trabajodematematicas33.pptx

trabajodematematicas33.pptx
A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la
distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en
una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las
diferencia de sus abscisas. (x 2 – x 1 ).
Ejemplo:
La distancia entre los puntos (–4, 0) y (5, 0).
Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o
extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes
iguales.
Ejemplo:
Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un
segmento, el punto medio del segmento viene dado por:
En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es
importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es
necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen
ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras.
Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano
Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor
independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se
organizan y se representan en el plano cartesiano.
Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es
necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para
calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la
ecuación de la función desarrollada
La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un
punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres
puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El
centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están
a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la
expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría
Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una
circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 +
(y ─ b) 2 = r 2
Ejemplo:
En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y
puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha.
Ecuaciones de la parábola con vértice en el origen
Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en
el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica.
Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su
eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia
la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no
confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la
distancia entre la directriz (D) y dicho punto, como vemos en la figura:
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es
constante.
Elementos de la elipse:
1. Focos: Son los puntos fijos F y F'.
2. Eje focal: Es la recta que pasa por los focos.
3. Eje secundario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal.
7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor.
9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor.
10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de
simetría.
La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los
puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la
longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la
curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se
llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La
distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.
La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que
unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r -
r' = 2a.
La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar
geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las
circunferencias focales tienen por centro los focos y radio a.
Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa
por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e
hipérbola. Un cono circular recto.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del
eje del cono (β), pueden obtenerse diferentes secciones cónicas
1 de 9

Recomendados

Plano numericoPlano numerico
Plano numericoMonicaViloria2
18 visualizações12 slides
Plano Numerico Miguel Colombo.pdfPlano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfJsMguelCM
4 visualizações15 slides
plano numerico o cartesiano.pdfplano numerico o cartesiano.pdf
plano numerico o cartesiano.pdfmichaelevies
19 visualizações12 slides
PLANO NUMERICO.pptxPLANO NUMERICO.pptx
PLANO NUMERICO.pptxMaría Veronica Mogollon
8 visualizações12 slides
Plano NuméricoPlano Numérico
Plano NuméricoJose290394
20 visualizações18 slides
Plano Numerico Jose Colombo..pptxPlano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxJsMguelCM
6 visualizações14 slides

Mais conteúdo relacionado

Similar a trabajodematematicas33.pptx

TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOEmilyGonzalez64
36 visualizações15 slides
Plano numericoPlano numerico
Plano numericoyorgelisalvarado1
20 visualizações13 slides
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfGabriel Peña
20 visualizações14 slides
Plano numericoPlano numerico
Plano numericoErikNava9
14 visualizações12 slides

Similar a trabajodematematicas33.pptx(20)

TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
EmilyGonzalez6436 visualizações
Plano numericoPlano numerico
Plano numerico
yorgelisalvarado120 visualizações
Plano Numerico-presentacion de matematica-.pdfPlano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdf
KarelbysDanielaTeran12 visualizações
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdf
Gabriel Peña 20 visualizações
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
Michell Urra Juarez8 visualizações
Plano numericoPlano numerico
Plano numerico
ErikNava914 visualizações
PUNTO.pptxPUNTO.pptx
PUNTO.pptx
JanethIsturizVelasqu12 visualizações
Plano NumericoPlano Numerico
Plano Numerico
SabrinaQuerales3 visualizações
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
AndersonMarchan10 visualizações
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
JesusTorres7509839 visualizações
Plano NumericoPlano Numerico
Plano Numerico
Yeismerperez6 visualizações
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
KarlaGarcia5713395 visualizações
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
pedrobriceooliva12 visualizações
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
SolBarrios133 visualizações
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)
Dennisse Pérez16 visualizações
Plano numericoPlano numerico
Plano numerico
JoseMauricioChavezAl38 visualizações
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdf
AngelDavidMendoza215 visualizações
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
angelyeerum6 visualizações
Plano numericoPlano numerico
Plano numerico
AlejandroRamirz37 visualizações

Mais de gissell_03112005

trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptxgissell_03112005
3 visualizações9 slides
Gissell leal 4to "A"Gissell leal 4to "A"
Gissell leal 4to "A"gissell_03112005
12 visualizações18 slides

Mais de gissell_03112005(7)

trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptx
gissell_031120053 visualizações
trabajo de matematicas.pptxtrabajo de matematicas.pptx
trabajo de matematicas.pptx
gissell_031120057 visualizações
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
gissell_0311200528 visualizações
Expresiones Algebraicas y FactorizacionExpresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
gissell_031120052 visualizações
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
gissell_031120056 visualizações
Gissell leal 4to "A"Gissell leal 4to "A"
Gissell leal 4to "A"
gissell_0311200512 visualizações
Arbol genealogico gisselArbol genealogico gissel
Arbol genealogico gissel
gissell_0311200572 visualizações

Último(20)

DE OLLANTa.pptxDE OLLANTa.pptx
DE OLLANTa.pptx
alinargomedocueva227 visualizações
Tema 7. Riesgos internos (1a parte).pdfTema 7. Riesgos internos (1a parte).pdf
Tema 7. Riesgos internos (1a parte).pdf
IES Vicent Andres Estelles48 visualizações
Gestion del Talento Humano  GTH1 Ccesa007.pdfGestion del Talento Humano  GTH1 Ccesa007.pdf
Gestion del Talento Humano GTH1 Ccesa007.pdf
Demetrio Ccesa Rayme24 visualizações
Contenidos y PDA 5°.docxContenidos y PDA 5°.docx
Contenidos y PDA 5°.docx
Norberto Millán Muñoz24 visualizações
Elementos del proceso de comunicación.pptxElementos del proceso de comunicación.pptx
Elementos del proceso de comunicación.pptx
NohemiCastillo1476 visualizações
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf
Demetrio Ccesa Rayme43 visualizações
Plan analítico en la NEM (2).pptxPlan analítico en la NEM (2).pptx
Plan analítico en la NEM (2).pptx
Norberto Millán Muñoz179 visualizações
Contenidos y PDA 4° Grado.docxContenidos y PDA 4° Grado.docx
Contenidos y PDA 4° Grado.docx
Norberto Millán Muñoz59 visualizações
Teoria y Practica de Mercado 2023.docxTeoria y Practica de Mercado 2023.docx
Teoria y Practica de Mercado 2023.docx
Maribel Cordero45 visualizações
Infografia María Fuenmayor S _20231126_070624_0000.pdfInfografia María Fuenmayor S _20231126_070624_0000.pdf
Infografia María Fuenmayor S _20231126_070624_0000.pdf
mariafuenmayor2025 visualizações
2023 - Cuarto Encuentro - Sociedad y Videojuegos  2023 - Cuarto Encuentro - Sociedad y Videojuegos
2023 - Cuarto Encuentro - Sociedad y Videojuegos
Maestría en Comunicación Digital Interactiva - UNR84 visualizações
Contrato de aprendizaje y evaluación Contrato de aprendizaje y evaluación
Contrato de aprendizaje y evaluación
LauraJuarez8731 visualizações
Sistemas Microcontrolados-Unidad1-Tema1.pdfSistemas Microcontrolados-Unidad1-Tema1.pdf
Sistemas Microcontrolados-Unidad1-Tema1.pdf
MarianaAucancela31 visualizações
Estrategias y Recursos en el Aula  Ccesa.pdfEstrategias y Recursos en el Aula  Ccesa.pdf
Estrategias y Recursos en el Aula Ccesa.pdf
Demetrio Ccesa Rayme226 visualizações
5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc
5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc
josetejada22038055 visualizações
Contenidos primaria.docxContenidos primaria.docx
Contenidos primaria.docx
Norberto Millán Muñoz54 visualizações
PREGUNTAS PARA EL DEBATE ACADÉMICO.docxPREGUNTAS PARA EL DEBATE ACADÉMICO.docx
PREGUNTAS PARA EL DEBATE ACADÉMICO.docx
edwin701.2K visualizações

trabajodematematicas33.pptx

  • 2. A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ). Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0). Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
  • 3. El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Ejemplo: Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un segmento, el punto medio del segmento viene dado por:
  • 4. En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras. Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se organizan y se representan en el plano cartesiano. Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la ecuación de la función desarrollada
  • 5. La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 + (y ─ b) 2 = r 2 Ejemplo:
  • 6. En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha. Ecuaciones de la parábola con vértice en el origen Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica. Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la distancia entre la directriz (D) y dicho punto, como vemos en la figura:
  • 7. Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse: 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
  • 8. La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c. Entre a, b y c existe la relación c2 = a2 + b2. La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a. La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.
  • 9. Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e hipérbola. Un cono circular recto. En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas