SlideShare uma empresa Scribd logo
1 de 9
A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la
distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en
una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las
diferencia de sus abscisas. (x 2 – x 1 ).
Ejemplo:
La distancia entre los puntos (–4, 0) y (5, 0).
Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o
extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes
iguales.
Ejemplo:
Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un
segmento, el punto medio del segmento viene dado por:
En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es
importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es
necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen
ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras.
Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano
Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor
independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se
organizan y se representan en el plano cartesiano.
Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es
necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para
calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la
ecuación de la función desarrollada
La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un
punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres
puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El
centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están
a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la
expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría
Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una
circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 +
(y ─ b) 2 = r 2
Ejemplo:
En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y
puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha.
Ecuaciones de la parábola con vértice en el origen
Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en
el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica.
Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su
eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia
la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no
confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la
distancia entre la directriz (D) y dicho punto, como vemos en la figura:
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es
constante.
Elementos de la elipse:
1. Focos: Son los puntos fijos F y F'.
2. Eje focal: Es la recta que pasa por los focos.
3. Eje secundario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal.
7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor.
9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor.
10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de
simetría.
La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los
puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la
longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la
curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se
llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La
distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.
La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que
unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r -
r' = 2a.
La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar
geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las
circunferencias focales tienen por centro los focos y radio a.
Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa
por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e
hipérbola. Un cono circular recto.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del
eje del cono (β), pueden obtenerse diferentes secciones cónicas

Mais conteúdo relacionado

Semelhante a trabajodematematicas33.pptx

Semelhante a trabajodematematicas33.pptx (20)

TRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdfPlano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdf
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdf
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PUNTO.pptx
PUNTO.pptxPUNTO.pptx
PUNTO.pptx
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
 
matematica presentacion #2
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
 
Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdf
 
presentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptxpresentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptx
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 

Mais de gissell_03112005 (7)

trabajodematematicas3.pptx
trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptx
 
trabajo de matematicas.pptx
trabajo de matematicas.pptxtrabajo de matematicas.pptx
trabajo de matematicas.pptx
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y FactorizacionExpresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Gissell leal 4to "A"
Gissell leal 4to "A"Gissell leal 4to "A"
Gissell leal 4to "A"
 
Arbol genealogico gissel
Arbol genealogico gisselArbol genealogico gissel
Arbol genealogico gissel
 

Último

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 

Último (20)

Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 

trabajodematematicas33.pptx

  • 1.
  • 2. A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ). Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0). Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
  • 3. El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Ejemplo: Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un segmento, el punto medio del segmento viene dado por:
  • 4. En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras. Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se organizan y se representan en el plano cartesiano. Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la ecuación de la función desarrollada
  • 5. La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 + (y ─ b) 2 = r 2 Ejemplo:
  • 6. En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha. Ecuaciones de la parábola con vértice en el origen Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica. Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la distancia entre la directriz (D) y dicho punto, como vemos en la figura:
  • 7. Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse: 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
  • 8. La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c. Entre a, b y c existe la relación c2 = a2 + b2. La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a. La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.
  • 9. Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e hipérbola. Un cono circular recto. En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas