 6 7 8 9 10 n
k
-0.4
0.2
0.24 0.24
0.6 0.6
0.24
1
0.24
-0.2
0.4
0.2
-0.4
-0.2
0.4
0.2
0.6 ck
~
Discrete signals  periodic frequency spectra.
Compare to continuous rectangular function
(slide # 10, “FS analysis - 1”)
-5 0 1 2 3 4 5 6 7 8 9 10 n
0 L N
s[n]
1
s[n]: period N, duty factor L/N
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 22 / 24
DFS properties
Time Frequency
Homogeneity a·s[n] a·S(k)
Additivity s[n] + u[n] S(k)+U(k)
Linearity a·s[n] + b·u[n] a·S(k)+b·U(k)
Multiplication * s[n] ·u[n]
Convolution * S(k)·U(k)
Time shifting s[n - m]
Frequency shifting S(k - h)




1
N
0
h
h)
-
S(h)U(k
N
1
* Explained in next week’s lecture





1
N
0
m
m]
u[n
s[m]
S(k)
e T
m
k
2π
j



s[n]
T
t
h
2π
j
e 

M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 23 / 24
Q
Q[
[t
tp
p]
]:
: “
“Q
Qu
ua
ad
dr
ra
at
tu
ur
re
e”
”
s[tn]
s(t)
cos[LO tn]
I
I[
[t
tn
n]
]
-sin[LO tn]
Q
Q[
[t
tn
n]
]
ADC
(fS)
I
I[
[t
tp
p]
]:
: “
“I
In
n-
-p
ph
ha
as
se
e”
”
LPF
&
DECIMATION
N = NS/NT
TO DSP
(next slide)
D
DI
IG
GI
IT
TA
AL
L D
DO
OW
WN
N
C
CO
ON
NV
VE
ER
RT
TE
ER
R
DFS analysis: DDC + ...
s(t) periodic with period TREV (ex: particle bunch in “racetrack” accelerator)
tn = n/fS , n = 1, 2 .. NS , NS = No. samples
(1)
(1)
(2)
(2) I[tn ]+j Q[tn ] = s[tn ] e -jLOtn
(3)
(3) I[tp ]+j Q[tp ] p = 1, 2 .. NT , Ns / NT = decimation. (Down-converted to baseband).
0 f
B
B
B
B
B
B
fLO f
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 24 / 24
... + DSP
DDCs with different fLO
yield more DFS components
Fourier coefficients a k*, b k*
harmonic k* = LO/REV




T
N
1
p
p
I
T
N
1
*
k
a 




T
N
1
p
p
Q
T
N
1
*
k
b
Parallel
digital
input
from ADC
TUNABLE LOCAL
OSCILLATOR
(DIRECT DIGITAL SYNTHESIZER)
Clock
from
ADC
sin cos
COMPLEX MIXER
fS fS fS/N
Decimation factor N
I
Q
Central
frequency
LOW PASS
FILTER
(DECIMATION)
Example: Real-life DDC

Mais conteúdo relacionado

Semelhante a DISP-2003_L01B_20Feb03.ppt

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONMaster Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONKaarle Kulvik
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1Vin Voro
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesFrédéric Morain-Nicolier
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
 
SP_SNS_C3.pptx
SP_SNS_C3.pptxSP_SNS_C3.pptx
SP_SNS_C3.pptxIffahSkmd
 
03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdfAlexanderLerch4
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5Vin Voro
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductVjekoslavKovac1
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfarihantelectronics
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wedVin Voro
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systemsbabak danyal
 

Semelhante a DISP-2003_L01B_20Feb03.ppt (20)

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONMaster Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
SP_SNS_C3.pptx
SP_SNS_C3.pptxSP_SNS_C3.pptx
SP_SNS_C3.pptx
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 
03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
Fourier image
Fourier imageFourier image
Fourier image
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wed
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
 

Último

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 

Último (20)

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 

DISP-2003_L01B_20Feb03.ppt

  • 1. FOURIER ANALYSIS PART 1: Fourier Series Maria Elena Angoletta, AB/BDI DISP 2003, 20 February 2003
  • 2. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 2 / 24 TOPICS 1. Frequency analysis: a powerful tool 2. A tour of Fourier Transforms 3. Continuous Fourier Series (FS) 4. Discrete Fourier Series (DFS) 5. Example: DFS by DDCs & DSP
  • 3. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 3 / 24 Frequency analysis: why?  Fast & efficient insight on signal’s building blocks.  Simplifies original problem - ex.: solving Part. Diff. Eqns. (PDE).  Powerful & complementary to time domain analysis techniques.  Several transforms in DSPing: Fourier, Laplace, z, etc. time, t frequency, f F s(t) S(f) = F[s(t)] analysis synthesis s(t), S(f) : Transform Pair General Transform as problem-solving tool
  • 4. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 4 / 24 Fourier analysis - applications Applications wide ranging and ever present in modern life • Telecomms - GSM/cellular phones, • Electronics/IT - most DSP-based applications, • Entertainment - music, audio, multimedia, • Accelerator control (tune measurement for beam steering/control), • Imaging, image processing, • Industry/research - X-ray spectrometry, chemical analysis (FT spectrometry), PDE solution, radar design, • Medical - (PET scanner, CAT scans & MRI interpretation for sleep disorder & heart malfunction diagnosis, • Speech analysis (voice activated “devices”, biometry, …).
  • 5. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 5 / 24 Fourier analysis - tools Input Time Signal Frequency spectrum       1 N 0 n N n k π 2 j e s[n] N 1 k c ~ Discrete Discrete DFS Periodic (period T) Continuous DTFT Aperiodic Discrete DFT n f π 2 j e n s[n] S(f)         0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 12 time, tk 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 7 8 time, tk       1 N 0 n N n k π 2 j e s[n] N 1 k c ~ ** ** Calculated via FFT ** dt t f π j2 e s(t) S(f)         dt T 0 t ω k j e s(t) T 1 k c      Periodic (period T) Discrete Continuous FT Aperiodic FS Continuous 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 7 8 time, t 0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 12 time, t Note: j =-1,  = 2/T, s[n]=s(tn), N = No. of samples
  • 6. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 6 / 24 A little history  Astronomic predictions by Babylonians/Egyptians likely via trigonometric sums.  1669: Newton stumbles upon light spectra (specter = ghost) but fails to recognise “frequency” concept (corpuscular theory of light, & no waves).  18th century: two outstanding problems  celestial bodies orbits: Lagrange, Euler & Clairaut approximate observation data with linear combination of periodic functions; Clairaut,1754(!) first DFT formula.  vibrating strings: Euler describes vibrating string motion by sinusoids (wave equation). BUT peers’ consensus is that sum of sinusoids only represents smooth curves. Big blow to utility of such sums for all but Fourier ...  1807: Fourier presents his work on heat conduction  Fourier analysis born.  Diffusion equation  series (infinite) of sines & cosines. Strong criticism by peers blocks publication. Work published, 1822 (“Theorie Analytique de la chaleur”).
  • 7. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 7 / 24 A little history -2  19th / 20th century: two paths for Fourier analysis - Continuous & Discrete. CONTINUOUS  Fourier extends the analysis to arbitrary function (Fourier Transform).  Dirichlet, Poisson, Riemann, Lebesgue address FS convergence.  Other FT variants born from varied needs (ex.: Short Time FT - speech analysis). DISCRETE: Fast calculation methods (FFT)  1805 - Gauss, first usage of FFT (manuscript in Latin went unnoticed!!! Published 1866).  1965 - IBM’s Cooley & Tukey “rediscover” FFT algorithm (“An algorithm for the machine calculation of complex Fourier series”).  Other DFT variants for different applications (ex.: Warped DFT - filter design & signal compression).  FFT algorithm refined & modified for most computer platforms.
  • 8. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 8 / 24 Fourier Series (FS) * see next slide A periodic function s(t) satisfying Dirichlet’s conditions * can be expressed as a Fourier series, with harmonically related sine/cosine terms.            1 k t) ω (k sin k b t) ω (k cos k a 0 a s(t) a0, ak, bk : Fourier coefficients. k: harmonic number, T: period,  = 2/T For all t but discontinuities Note: {cos(kωt), sin(kωt) }k form orthogonal base of function space.    T 0 s(t)dt T 1 0 a     T 0 dt t) ω sin(k s(t) T 2 k b -     T 0 dt t) ω cos(k s(t) T 2 k a (signal average over a period, i.e. DC term & zero-frequency component.)
  • 9. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 9 / 24 FS convergence s(t) piecewise-continuous; s(t) piecewise-monotonic; s(t) absolutely integrable ,    T 0 dt s(t) (a) (b) (c) Dirichlet conditions In any period: Example: square wave T (a) (b) T s(t) (c) if s(t) discontinuous then |ak|<M/k for large k (M>0) Rate of convergence
  • 10. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 10 / 24 FS analysis - 1 * Even & Odd functions Odd : s(-x) = -s(x) x s(x) s(x) x Even : s(-x) = s(x) FS of odd* function: square wave. -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)  0 π 0 2π π 1)dt ( dt 2π 1 0 a                  0 π 0 2π π dt kt cos dt kt cos π 1 k a                                       kπ cos 1 π k 2 ... π 0 2π π dt kt sin dt kt sin π 1 k b -          even k , 0 odd k , π k 4 1 ω 2π T    (zero average) (odd function) ... t 5 sin π 5 4 t 3 sin π 3 4 t sin π 4 sw(t)           
  • 11. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 11 / 24 FS analysis - 2 -π/2 f1 3f1 5f1 f f1 3f1 5f1 f rk θk 4/π 4/3π fk=k /2 rK = amplitude, K = phase rk k ak bk k = arctan(bk/ak) rk = ak 2 + bk 2 zk = (rk , k) vk = rk cos (k t + k) Polar Fourier spectrum representations     0 k (t) k v s(t) Rectangular vk = akcos(k t) - bksin(k t) 4/π f1 2f1 3f1 4f1 5f1 6f1 f f1 2f1 3f1 4f1 5f1 6f1 f 4/3π ak -bk Fourier spectrum of square-wave.
  • 12. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 12 / 24       7 1 k sin(kt) k b - (t) 7 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t) -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       5 1 k sin(kt) k b - (t) 5 sw       3 1 k sin(kt) k b - (t) 3 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       1 1 k sin(kt) k b - (t) 1 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t) -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       9 1 k sin(kt) k b - (t) 9 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t) -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       11 1 k sin(kt) k b - (t) 11 sw FS synthesis Square wave reconstruction from spectral terms Convergence may be slow (~1/k) - ideally need infinite terms. Practically, series truncated when remainder below computer tolerance ( error). BUT … Gibbs’ Phenomenon.
  • 13. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 13 / 24 Gibbs phenomenon -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       79 1 k k 79 sin(kt) b - (t) sw Overshoot exist @ each discontinuity • Max overshoot pk-to-pk = 8.95% of discontinuity magnitude. Just a minor annoyance. • FS converges to (-1+1)/2 = 0 @ discontinuities, in this case. • First observed by Michelson, 1898. Explained by Gibbs.
  • 14. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 14 / 24 FS time shifting -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)  FS of even function: /2-advanced square-wave π f1 3f1 5f1 7f1 f f1 3f1 5f1 7f1 f rk θk 4/π 4/3π 0 0 a  0  k b -                even. k , 0 11... 7, 3, k odd, k , π k 4 9... 5, 1, k odd, k , π k 4 k a (even function) (zero average) Note: amplitudes unchanged BUT phases advance by k/2.
  • 15. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 15 / 24 Complex FS Complex form of FS (Laplace 1782). Harmonics ck separated by f = 1/T on frequency plot. r  a b  = arctan(b/a) r = a2 + b2 z = r e j 2 e e cos(t) jt jt    j 2 e e sin(t) jt jt     Euler’s notation: e-jt = (ejt)* = cos(t) - j·sin(t) “phasor” Note: c-k = (ck)*     k b j k a 2 1 k b j k a 2 1 k c           0 a 0 c  Link to FS real coeffs.       k t ω k j e k c s(t)     T 0 dt t ω k j - e s(t) T 1 k c
  • 16. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 16 / 24 FS properties Time Frequency * Explained in next week’s lecture Homogeneity a·s(t) a·S(k) Additivity s(t) + u(t) S(k)+U(k) Linearity a·s(t) + b·u(t) a·S(k)+b·U(k) Time reversal s(-t) S(-k) Multiplication * s(t)·u(t) Convolution * S(k)·U(k) Time shifting Frequency shifting S(k - m)      m m)U(m) S(k t d ) t T 0 u( ) t s(t T 1     S(k) e T t k 2π j    s(t) T t m 2π j e   ) t s(t 
  • 17. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 17 / 24 FS - “oddities” k = - , … -2,-1,0,1,2, …+ , ωk = kω, k = ωkt, phasor turns anti-clockwise. Negative k  phasor turns clockwise (negative phase k ), equivalent to negative time t,  time reversal. Negative frequencies & time reversal Fourier components {uk} form orthonormal base of signal space: uk = (1/T) exp(jkωt) (|k| = 0,1 2, …+) Def.: Internal product : uk  um = δk,m (1 if k = m, 0 otherwise). (Remember (ejt)* = e-jt ) Then ck = (1/T) s(t)  uk i.e. (1/T) times projection of signal s(t) on component uk Orthonormal base     T o * m k m k dt u u u u Careful: phases important when combining several signals!
  • 18. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 18 / 24 0 50 100 150 200 k f Wk/W0 10-3 10-2 10-1 1 2 Wk = 2 W0 sync2(k ) W0 = ( sMAX)2                 1 k 0 W k W 1 0 W W FS - power • FS convergence ~1/k  lower frequency terms Wk = |ck|2 carry most power. • Wk vs. ωk: Power density spectrum. Example sync(u) = sin( u)/( u) Pulse train, duty cycle  = 2 t/ T T 2 t t s(t) bk = 0 a0 =  sMAX ak = 2sMAX sync(k ) Average power W : s(t) s(t) T o dt 2 s(t) T 1 W                      1 k 2 k b 2 k a 2 1 2 0 a k 2 k c W Parseval’s Theorem
  • 19. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 19 / 24 FS of main waveforms
  • 20. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 20 / 24 Discrete Fourier Series (DFS) N consecutive samples of s[n] completely describe s in time or frequency domains. DFS generate periodic ck with same signal period      1 N 0 k N n k 2π j e k c s[n] ~ Synthesis: finite sum  band-limited s[n] Band-limited signal s[n], period = N. m k, δ 1 N 0 n N -m) n(k 2π j e N 1     Kronecker’s delta Orthogonality in DFS:       1 N 0 n N n k 2π j e s[n] N 1 k c ~ Note: ck+N = ck  same period N i.e. time periodicity propagates to frequencies! DFS defined as: ~ ~
  • 21. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 21 / 24 DFS analysis DFS of periodic discrete 1-Volt square-wave                               otherwise , N k π sin N kL π sin N N 1) (L k π j e 2N,... N, 0, k , N L k c ~ 0.6 0 1 2 3 4 5 6 7 8 9 10 k 1 0 2 4 5 6 7 8 9 10 n k -0.4 0.2 0.24 0.24 0.6 0.6 0.24 1 0.24 -0.2 0.4 0.2 -0.4 -0.2 0.4 0.2 0.6 ck ~ Discrete signals  periodic frequency spectra. Compare to continuous rectangular function (slide # 10, “FS analysis - 1”) -5 0 1 2 3 4 5 6 7 8 9 10 n 0 L N s[n] 1 s[n]: period N, duty factor L/N
  • 22. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 22 / 24 DFS properties Time Frequency Homogeneity a·s[n] a·S(k) Additivity s[n] + u[n] S(k)+U(k) Linearity a·s[n] + b·u[n] a·S(k)+b·U(k) Multiplication * s[n] ·u[n] Convolution * S(k)·U(k) Time shifting s[n - m] Frequency shifting S(k - h)     1 N 0 h h) - S(h)U(k N 1 * Explained in next week’s lecture      1 N 0 m m] u[n s[m] S(k) e T m k 2π j    s[n] T t h 2π j e  
  • 23. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 23 / 24 Q Q[ [t tp p] ]: : “ “Q Qu ua ad dr ra at tu ur re e” ” s[tn] s(t) cos[LO tn] I I[ [t tn n] ] -sin[LO tn] Q Q[ [t tn n] ] ADC (fS) I I[ [t tp p] ]: : “ “I In n- -p ph ha as se e” ” LPF & DECIMATION N = NS/NT TO DSP (next slide) D DI IG GI IT TA AL L D DO OW WN N C CO ON NV VE ER RT TE ER R DFS analysis: DDC + ... s(t) periodic with period TREV (ex: particle bunch in “racetrack” accelerator) tn = n/fS , n = 1, 2 .. NS , NS = No. samples (1) (1) (2) (2) I[tn ]+j Q[tn ] = s[tn ] e -jLOtn (3) (3) I[tp ]+j Q[tp ] p = 1, 2 .. NT , Ns / NT = decimation. (Down-converted to baseband). 0 f B B B B B B fLO f
  • 24. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 24 / 24 ... + DSP DDCs with different fLO yield more DFS components Fourier coefficients a k*, b k* harmonic k* = LO/REV     T N 1 p p I T N 1 * k a      T N 1 p p Q T N 1 * k b Parallel digital input from ADC TUNABLE LOCAL OSCILLATOR (DIRECT DIGITAL SYNTHESIZER) Clock from ADC sin cos COMPLEX MIXER fS fS fS/N Decimation factor N I Q Central frequency LOW PASS FILTER (DECIMATION) Example: Real-life DDC

Notas do Editor

  1. Introduction to Digital Signal Processing
  2. Introduction to Digital Signal Processing