SlideShare uma empresa Scribd logo
1 de 120
Baixar para ler offline
UNIVERSIDAD SIMÓN BOLÍVAR
DECANATO DE ESTUDIOS PROFESIONALES
COORDINACIÓN DE INGENIERÍA GEOFÍSICA
MÉTODOS GEOFÍSICOS EN GEOTECNIA: GEORADAR,
RESISTIVIDAD, CROSSHOLE.
Por:
Ada Eduvigis Zamora Godoy
INFORME DE PASANTÍA
Presentado ante la Ilustre Universidad Simón Bolívar
como requisito parcial para optar al título de
Ingeniero Geofísico
Sartenejas, Octubre de 2012
UNIVERSIDAD SIMÓN BOLÍVAR
DECANATO DE ESTUDIOS PROFESIONALES
COORDINACIÓN DE INGENIERÍA GEOFÍSICA
MÉTODOS GEOFÍSICOS EN GEOTECNIA: GEORADAR,
RESISTIVIDAD, CROSSHOLE.
Por:
Ada Eduvigis Zamora Godoy
Realizado con la asesoría de:
Tutor Académico: Milagrosa Aldana
Tutor Industrial: José Luis Oliver
INFORME DE PASANTÍA
Presentado ante la Ilustre Universidad Simón Bolívar
como requisito parcial para optar al título de
Ingeniero Geofísico
Sartenejas, Octubre de 2012
iv
v
RESUMEN
En este trabajo se presentan los resultados de la caracterización de tres áreas diferentes,
utilizando, en cada caso, métodos geofísicos distintos (Georadar, estudios de resistividad y
ensayos “crosshole”), con aplicaciones específicas geotécnicas.
Utilizando el método de Georadar (Ground Penetrating Radar), se trató de identificar
elementos enterrados que pudieran afectar la construcción de una nueva edificación en las
instalaciones de PDVSA INTEVEP, Estado Miranda. Se detectó la presencia de dos tuberías, dos
posibles tuberías y una bancada. Adicionalmente, se presenta una zona en la que la señal de GPR
se ve distorsionada, esto se interpretó como la presencia de planchas de acero o alto grado de
humedad en dichas zonas. Dado al grado de incertidumbre asociado a la existencia de las posibles
tuberías y de las zonas de “alto contraste”, se recomienda efectuar excavaciones en zonas
específicas (calicatas exploratorias), para verificar la existencia de elementos que no pudieron
observarse con certeza en los perfiles.
Mediante sondeos eléctricos verticales (arreglo tipo Wenner), se efectuaron estudios de
resistividad del suelo para el proyecto “Astilleros del Alba (ASTIALBA)” en Araya, Estado
Sucre. Los resultados obtenidos indican valores de resistividad característicos de sedimentos
(arenas y arcillas), presentando concordancia con la litología del área. Dichos resultados serán
tomados en consideración al momento de diseñar los sistemas de puesta a tierra y de protección
catódica para las estructuras a implantar.
Con el propósito de definir las velocidades de ondas Vp, Vs y los módulos elásticos
relacionados a sedimentos marinos, Formación Coche y Formación Manicuare, en Araya, Estado
Sucre; se realizaron dos ensayos de pozos cruzados (crosshole) para el proyecto “Astilleros del
Alba (ASTIALBA)”. Los valores de velocidad de ondas Vp y Vs calculados en cada caso,
concuerdan con los estimados para estas litologías.
Tomando en cuenta factores referentes a perforaciones geotécnicas y ensayos SPT, se
calcula la velocidad de ondas de corte en los sedimentos marinos utilizando diversas ecuaciones
empíricas propuestas por Ohta y Goto (1978). Comparando los resultados obtenidos, se concluye
que, aunque estas ecuaciones pueden presentar una aproximación de las velocidades de ondas S,
la utilización de métodos directos de medición de ondas presenta resultados más confiables.
vi
Mami……
Lo logramos!!!
vii
AGRADECIMIENTOS
A mi mami, por apoyarme en todo momento, dar todo lo que estaba en sus manos y hasta
más, para garantizar mi felicidad y estabilidad. Ser super cariñosa y amorosa, estar siempre
pendiente de mi (a veces más de lo normal), y regañarme bastante. Todo lo que soy te lo debo a
ti, eres lo más grande que tengo mami, te amo infinito!!!
A mi papi por siempre consentirme, apoyarme y darme cariño… Te amoo!
A la familia Ramírez Guevara, la abuela Willy y Nathaly, por demostrarme que no
tenemos que compartir genes para ser familia. Por cuidarme, estar pendientes de mí y tratarme
como un miembro más de la familia, sin la más mínima distinción. Gracias infinitas por
brindarme un hogar lleno de cariño y apoyo incondicional. Los amo!
A Edward Farraye, por ser mi mejor amigo en todo este tiempo. Explicarme mate y hasta
cosas de geofísica. Compartir conmigo demasiadas cosas, aconsejarme y siempre estar dispuesto
a ayudarme en lo que sea. Te quiero demasiado!
A los Yukan Flai (Gris, Yoha, Axel, Juan, Jesús, Adri, Gian, Vicky, K, Fran, Anita y
Vanessa), por hacer estos años en la universidad los mejores de mi vida, todos los momentos
compartidos con ustedes son un tesoro. Tenemos recuerdos muy lindos, espero que sigan en las
próximas etapas de nuestras vidas. Los adoro!
A mis amigos geofísicos: Margarito, Vane, Santo, Carla, Daniel y Mag. Por hacer amenas
las horas interminables de estudio, ser super solidarios y un grupo excelente! Los adoro!
A Jessica Cardozo y Mary Márquez, por estar presentes en cada etapa de mi vida y ser
amigas incondicionales. Las amo!
A mi tía Tere y mi abuela Genoveva, por ser amorosas, comprensivas y súper alcahuetas!,
ayudarnos en los malos momentos, y compartir los buenos! Las quiero.
A los Godoy (Tere, Larry, Carlos, Aymara, Beto, Mary, Carlina, Manuel) por todos los
lindos momentos que hemos compartido, y ser super solidarios con nosotros, los quiero mucho.
A todo el equipo de Amundaray Ingeniería Geotécnica y Amundaray Instrumentos
Geotécnicos, por enseñarme, ayudarme, aconsejarme y compartir conmigo durante este periodo
de pasantías.
viii
A la profesora Milagrosa, Hugo, Edward, Yosu, Mikel, Rossmar y Moisés; por brindarme
su ayuda y apoyo en la elaboración de este libro.
A Dios Todopoderoso!
A la Ilustre Universidad Simón Bolívar!!!!
ix
ÍNDICE GENERAL
RESUMEN................................................................................................................................................... iv
AGRADECIMIENTOS .............................................................................................................................. vii
ÍNDICE GENERAL..................................................................................................................................... ix
ÍNDICE DE TABLAS ................................................................................................................................ xii
ÍNDICE DE FIGURAS.............................................................................................................................. xiii
INTRODUCCIÓN .........................................................................................................................................1
CAPÍTULO 1: DETECCIÓN CON GEORADAR DE SERVICIOS ENTERRADOS PARA LA
CONSTRUCCIÓN DE EDIFICACION EN EL PATIO DE APARCAMIENTO PDVSA-INTEVEP. LOS
TEQUES, ESTADO MIRANDA ..................................................................................................................3
1.1 ASPECTOS TEÓRICOS ...............................................................................................................3
1.1.1 Ecuaciones de Maxwell.................................................................................................................3
1.1.2 Coeficientes de reflexión de Fresnel .............................................................................................5
1.1.3 Atenuación de la señal...................................................................................................................8
1.1.4 Aplicaciones Generales de datos GPR..........................................................................................9
1.1.5 Localización de tuberías................................................................................................................9
1.2 UBICACIÓN GEOGRÁFICA DEL ÁREA DE ESTUDIO..............................................................10
1.3 ADQUISICIÓN DE DATOS.............................................................................................................13
1.4 PROCESAMIENTO E INTERPRETEACIÓN DE LOS PERFILES................................................15
1.5 RESULTADOS Y ANÁLISIS...........................................................................................................19
1.5.1 Calicatas exploratorias recomendadas.........................................................................................21
1.6 CONCLUSIONES .............................................................................................................................23
CAPÍTULO 2: ESTUDIOS DE RESISTIVIDAD DEL SUELO PARA EL PROYECTO “ASTILLEROS
DEL ALBA (ASTIALBA)”. ARAYA, ESTADO SUCRE. ........................................................................24
2.1 ASPECTOS TEÓRICOS ...................................................................................................................24
2.1.1 Resistividad Aparente .................................................................................................................26
2.1.2 Sondeo eléctrico vertical .............................................................................................................27
2.1.3 Pseudo-sección de resistividad aparente .....................................................................................28
2.1.4 Método Wenner...........................................................................................................................29
2.2 UBICACIÓN DEL ÁREA DE ESTUDIO.........................................................................................29
2.3 GEOLOGÍA DEL ÁREA...................................................................................................................30
2.3.1 Geología Estructural Regional .............................................................................................31
2.3.2 Geología Local.....................................................................................................................33
x
2.3.2.1 Unidades Sedimentarias Cuaternarias..................................................................................33
2.3.2.2 Formaciones .........................................................................................................................34
2.4 ADQUISICIÓN DE DATOS.............................................................................................................36
2.4.1 Equipos Utilizados ......................................................................................................................37
2.4.2 Área Administrativa ....................................................................................................................38
2.4.3 Subestación Principal ..................................................................................................................39
2.5 PROCESAMIENTO ..........................................................................................................................41
2.6 RESULTADOS Y ANÁLISIS...........................................................................................................42
2.6.1 Área Administrativa ....................................................................................................................42
2.6.2 Subestación Principal ..................................................................................................................48
2.6.3 Consideraciones generales: sistemas puesta a tierra y protección catódica ................................53
2.7 CONCLUSIONES ............................................................................................................................54
CAPÍTULO 3: ESTUDIOS GEOTÉCNICOS POR PROSPECCIÓN GEOFÍSICA EN TIERRA:
CROSSHOLE PARA EL PROYECTO “ASTILLEROS DEL ALBA (ASTIALBA)”, ARAYA, ESTADO
SUCRE.........................................................................................................................................................55
3.1 Aspectos Teóricos ..............................................................................................................................55
3.1.1 Ondas Sísmicas ...........................................................................................................................55
3.1.2 Módulos Elásticos .......................................................................................................................56
3.1.3 Determinación de módulos elásticos usando Vp, Vs y densidad ................................................59
3.1.4 Ensayo de Pozos Cruzados (Crosshole) ......................................................................................59
3.2 UBICACIÓN DEL ÁREA DE ESTUDIO.........................................................................................60
3.3 ADQUISICIÓN DE DATOS.............................................................................................................62
3.4 PROCESAMIENTO DE LOS DATOS .............................................................................................67
3.4.1 Ensayo Crosshole 1..............................................................................................................67
3.4.2 Ensayo Crosshole 2..............................................................................................................69
3.5 RESULTADOS Y ANÁLISIS...........................................................................................................70
3.5.1. Cálculo de velocidades de ondas P y S ......................................................................................70
3.5.1.1 Ensayo Crosshole 1..........................................................................................................70
3.5.1.2 Ensayo Crosshole 2..........................................................................................................75
3.5.2 Cálculo de Módulos Elásticos.....................................................................................................78
3.5.2.1 Ensayo Crosshole 1..........................................................................................................78
3.5.2.2 Ensayo Crosshole 2..........................................................................................................79
3.5.3 Consideraciones de sismicidad para el diseño de edificaciones...........................................80
3.5.4 Consideraciones para el análisis de interacción suelo-estructura.........................................81
3.6 CONCLUSIONES .............................................................................................................................81
xi
CAPÍTULO 4: UTILIZACIÓN DE ECUACIONES EMPÍRICAS PARA ESTIMAR LA VELOCIDAD
DE ONDAS DE CORTE A PARTIR DE PARÁMETROS RELACIONADOS A ENSAYOS DE
PENETRACIÓN ESTÁNDAR....................................................................................................................83
4.1 ASPECTOS TEÓRICOS ...................................................................................................................83
4.1.1 Ensayo SPT .................................................................................................................................83
4.1.2 Relación Ensayos SPT-Velocidad Ondas de Corte.....................................................................85
4.2 METODOLOGÍA ..............................................................................................................................86
4.3 RESULTADOS Y ANÁLISIS...........................................................................................................87
4.3.1 Número de golpes (N)..........................................................................................................88
4.3.2 Número de golpes (N) y profundidad (H)............................................................................88
4.3.3 Número de golpes (N) y Tipo de Suelo (Suelo)...................................................................89
4.3.4 Número de golpes (N), Profundidad (H) y Tipo de Suelo (Suelo).......................................90
4.4 CONCLUSIONES .............................................................................................................................92
REFERENCIAS...........................................................................................................................................94
APÉNDICE A: Planilla de Perforación, sondeo PN-02...............................................................................98
APÉNDICE B: Perfil perforaciones geotécnicas cercanas al ensayo crosshole 1 .....................................100
APÉNDICE C: Ensayos de laboratorio, muestras recuperadas, sondeo SM-141 ......................................101
APÉNDICE D: Forma espectral y factor de corrección.............................................................................103
APÉNDICE E: Planilla de perforación, sondeo SM-141...........................................................................104
xii
ÍNDICE DE TABLAS
Tabla 1.1: Elementos detectados..................................................................................................................19
Tabla 2.1: Coordenadas UTM de los estudios de resistividad en el área administrativa .............................38
Tabla 2.2: Coordenadas UTM de los estudios de resistividad de la Subestación Principal.........................40
Tabla 3.1: Tiempos y velocidades de Ondas P y S, sentido descendente. Ensayo Crosshole 1...................71
Tabla 3.2: Tiempos y velocidades de Ondas P y S, sentido ascendente. Ensayo Crosshole 1.....................72
Tabla 3.3: Velocidades de Ondas P y S, ensayo Crosshole 1 ......................................................................73
Tabla 3.4: Relación Vp/Vs, ensayo crosshole 1...........................................................................................74
Tabla 3.5: Tiempos y velocidades de Ondas P y S, sentido descendente, ensayo crosshole 2 ....................75
Tabla 3.6: Tiempos y velocidades de Ondas P y S, sentido ascendente, ensayo crosshole 2 ......................76
Tabla 3.7: Velocidades de Ondas P y S, ensayo crosshole 2 .......................................................................77
Tabla 3.8: Relación Vp/Vs, ensayo crosshole 2...........................................................................................78
Tabla 3.9: Módulos elásticos, ensayo crosshole 1........................................................................................79
Tabla 3.10: Módulos elásticos, ensayo crosshole 2......................................................................................80
Tabla 4.1: Velocidad de ondas S tomando en cuenta el número de golpes N..............................................88
Tabla 4.2: Velocidad de ondas S tomando en cuenta el número de golpes (N) y la profundidad (H). ........89
Tabla 4.3: Velocidad de ondas S tomando en cuenta el número de golpes (N) y el tipo de suelo...............89
Tabla 4.4: Velocidad de ondas S tomando en cuenta el número de golpes (N), la profundidad (H) y el tipo
de suelo (Suelo)............................................................................................................................................90
Tabla 4.5: Error promedio y error probable .................................................................................................91
xiii
ÍNDICE DE FIGURAS
Figura 1.1: Secuencia de inducción de un campo electromagnético..............................................................4
Figura 1.2: Ondas incidentes en una interfaz cuando son transmitidas y reflejadas. .....................................5
Figura 1.3: Campos de propagación de ondas electromagnéticas.................................................................6
Figura 1.4: Atenuación de la señal debido a heterogeneidades......................................................................8
Figura 1.5: Vista en planta de perfiles para detectar una tubería ...................................................................9
Figura 1.6: Ubicación del área de estudio, Estado Miranda.........................................................................10
Figura 1.7: Ubicación del área de estudio....................................................................................................11
Figura 1.8: Plano del área de estudio e indicación de ubicación de la edificación a construir ....................12
Figura 1.9: Ubicación de las bancadas de servicios a construir para la edificación.....................................12
Figura 1.10: Mallado realizado durante la adquisición de datos..................................................................13
Figura 1.11: Equipo de adquisición SIR-3000.............................................................................................14
Figura 1.12: Antena de 400MHz..................................................................................................................14
Figura 1.13: Interpretación de tuberías en secciones contiguas ...................................................................16
Figura 1.14: Perfil R656, forma original......................................................................................................17
Figura 1.15: Perfil R656, al aumentar la ganancia de las señales ................................................................17
Figura 1.16: Zonas de alto contraste y tubería .............................................................................................18
Figura 1.17: Elementos encontrados que no presentaron continuidad en los perfiles adyacentes. ..............18
Figura 1.18: Tuberías detectadas..................................................................................................................20
Figura 1.19: Ubicación de las calicatas recomendadas ................................................................................22
Figura 2.1: Resistividad de algunas rocas y minerales.................................................................................25
Figura 2.2: Mediciones de resistividad ........................................................................................................26
Figura 2.3: dispositivo electródico AMN para la definición de resistividad aparente .................................26
Figura 2.4: Ejemplo de un subsuelo heterogéneo.........................................................................................27
Figura 2.5: Arreglo Wenner ........................................................................................................................29
Figura 2.6: Ubicación del área de estudio....................................................................................................30
Figura 2.7: Área de Estudio, ubicada entre Manicuare y Chacopata ...........................................................31
Figura 2.8: Mapa esquemático estructural área del Caribe ..........................................................................32
Figura 2.9: Mapa Geológico de Unidades Sedimentarias ............................................................................33
Figura 2.10: Ubicación Área Administrativa y Subestación Principal.........................................................37
Figura 2.11: Equipo utilizado para la realización de los estudios de resistividad........................................38
Figura 2.12: Ubicación de los estudios de resistividad correspondientes al área administrativa.................39
xiv
Figura 2.13: Ubicación de los estudios de resistividad correspondientes a la Subestación Principal..........40
Figura 2.14: Ubicación de los perfiles de resistividad del área administrativa............................................42
Figura 2.15: Pseudosección de resistividad aparente, perfil D3-D2 ............................................................43
Figura 2.16: Sección de resistividad verdadera, perfil D3-D2.....................................................................44
Figura 2.17: Pseudosección de resistividad aparente, perfil D7-D5 ............................................................44
Figura 2.18: Sección de resistividad verdadera, perfil D7-D5.....................................................................45
Figura 2.19: Pseudosección de resistividad aparente, perfil D6-D4-D1 ......................................................46
Figura 2.20: Sección de resistividad verdadera, perfil D6-D4-D1...............................................................46
Figura 2.21: Mapa de resistividad verdadera a 2m de profundidad, área administrativa.............................47
Figura 2.22: Ubicación de los perfiles de resistividad correspondientes a la subestación principal............48
Figura 2.23: Pseudosección de resistividad aparente, perfil A1-A2-A3 ......................................................49
Figura 2.24: Sección de resistividad verdadera, perfil A1-A2-A3...............................................................49
Figura 2.25: Pseudosección de resistividad aparente, perfil A4-A5-A6 ......................................................50
Figura 2.26: Sección de resistividad verdadera, perfil A4-A5-A6...............................................................50
Figura 2.27: Pseudosección de resistividad aparente, perfil A7-A8-A9 ......................................................51
Figura 2.28: Sección de resistividad verdadera, perfil A7-A8-A9...............................................................52
Figura 2.29: Mapa de resistividad verdadera a 5m de profundidad, subestación principal .........................53
Figura 3.1: Ondas P......................................................................................................................................55
Figura 3.2: Ondas S......................................................................................................................................56
Figura 3.3: Identificación de ondas sísmicas................................................................................................56
Figura 3.4: Relación de Poisson...................................................................................................................57
Figura 3.5: Módulo de Young......................................................................................................................57
Figura 3.6: Módulo de rigidez......................................................................................................................58
Figura 3.7: Módulo de Bulk.........................................................................................................................58
Figura 3.8: Descripción del ensayo crosshole..............................................................................................60
Figura 3.9: Ubicación del área de estudio....................................................................................................61
Figura 3.10: Ubicación de mediciones de resistividad y ensayos crosshole ................................................61
Figura 3.11: Ubicación de los ensayos Cross Hole......................................................................................62
Figura 3.12: Sistema de martillo de pozo.....................................................................................................64
Figura 3.13: Geófono de pozo triaxial con su controlador...........................................................................64
Figura 3.14: Sismógrafo de 24 canales ........................................................................................................65
Figura 3.15: Adquisición de datos. Ensayo Crosshole 1..............................................................................66
Figura 3.16: Registro correspondiente al disparo a 5,5m al descender la fuente. Ensayo crosshole 1 ........68
Figura 3.17: Registro después de aplicar un filtro pasa banda, correspondiente al disparo a 5,5m al
descender la fuente. Ensayo crosshole 1 ......................................................................................................68
xv
Figura 3.18: Registro correspondiente al disparo a 7,5m al descender la fuente. Ensayo crosshole 2 ........69
Figura 3.19: Registro después de aplicar un filtro pasa banda, correspondiente al disparo a 7,5m al
descender la fuente. Ensayo crosshole 2 ......................................................................................................70
Figura 3.20: Variación de velocidades Vp y Vs con la profundidad, ensayo crosshole 1. ..........................73
Figura 3.21: Variación de velocidades Vp y Vs con la profundidad, ensayo crosshole 2. ..........................77
Figura 4.1: Esquema ensayo SPT.................................................................................................................84
Figura 4.2: Comparación velocidad de ondas S, ensayo Crosshole y ecuaciones empíricas.......................91
Figuras de los Apéndices
Figura A1: Planilla de perforación, sondeo PN-03, pag. 1...........................................................................98
Figura A2: Planilla de perforación, sondeo PN-03, pag. 2...........................................................................99
Figura B1: Perfil perforaciones geotécnicas cercanas al ensayo crosshole 1.............................................100
Figura C1: Planilla laboratorio, sondeo Sm-141, pag 1 .............................................................................101
Figura C2: Planilla laboratorio, sondeo Sm-141, pag 2 .............................................................................102
Figura D1: Forma espectral y factor de corrección....................................................................................103
Figura E1: Planilla de perforación, sondeo Sm-141, pag 1........................................................................104
Figura E3: Planilla de perforación, sondeo Sm-141, pag 3........................................................................106
1
INTRODUCCIÓN
En el área de la construcción civil, la aplicación de ciertos métodos geofísicos para
obtener información del subsuelo resulta de gran utilidad en el diseño de las estructuras. Algunos
de los métodos geofísicos utilizados con fines geotécnicos son: Georadar (Ground Penetrating
Radar), estudios de resistividad y ensayos crosshole (Manilla, 2003).
El Georadar es muy empleado en la investigación somera del subsuelo urbano, siendo la
técnica por excelencia para la localización y cartografía de servicios urbanos enterrados
(Bordehore, 2005). Estudios eléctricos de superficie representan un método de análisis de los
geomateriales en términos de sus propiedades eléctricas, de ellas la resistividad es bastante
importante (Arias, 2011), conociendo los valores de resistividad del suelo, se pueden diseñar los
sistemas de puesta a tierra y protección catódica para proteger estructuras a construir. Mediante la
realización de ensayos crosshole se calculan valores de velocidades de ondas sísmicas, estas son
herramientas importantes al momento de diseñar estructuras que respondan a condiciones
específicas de sitio, adicionalmente, conociendo los valores de velocidad de ondas sísmicas y la
densidad del medio, es posible calcular las propiedades elásticas que relacionan la magnitud de la
respuesta asociada al esfuerzo aplicado (Rocabado, 2011).
La empresa Amundaray Instrumentos Geotécnicos se dedica a prestar servicios de
instrumentación geotécnica, geofísica y sismológica para obras de ingeniería. Durante el periodo
de pasantías en esta compañía, se realizaron trabajos empleando los métodos geofísicos descritos
anteriormente con el propósito de la caracterización de suelos en varias partes del país. Estudios
GPR son llevados a cabo para detectar elementos enterrados en un área donde se prevé la
construcción de una nueva edificación en las instalaciones de INTEVEP (PDVSA), Los Teques,
Estado Miranda. Estudios de resistividad y ensayos crosshole se realizaron en la zona donde se
construirá el “Astillero del Alba” en Araya, estado Sucre.
A fin de estimar valores de velocidad de ondas de corte, Ohta y Goto (1978), utilizando
los resultados de ensayos de penetración estándar (SPT) en perforaciones geotécnicas,
determinaron diversas ecuaciones empíricas que permiten calcular estas velocidades mediante
parámetros geotécnicos. Habiendo calculado la velocidad de ondas de corte con los ensayos
2
crosshole, se toman en consideración resultados de perforaciones geotécnicas cercanas a estos
ensayos, para estimar estas velocidades utilizando las ecuaciones empíricas.
3
CAPÍTULO 1
DETECCIÓN CON GEORADAR DE SERVICIOS ENTERRADOS PARA LA
CONSTRUCCIÓN DE EDIFICACIÓN EN EL PATIO DE APARCAMIENTO DE
PDVSA-INTEVEP, LOS TEQUES, EDO. MIRANDA
1.1 ASPECTOS TEÓRICOS
La tecnología GPR (Ground Penetrating Radar) utiliza campos electromagnéticos para
detectar estructuras y cambios en las propiedades de los materiales. La mayoría de las
aplicaciones se utilizan en materiales geológicos. Sin embargo, otra aplicación consiste en la
detección de compuestos generados por el hombre como lo son concreto, asfalto y otros
materiales de construcción. Una de las ventajas de este método es que se obtienen imágenes del
subsuelo en tiempo real y de manera continua (Annan, 2005).
Los fundamentos del GPR se basan en la teoría electromagnética. Los campos
electromagnéticos se propagan principalmente como ondas no dispersivas. Las ecuaciones de
Maxwell describen matemáticamente la física de los campos electromagnéticos. Relaciones
constitutivas cuantifican las propiedades de los materiales, la combinación de éstas provee los
fundamentos para describir cuantitativamente las señales de GPR (Annan, 2005).
1.1.1 Ecuaciones de Maxwell
En términos matemáticos, los campos electromagnéticos y sus propiedades relacionadas
se expresan como: (Annan, 2005)
4
y (1.3)
donde:
Vector de fuerza de campo eléctrico (V/m)
Vector del flujo de densidad magnética (T)
Vector de desplazamiento eléctrico (C/m2
)
Intensidad del campo magnético (A/m)
Densidad de carga eléctrica (C/m2
)
Vector de densidad de corriente eléctrica (A/m2
)
Tiempo (seg)
Las ecuaciones de Maxwell describen un conjunto de campos eléctricos y magnéticos
cuando los campos varían con el tiempo. Los campos eléctricos cambiantes generan campos
magnéticos que, a su vez, inducen un campo eléctrico (Figura 1.1). Esta continua sucesión de un
campo inducido por otro, da como resultado la generación de una serie de campos
electromagnéticos que se desplazan a través del medio (Annan, 2005).
Figura 1.1: Secuencia de inducción de un campo electromagnético (Modificado de Annan, 2005).
5
1.1.2 Coeficientes de reflexión de Fresnel
El coeficiente de Fresnel de reflexión y transmisión cuantifica cómo varían las amplitudes
de los campos electromagnéticos a través de la interfaz entre dos materiales (Annan, 2005).
Cuando una onda electromagnética plana incide en un límite, es parcialmente transmitida
y parcialmente reflejada (Ver figura 1.2). La amplitud del campo incidente se denota como I y la
señales reflejadas son denotadas como RI y TI donde R y T son los coeficientes de reflexión y
transmisión. (Annan, 2005).
Figura 1.2: Ondas incidentes en una interfaz cuando son transmitidas y reflejadas (Annan, 2005).
Cuando se encuentran límites planares, se ha vuelto tradicional descomponer la onda
incidente en dos componentes cuyos vectores componentes tienen orientación compatible
respecto al límite. Estas dos ondas se refieren a las ondas del campo eléctrico transversal (TE) y
del campo magnético transversal (TM) (Ver figura 1.3). La onda del campo eléctrico transversal
siempre tiene su campo eléctrico paralelo al plano de la interfaz, mientras que la onda de campo
magnético transversal tiene su campo magnético en el plano de la interfaz. Esta descomposición
es estrictamente dependiente de la geometría de la interfaz y no tiene relación alguna con los
correspondientes campos electromagnéticos. Al descomponer el campo en las componentes TE y
TM, puede obtenerse la forma matemática específica de R y T (Annan, 2005).
6
Figura 1.3: Campos de propagación de ondas electromagnéticas (Modificado de Annan, 2005)
Los coeficientes de reflexión y transmisión de las ondas TE y TM toman formas
matemáticas distintas porque su comportamiento es distinto. Formalmente puede escribirse:
(1.4)
(1.5)
Donde ITE representa la fuerza de campo eléctrico para la onda TE e ITM representa la
fuerza del campo magnético para la onda TM.
Las formas matemáticas para R e I se derivan señalando dos hechos fundamentales.
Primero, la ley de Snell debe satisfacerse. Segundo, el comportamiento físico requiere que los
campos magnéticos y eléctricos en el plano de la interfaz sean el mismo a ambos lados del límite
y además que la corriente eléctrica y la densidad de flujo magnético atravesando el límite deben
ser iguales en cada lado del límite.
Cuando estas condiciones se cumplen se puede deducir que:
7
Estas son las ecuaciones para los coeficientes de reflexión y transmisión, donde Zi y Yi
son las impedancias y admitancias de la i-ésima capa (Annan, 2005).
Es importante recordar que las expresiones anteriores aplican para el campo magnético en
el caso TM y el campo eléctrico en el caso TE.
Cuando la onda electromagnética incide verticalmente sobre la interfaz (θ1=0°), no hay
distinción entre las ondas TE o TM y los coeficientes TE y TM son idénticos. Cuando la
incidencia no es vertical, los coeficientes son diferentes. Estos resultados muestran los cuatro
puntos importantes que deben ser recordados al momento de evaluar e interpretar datos GPR
(Annan, 2005):
1. La magnitud de reflexión de los TE se vuelve más grande mientras mayores sean los
ángulos de incidencia.
2. El coeficiente de reflexión TM puede eliminarse o mostrar reducciones a lo mínimo si el
ángulo de incidencia aumenta. Este ángulo mínimo es conocido como el “ángulo
Brewster”. Al ángulo Brewster, ocurre máxima transmisión a través de la interfaz. Para
ondas TE, la admitancia debe disminuir en la interfaz para que el ángulo de Brewster
exista; para las ondas TM, la impedancia debe disminuir a través de la interfaz.
3. Cuando las ondas viajan de un medio de baja velocidad a un medio de alta velocidad, la
magnitud de los coeficientes de reflexión se vuelve constante para ángulos mayores a los
ángulos críticos. Las ondas son totalmente reflejadas, los campos existen en el otro material
pero se comportan como señales evanescentes que decaen exponencialmente con la
distancia de la interfaz.
4. El signo de los coeficientes de reflexión puede ser positivo o negativo. Un signo positivo de
reflexión indica que el campo reflejado ( para TE o para TM) están en la misma
8
dirección que el vector de campo incidente, mientras que un coeficiente negativo significa
que el campo reflejado está en dirección opuesta al campo incidente (Annan, 2005).
1.1.3 Atenuación de la señal
Invariablemente, las señales de GPR se transmiten a través de medios complejos. Las
señales encuentran propiedades magnéticas y eléctricas heterogéneas a muchas escalas. El diseño
de un estudio GPR requiere que las longitudes de ondas de los campos electromagnéticos sean
comparables en escala con los objetos a detectar. Las heterogeneidades a pequeñas escalas
generan respuestas débiles o indetectables, pero su presencia tiene un impacto en la señal
mientras se transmite. Las heterogeneidades extraen energía a medida que los campos
electromagnéticos viajan, la dispersan en todas las direcciones y hasta pueden absorber un poco
de energía (Annan, 2005).
Cuando las señales de GPR viajan a través de medios heterogéneos, la señal directa pierde
energía constantemente (Figura 1.4). Esta pérdida de energía es imposible de cuantificar a menos
que se utilice un modelo específico (Annan, 2005).
Figura 1.4: Atenuación de la señal debido a heterogeneidades (modificado de Annan, 2005).
9
1.1.4 Aplicaciones Generales de datos GPR
El objetivo esencial de las investigaciones con GPR es extraer información del subsuelo.
Las aplicaciones son muy amplias, pero el objetivo principal es detectar objetos enterrados,
definiendo su localización y extensión en un espacio 3D. Por estos motivos, la interpretación de
datos de GPR requiere analizar los datos dos veces: primero para extraer información sobre la
velocidad y la atenuación y luego para definir la ubicación del objetivo, profundidad, entre otros
(Annan, 2005).
Los datos de GPR pueden presentar artefactos que pueden llevar a interpretaciones
incorrectas. La interpretación de los datos es inherentemente subjetiva y depende mayormente de
las habilidades, experiencia y conocimientos de quien analiza los datos (Annan, 2005).
1.1.5 Localización de tuberías
La forma común de adquirir los datos GPR para localizar tuberías, consiste en adquirir
perfiles transversales y perpendiculares entre sí. En campo, el primer paso es estudiar los
primeros resultados obtenidos sobre las tuberías observadas en los perfiles. Varios perfiles en
diversas direcciones pueden ser necesarios (Figura 1.5) (Annan, 2005).
Figura 1.5: Vista en planta de perfiles para detectar una tubería (Modificado de Annan, 2005)
Tubería
β =90°
β =45°
β =0°
10
Como se muestra en la figura 1.4, el perfil adquirido a β =90° es perpendicular a la
ubicación de la tubería y es el más adecuado para determinar la profundidad de la misma. El
perfil adquirido a β =45° está en un ángulo oblicuo y el perfil correspondiente a β =0° es paralelo
al eje de la tubería. Los resultados de los perfiles a 45° y 0° no son adecuados para determinar la
profundidad a menos que se conozca el ángulo exacto de ubicación de la tubería (Annan, 2005).
Las tuberías se observan en los perfiles como hipérbolas. El vértice de la hipérbola indica
directamente la localización de la tubería. En campo se pueden marcar estos puntos y señalar la
trayectoria de la tubería (Annan, 2005).
1.2 UBICACIÓN GEOGRÁFICA DEL ÁREA DE ESTUDIO
En este trabajo se adquirieron datos GPR para ubicar tuberías en un área aproximada de
3500 m², la cual encierra la mayor parte de área útil del estacionamiento entre los sectores
internos Norte 1 y Norte 2 de PDVSA INTEVEP, Los Teques, Edo. Miranda (Ver Figura 1.6).
Figura 1.6: Ubicación del área de estudio, Estado Miranda (Modificado de
http://www.venezuelatuya.com/)
11
En la Figura 1.7 se muestra una imagen en planta de las instalaciones de PDVSA
INTEVEP, el área de estudio está señalada con un recuadro rojo.
Figura 1.7: Ubicación del área de estudio (Modificado de Google Earth)
En la figura 1.8 se presenta el plano del área, identificando específicamente la zona de
estudio. Este estudio fue realizado con la finalidad de detectar de servicios y/o elementos
enterrados que puedan ser afectados al momento de ejecutar trabajos de construcción de una
nueva edificación dentro de instalaciones de PDVSA INTEVEP, Los Teques, Edo. Miranda. Ya
que ésta es una zona urbanizada, se prevé la existencia de gran variedad de tuberías y elementos
enterrados.
12
Figura 1.8: Plano del área de estudio e indicación de ubicación de la edificación a construir
La construcción de esta nueva edificación implica la disposición de bancadas y nuevas
tuberías para los servicios. La figura 1.9 presenta una imagen de la ubicación de las bancadas a
construir, así como la vista en planta de la proyección de la edificación.
Figura 1.9: Ubicación de las bancadas de servicios a construir para la edificación
13
1.3 ADQUISICIÓN DE DATOS
Con el propósito de detectar servicios enterrados, se realizó la adquisición de los datos
siguiendo un mallado, el cual se muestra en la figura 1.10.
Figura 1.10: Mallado realizado durante la adquisición de datos.
Dicho mallado consta de trece perfiles en dirección vertical, realizados con un
espaciamiento entre perfiles de aproximadamente 3m, y nueve perfiles en dirección horizontal,
realizados con un espaciamiento aproximado entre perfiles de 2,5m. Los obstáculos encontrados
durante la adquisición fueron vehículos aparcados en el área de estudio, estos obstáculos no
influyen significativamente en los resultados.
La fosa de transformadores, ubicada en las adyacencias a la zona de estudio, consta de dos
transformadores, de éstos transformadores se tienen dos bancadas eléctricas que forman parte de
la red de distribución de electricidad para INTEVEP.
14
La adquisición de datos fue llevada a cabo con el equipo SIR-3000 (Ver figura 1.11), con
características que se indican a continuación:
Figura 1.11: Equipo de adquisición SIR-3000
 Unidad de control SIR-3000, compatible con todas las antenas GSSI (Geophysical Survey
Systems, Inc.), con memoria de 2GB. El software que regula las mediciones del Georadar
es GSSI. La unidad incluye teclado, con el cual se introducen los datos necesarios para
realizar cada estudio (nombre, separación entre perfiles, dirección de perfil, rango, etc.) y
permite visualizar los datos adquiridos en tiempo real.
 Una fuente de poder de 10.8V DC (Batería recargable).
 Antenas blindadas con frecuencias de 400MHz (Figura 1.12).
Figura 1.12: Antena de 400MHz
15
 Un odómetro, que mide las distancias recorridas por el Georadar una vez que se inicia la
medición. En función de la información que adquiere este dispositivo, la unidad de
control regula la emisión de pulsos y puede ubicar los registros de cada perfil en su
posición correcta, de acuerdo a la información proporcionada por el usuario.
La metodología de adquisición de los datos comprendió:
 Marcación de inicio y final de perfiles georeferenciados amarrados a la topografía.
 Puesta en marcha del equipo para la adquisición de los perfiles correspondientes. Se
marcó en la libreta de campo la dirección del perfil y la ubicación del mismo en el plano.
 Verificación de datos adquiridos incluyendo relación señal-ruido y longitud marcada por
el odómetro.
1.4 PROCESAMIENTO E INTERPRETEACIÓN DE LOS PERFILES
Los datos adquiridos se visualizaron en el programa RADAN 6.6, de la compañía
Geophysical Survey Systems, Inc.
Para ubicar tuberías enterradas en las distintas zonas de estudio, se realizó una correlación
lateral entre las distintas difracciones hiperbólicas que aparecían en los radargramas (ver Figura
1.13). Si una difracción era observada en distintas secciones contiguas entonces se procedía a
cartografiar como una tubería. Si se observaba una difracción similar a la que produce
tradicionalmente una tubería, pero resultaba ser un evento aislado que no se correlacionaba con
secciones contiguas, entonces se concluía que éstas eran ocasionadas por peñones u otros objetos
enterrados.
16
Figura 1.13: Interpretación de tuberías en secciones contiguas (Modificado de
http://www.idscompany.it)
Cada perfil se procesó de forma individual. En algunos casos se aumentó un poco la
ganancia en los perfiles, con el propósito de obtener mejor resolución en las señales. Se tomó en
consideración que, si se aumentaba mucho la ganancia, aumentaba también el ruido de la señal,
lo que podía ocasionar distorsiones en ésta. No se aplicaron filtros durante el procesamiento.
La figura 1.14 presenta un ejemplo de un perfil antes de aumentarle la ganancia. En la
figura 1.15 se aprecia este mismo perfil, luego de aumentarle la ganancia.
17
Figura 1.14: Perfil R656, forma original
Figura 1.15: Perfil R656, al aumentar la ganancia de las señales
Durante el procesamiento de los perfiles, se observaron ciertas zonas en las que la señal se
presenta distorsionada, éstas son llamadas “zonas de alto contraste”. Se infiere que en estas áreas,
hay presencia de planchas de acero o humedad en el terreno, que ocasionan anomalías en la señal.
En la figura 1.16 se muestra un perfil en el que se observó la presencia de estas “zonas de
alto contraste”, este perfil es el R646. Adicionalmente, en este perfil se aprecia una tubería.
18
Figura 1.16: Zonas de alto contraste y tubería
En algunos perfiles se encontraron elementos que no presentaban continuidad en los
perfiles siguientes, por lo que se estima que no sean tuberías, sino grupo de rocas o escombros en
el área (Ver figura 1.17).
Figura 1.17: Elementos encontrados que no presentaron continuidad en los perfiles adyacentes.
Luego de detectar las tuberías u otros elementos en cada perfil, se procede a ubicar la
posible profundidad, esta es indicada en la tabla de resultados. De acuerdo a las anotaciones
realizadas en campo, se tiene en el plano la ubicación de los perfiles. El programa indica la
distancia horizontal desde el inicio del perfil, por lo que se puede implantar en el plano la
ubicación del elemento encontrado.
19
1.5 RESULTADOS Y ANÁLISIS
En los perfiles procesados se identificaron bancadas, tuberías, posibles tuberías y zonas de
alto contraste, en las que la señal se presenta distorsionada. La Tabla 1.1 muestra los datos
aproximados de ubicación en el espacio y características generales de los elementos enterrados
detectados. Cada elemento se identifica mediante su nomenclador (T-XX), con el cual se
localizan las representaciones implantadas en las figuras 1.18 y 1.19. Dichos datos y
características de los elementos, se resumen como: a) Coordenadas de dos puntos o extremos, ya
sea de un tramo de tubería o sector localizado; b) rango de valores de profundidad del tope de las
tuberías; c) observaciones y, d) posible utilidad de los servicios.
Tabla 1.1: Elementos detectados
Los resultados obtenidos señalan ciertas características físicas y de ubicación espacial
relativa, de tuberías de las que se desconoce en algunos casos, sus condiciones de operatividad.
Los servicios detectados se representan mediante geometrías individuales, identificables como
líneas de tuberías de las que se desconoce, los puntos de origen y destino de las mismas (Figura
1.18). Para la ubicación en sitio de las tuberías y elementos detectados, se recomienda considerar
un margen de error horizontal de +/- 1m.
Como se puede apreciar dentro de la tabla de resultados, dos elementos se denotan como
“posible tubería”, esto se debe a que las señales no son lo suficientemente determinantes. No
obstante, se toman en cuenta al observar que se trata de reflejos que señalan la existencia de
algún elemento con estructura muy similar a la de tuberías.
20
Figura 1.18: Tuberías detectadas
 La tubería T-01 se observó tenuemente en algunos perfiles. Sin embargo, al encontrar la
tanquilla de electricidad en el área de estudio, se abrió la misma y se estudió la
profundidad y la dirección de la tubería, por lo que las señales tenues en los perfiles (que
presentan profundidades similares a las esperadas para esta tubería), se interpretan como
la continuidad de la tubería que sale de la tanquilla. Se estima que esta tubería sigue su
continuidad en la dirección señalada y probablemente esté en la bancada designada
como T-02.
 El elemento T-02 se refiere a una bancada que presenta varias tuberías en un área
pequeña.
 Los elementos T-03 y T-05 son considerados como posibles tuberías, éstas se encuentran
ubicadas directamente en el área donde se construirá la edificación. Se recomienda
tomar precauciones debido a las complicaciones que implican la cercanía de T-05 al un
vértice de la proyección horizontal de la edificación y la ubicación de T-03 dentro de
dicha proyección.
21
 Las señales que determinan a T-04, se consideran pronunciadas pero sin continuidad,
por lo que podría tratarse de un grupo de rocas o escombros que se observan a partir de
1,10m de profundidad.
 La tubería T-06 está representada en dos secciones en la figura 1.16, esto se debe a que
sólo se observó en ciertos perfiles, sin embargo, se estima que presenta continuidad en la
dirección señalada. La posición relativa de ésta intercepta las bocas de visita de la
Electricidad de Caracas y el foso de transformadores, razón por la que se deduce que la
utilidad de esta tubería es Electricidad.
 Las zonas indicadas en la implantación con líneas rojas inclinadas se refieren a “zonas
de alto contraste”, en estas áreas se tuvo poca resolución en los datos obtenidos,
posiblemente por causa del acero de refuerzo que compone la estructura de ciertos paños
de la losa de pavimento rígido o por la presencia de humedad.
1.5.1 Calicatas exploratorias recomendadas
Con el propósito de comprobar, de manera directa, la existencia de los elementos
detectados, se recomienda realizar excavaciones exploratorias de dimensiones aproximadas de
16m2
de área y 2,5m de profundidad (calicatas exploratorias). Principalmente, al tratarse de los
elementos T-03, T-04, T-05 y la zona de alto contraste, donde las señales percibidas mediante el
Georadar no ofrecen certidumbre suficiente.
Se recomienda excavar un grupo de 6 calicatas, ubicadas y numeradas en orden de
importancia, según las interferencias que representan (Figura 1.19)
22
Figura 1.19: Ubicación de las calicatas recomendadas
 C1: para este caso se plantea la excavación sobre el área T-04, a fin de revelar con
precisión las características de la estructura de los elementos enterrados bajo el área. Estos
elementos causan interferencia al eje de fundación y a un tramo de la bancada de
requerimientos de instrumentación y telecomunicaciones (ver figura 1.9).
Adicionalmente, esta calicata puede comprobar o descartar las continuidades de T-03 y
T-05.
 C2: la zona reconocida como de Alto Contraste requiere de una calicata que determinará
la causa del reflejo fuerte que oculta todo lo que pudo detectarse bajo la superficie,
especialmente para descartar o comprobar las posibles interferencias con la bancada de
requerimientos de instrumentación y telecomunicaciones (ver figura 1.9).
 C3: se propone esta tercera calicata para asegurar que no existan interferencias con las
zanjas o bancadas de drenajes de aguas de lluvia. Además se comprobará la continuidad
de la bancada designada como T-02.
23
 C4: calicata que revelará si realmente existe relación entre la Fosa de Transformadores y
elementos como T-04, T-05. También para descartar interferencia entre la Fosa de
transformadores y futuras bancadas de requerimientos de instrumentación y
telecomunicaciones y electricidad (ver figura 1.9).
 C5: esta recomendación servirá para diagnosticar con precisión la causa del alto contraste
en la zona.
 C6: esta calicata permitirá revisar el área donde irán tramos de las bancadas de
requerimientos de instrumentación y telecomunicaciones y evaluar la posible existencia
de la matriz de aguas blancas que alimenta al hidrante (H) (ver figura 1.9).
1.6 CONCLUSIONES
 El estudio realizado permitió determinar posibles ubicaciones de tuberías, zonas de alto
contraste y elementos enterrados. La existencia de los elementos identificados podría
afectar en la construcción de la nueva edificación.
 Fueron detectadas dos tuberías, dos posibles tuberías y una bancada. Adicionalmente, en
ciertas zonas, la señal se observaba distorsionada. Estas áreas se denominaron como zonas
de alto contraste, se interpreta que la distorsión de las señales se debe a la presencia de
planchas de acero o humedad.
 La aplicación de Georadar para determinar elementos enterrados, constituye un método
indirecto que permite indicar la ubicación relativa y profundidad de estos elementos. Por
esta razón, una vez realizadas las detecciones con Georadar, se recomienda excavar
calicatas exploratorias con el propósito de comprobar la existencia de los elementos
detectados y tener mayor información de los mismos.
24
CAPÍTULO 2
ESTUDIOS DE RESISTIVIDAD DEL SUELO PARA EL PROYECTO “ASTILLEROS
DEL ALBA (ASTIALBA)”. ARAYA, ESTADO SUCRE
2.1 ASPECTOS TEÓRICOS
La resistividad de un material se define como la oposición que éste ofrece al paso de la
corriente eléctrica. Generalmente se designa con la letra griega ρ. Contrario a la resistividad, la
conductividad es una medida que representa la capacidad de un cuerpo de permitir el paso de
corriente eléctrica a través de él (Manilla, 2003).
La magnitud de la resistividad es un coeficiente que depende de la naturaleza y el estado
físico del cuerpo considerado, sus dimensiones serán Ω.m (ohmnios por metro).
La resistividad es una de las magnitudes eléctricas de mayor amplitud de variación. Esto
ocurre porque la conductividad puede deberse a diferentes mecanismos, que dependen de la
estructura del cuerpo considerado. En el caso de mediciones de resistividad del suelo, muchos
factores influyen. Entre los que destacan el contenido de minerales, porosidad, grado de
humedad, concentración de sales disueltas en el agua, temperatura, entre otros (Orellana, 1972).
Para relacionar valores de resistividad del suelo con la geología del área, se deben conocer
los valores típicos de resistividad de diversos materiales (Orellana, 1972). La figura 2.1 presenta
valores de resistividad característicos de algunos tipos de rocas y minerales.
25
Figura 2.1: Resistividad de algunas rocas y minerales (Modificado de
http://www.alhgeofisica.com.ar/)
Las rocas ígneas y metamórficas, generalmente, presentan valores altos de resistividad. La
resistividad de estas rocas depende, mayormente, del grado de fracturas y el porcentaje de estas
fracturas que está lleno de agua. Las rocas sedimentarias, que generalmente son más porosas y
tienen contenidos de agua más altos, normalmente presentan valores de resistividad bajos. Los
suelos arcillosos presentan valores de resistividad más bajos que los suelos arenosos (Orellana,
1972). Se puede observar que los valores asociados a cada elemento varían unos de otros en
diversos órdenes de magnitud. Esto se debe a la cantidad de factores que influyen en la
resistividad, como se indicó anteriormente.
Las mediciones de resistividad del suelo, generalmente, se realizan inyectando corriente al
suelo a través de dos electrodos (C1 y C2) y midiendo el voltaje resultante de la diferencia de
potencial en dos electrodos (P1 y P2) (Ver Figura 2.2). A partir de los valores de corriente y
voltaje, se calcula la resistividad aparente mediante la ecuación (Loke, 1999):
ρa= k V/I (2.1)
26
Figura 2.2: Mediciones de resistividad (Loke, 1999)
En la ecuación 2.1, k es el factor geométrico. Este factor depende de la forma del arreglo
de los electrodos. Cada arreglo de electrodos puede caracterizarse con un factor geométrico k en
particular. Este es un parámetro que, cuando se multiplica por la resistencia medida, convertirá la
resistencia a la resistividad de un medio uniforme (Keller, 1966).
2.1.1 Resistividad Aparente
Consideremos un subsuelo homogéneo de resistividad ρ en cuya superficie se coloca un
dispositivo electródico AMN (Figura 2.3) (Orellana, 1972).
Figura 2.3: Dispositivo electródico AMN para la definición de resistividad aparente (Orellana,
1972)
En este dispositivo, como se observa en la figura 2.3, el electrodo A está conectado a un
generador de corriente de intensidad I. El campo eléctrico que produce se estudia por medio de
los electrodos M y N, que están conectados a un voltímetro que mide la diferencia de potencial
que aparece entre ellos. Los tres electrodos están alineados. El electrodo B que cierra el
circuito de A, se supone lo suficientemente alejado de los demás para que no influya en las
observaciones. Entonces, si AM= r y MN = a tendremos (Orellana, 1972):
27
Despejando ρ resulta:
La ecuación anterior puede utilizarse para calcular la resistividad de un subsuelo
homogéneo si se miden las magnitudes que aparecen en ella (r, a, ΔV, I) (Orellana, 1972).
En el caso cuando el subsuelo no es homogéneo (como por ejemplo el mostrado en la
figura 2.4), al aplicar la fórmula anterior, se obtendrá un valor de resistividad ficticio,
dependiente de las resistividades del medio ρ1, ρ2, ρ3 y de las distancias r y a. Esta resistividad
ficticia, obtenida aplicando a los datos obtenidos sobre un medio heterogéneo, la expresión
correspondiente a un medio homogéneo, es la resistividad aparente.
Figura 2.4: Ejemplo de un subsuelo heterogéneo (Orellana, 1972)
En el caso de mediciones en campo de resistividad, debido al carácter heterogéneo del
suelo, los valores obtenidos representan la resistividad aparente del suelo.
2.1.2 Sondeo eléctrico vertical
Se llama sondeo eléctrico a una serie de determinaciones de resistividad aparente,
efectuadas con el mismo tipo de dispositivo y separación creciente entre los electrodos de
emisión y recepción (Orellana, 1972).
28
Cuando el dispositivo empleado es simétrico, o asimétrico con un electrodo en el
“infinito”, y durante la medición permanecen fijos el azimut del dispositivo y el centro del
segmento MN, suele llamarse Sondeo Eléctrico Vertical (SEV). La finalidad del SEV es conocer
la distribución vertical de resistividades bajo el punto sondeado (Orellana, 1972).
Los datos de resistividad aparente obtenidos en cada SEV son representados por medio de
una curva, en función de las distancias entre electrodos. Utilizando el método Wenner, esto se
logra gracias a que la configuración de los electrodos permanece geométricamente semejante
(Loke, 1999). Esta curva se caracteriza por representar las resistividades aparentes ρa en el eje de
las ordenadas; en las abscisas, se presentan los valores sucesivos de las distancias a. La escala
empleada para cada eje es del tipo logarítmica.
Al interpretar esta curva, generalmente se supone que el subsuelo consiste de capas
horizontales. Usando este método, se supone además que la resistividad del suelo varía sólo con
la profundidad, no en la dirección horizontal (Loke, 1999).
2.1.3 Pseudo-sección de resistividad aparente
Las pseudo-secciones son usadas como un medio de representar gráficamente los valores
de resistividad aparente, medidos utilizando sondeos eléctricos verticales, de manera que queden
registradas las variaciones laterales de resistividad aparente (Cuesta, 2007). Adicionalmente, se
utilizan como una guía inicial para interpretaciones cuantitativas futuras.
Las pseudo-secciones dan una imagen muy aproximada de la distribución de resistividad
aparente en el suelo. Sin embargo, esta imagen generalmente está distorsionada pues la forma de
los contornos depende del tipo de arreglo utilizado así como de la resistividad verdadera del
suelo. Otra aplicación de estas pseudosecciones es para escoger malas medidas de resistividad
aparente, estas medidas generalmente se destacan como puntos con valores de resistividad
inusualmente altos o bajos (Loke, 1999).
29
2.1.4 Método Wenner
El método Wenner de 4 electrodos requiere que 4 electrodos metálicos sean colocados con
igual separación sobre una línea recta en la superficie del suelo (Figura 2.5). La distancia entre
dos electrodos adyacentes es llamada “espaciamiento del arreglo” y se denota con la letra a. El
factor geométrico k para este arreglo es (Keller, 1966):
Figura 2.5: Arreglo Wenner (Cuesta, 2007)
Este arreglo se caracteriza por ser sensible a cambios verticales de resistividad del suelo
(estructuras horizontales), pero es poco eficiente detectando cambios horizontales (estructuras
verticales). Para este arreglo, la profundidad de investigación es, aproximadamente, la mitad de la
máxima apertura interelectródica “a” utilizada (Loke, 1999).
2.2 UBICACIÓN DEL ÁREA DE ESTUDIO
En este trabajo se realizaron estudios de resistividad en la costa Norte de la Península de
Araya, en el sitio conocido como Punta de Playa o Playa de Róbalo, Municipio Cruz Salmerón
Acosta, del Estado Sucre (Ver Figura 2.6). Los estudios se hicieron en los puntos donde se prevé
la instalación de equipos eléctricos mayores, la subestación eléctrica, grupo electrógeno y
edificaciones o áreas con presencia de equipos de telecomunicaciones.
30
Figura 2.6: Ubicación del área de estudio. (Modificado de http://www.venezuelatuya.com/)
2.3 GEOLOGÍA DEL ÁREA
La Cordillera Araya-Paria es definida por Danielo (1974) como la prolongación de la
sección central de la Cordillera de la Costa, la cual comienza al oeste en Punta Barrigón y se
extiende hasta Punta Narizona en el extremo oriental de la Península de Paria. Esta cordillera
limita al norte con la Placa del Caribe y al sur con la costa septentrional del Golfo de Cariaco.
Dicha cordillera posee una orientación E-W, alcanzando una longitud de 270 km y un
ancho variable entre 4 km y 20 km. Es una región montañosa baja y de colinas, con una altura
máxima de 1.060 m (en el Pico Santo de Paria). Esta cordillera se divide en dos secciones,
ubicadas a ambos lados de una línea noroeste-sureste que se extiende desde la Esmeralda hasta
Casanay, quedando al oeste la Península de Araya y al este la de Paria (Danielo, 1974).
31
La Península de Araya se caracteriza fisiográficamente por cerros de alturas máximas de
600 m, encontrándose a ambos lados, lomas y colinas que no exceden los 150 m de altura
(Danielo, 1974).
La zona de estudio se encuentra ubicada entre Manicuare y Chacopata (Ver Figura 2.7),
en el sector occidental, y se caracteriza por la presencia de elevaciones que no sobrepasan los 250
m, con formas redondeadas y vegetación muy seca. El clima muy árido que impera en la zona ha
favorecido una erosión avanzada que se traduce en la presencia de salinetas, valles secos
aluvionales, que se adentran en la parte central de la Península, y algunos planos interiores,
también aluvionales. El drenaje presenta un patrón dendrítico y los ríos y arroyos presentes se
encuentran secos (Danielo, 1974).
Figura 2.7: Área de Estudio, ubicada entre Manicuare y Chacopata. (Modificado de
http://www.tiwy.com)
2.3.1 Geología Estructural Regional
Giunta et al. (2002) indican que la placa del Caribe representa un fragmento litosférico
entre Norteamérica y Suramérica, constituido en su parte central por la corteza oceánica
ligeramente deformada y las cuencas de Colombia y Venezuela, bordeadas por cinturones
deformados Mesozoico-Terciarios de ancho variable. Los márgenes occidental y oriental de la
placa consisten en sistemas colisionales que desarrollaron varios arcos magmáticos (Istmo de
32
América Central, Antillas Menores). Los márgenes norte y sur están representados por zonas de
cizalla (Cinturón de Motagua en Guatemala, Antillas Mayores y Cordilleras Septentrionales de
Venezuela). En la Figura 2.8 se muestra un esquema de la geología estructural del Caribe, dentro
de la cual se encuentra el área explorada, las flechas en la figura indican la dirección de los
movimientos de las principales placas tectónicas.
Figura 2.8: Mapa esquemático estructural área del Caribe (Modificado de Jimenez, 2008)
El Norte de Venezuela es parte del límite entre las placas Caribe y Suramericana. La zona
de contacto de estas dos placas tectónicas ha generado un sistema de fallas principales activas del
tipo transcurrente dextral, a lo largo de un cinturón de aproximadamente 100 km, definido por los
sistemas montañosos de los Andes Venezolanos, la Cordillera Central y la Cordillera Oriental.
Dicho sistema se denomina Sistema de fallas de Oca-Ancón-Boconó-San Sebastián-El Pilar. El
Oriente de Venezuela, por su parte, está caracterizado por una zona de subducción que se
extiende hasta las Antillas Menores (Vásquez, FUNVISIS).
Según Avé-Lallemant (1997), hacia el noreste del país las rocas han sido afectadas por
dos fases de deformación: la primera ocurrió en el Cretácico Medio Tardío y está relacionada a
procesos de subducción y colisión, generando foliación regional (NE-SO generalmente), así
como también plegamientos en un régimen de cizallamiento dextral a lo largo del límite de
placas, como resultado de la convergencia oblicua entre la placa del Caribe y la Suramericana. La
33
segunda fase es post-metamórfica y se caracteriza principalmente por la generación de fallas y
corrimientos.
2.3.2 Geología Local
A continuación se mencionarán las unidades sedimentarias Cuaternarias y las formaciones
presentes en el área de estudio.
2.3.2.1 Unidades Sedimentarias Cuaternarias
Basado en el trabajo de Alvarado (2005), se presenta a continuación la descripción de las
unidades que han sido depositadas durante el Cuaternario, tomando en cuenta su medio de
acumulación. En la Figura 2.9 se muestra un mapa descriptivo de las mencionadas unidades para
la zona de estudio.
Figura 2.9: Mapa Geológico de Unidades Sedimentarias (Modificado de Alvarado, 2005)
34
 Medio de Acumulación de Valle
Valle Coluvial-Aluvial (Qcal): Este medio de depositación está caracterizado por la toma
de materiales de coluviones antiguos de edad Pleistoceno Medio a Temprano, compuestos de
grava tipo cuarzo y esquistos, embebidos dentro de una matriz arenosa, de color característico
marrón rojizo (Alvarado, 2005).
 Medio de Acumulación Litoral
Cordón o Fecha (Qhcf): Son formaciones sedimentarias que se producen en las
desembocaduras de los ríos, debido a que la arena transportada por la corriente frena al chocar
con las olas del mar; al anularse mutuamente la velocidad de ambas corrientes, la arena cae al
fondo y crea un depósito alargado que se extiende desde la zona donde el río llega al mar y crece
en la dirección que determina el contacto entre el río y los frentes de olas (Alvarado, 2005).
Albúferas (Qha): Es una laguna litoral separada del mar por una barra arenosa o cordón
litoral, de Edad Holoceno en la zona de interés. El material que constituye este tipo de depósitos
es generalmente muy fino, de color pardo amarillento y muy rico en halita (Alvarado, 2005). Este
medio de acumulación fue observado en la zona plana del área de estudio del ensayo cross hole 1
como una capa superficial arcillosa, cuarteada en prismas muy delgados con forma de platillos
por efecto de la desecación. En las grietas de los mismos destaca la presencia de pequeños
cristales de sal.
2.3.2.2 Formaciones
 Formación Coche (Léxico Estratigráfico de Venezuela, PDVSA-Intevep)
La Formación Coche fue descrita inicialmente por Patrick (1959), así como Jam y
Méndez A. (1962), quienes indicaron los afloramientos de la isla de Coche como localidad tipo.
Vivas et al. (1989), designaron los acantilados a 1 km al norte de Punta Negra, en la costa oriental
de la isla como sección tipo. Como secciones de referencia, se nombraron acantilados en San
35
Pedro y en el Bichar, en la isla de Coche, y los acantilados en la costa occidental de la península
de Chacopata (Hoja 7448 esc. 1:100.000, Cartografía Nacional).
La formación está constituida por partes aproximadamente iguales de arcillas, areniscas y
conglomerados, mal escogidos. Las arcillas son grises o azules, meteorizando en tonos
abigarrados, generalmente arenosas y contienen guijas de diversas rocas y cuarzo, siendo
localmente carbonosas. Las areniscas son de grano fino a grueso, con cemento arcilloso, gris y
marrón, meteorizando en amarillo o rojo (Patrick, 1959; Jam y Méndez A., 1962). Los
conglomerados se componen de guijarros, peñas y peñones subangulares a subredondeados, en
los que predominan rocas ígneas y metamórficas, arenisca, cuarzo y, menos frecuentes, ftanitas y
calizas, en una matriz arenosa poco coherente. Ambas litologías son típicamente ferruginosas
(Jam y Méndez A., 1962, Bermúdez, 1966). Vivas et al., (1989), indican que las estructuras
sedimentarias más comunes son la estratificación cruzada planar y bidireccional, imbricación de
clastos y los rellenos de canal. Estas estructuras se observan en areniscas y conglomerados, los
cuales son lenticulares (rellenos de canal y conglomerados, dismictitas).
El espesor de la formación es de 60 m, aunque no ha sido posible medir secciones
detalladas (González de Juana et al., 1980). En la sección tipo propuesta por Vivas et al., 1989, se
midieron 21 m. Pozos perforados en la isla de Coche, alcanzaron 26 m en el Bichar, y 20 m en
San Pedro sin alcanzar el basamento metamórfico.
No se han encontrado fósiles ni en la isla de Coche, ni en los afloramientos
septentrionales de la península de Araya. En Macanao, los fósiles no son indicativos de edad.
Debido a la ausencia de fósiles, su edad es incierta; Jam y Méndez A. (1962) la atribuyeron al
Pleistoceno. Tanto Patrick (1959) como el Cuadro de Correlación del Primer Congreso
Venezolano del Petróleo (Soc. Ven. Ing. Petról., 1963), ubican la unidad en el Pleistoceno.
 Formación Manicuare (Léxico Estratigráfico de Venezuela, PDVSA-Intevep)
La Formación Manicuare fue descrita inicialmente por Balda (1963) para designar a las
rocas metamórficas ubicadas en la zona de Manicuare. Posteriormente, fue redefinida por
36
Schubert (1972) para distinguir a los esquistos cuarzo-micáceos y cuarcitas que afloran en la
parte noroccidental de la Península de Araya.
Las rocas más abundantes presentes en esta formación son los esquistos cuarzo-micáceos,
frecuentemente granatíferos y/o epidóticos, con abundantes intercalaciones de cuarcitas y algunas
bandas de esquistos anfibólicos, mármoles y gneises, presentándose de forma alterna y con
espesor variable, frecuentemente con micropliegues y estructuras de "augen". Toda la secuencia
contiene vetas tabulares de cuarzo blanco o ahumado, las cuales varían entre varios centímetros y
varios metros de espesor, paralelos o transversales a la foliación.
El área de afloramiento se extiende en forma de una faja de aproximadamente de 3 km a 5
km de ancho, en dirección E-NE, entre las poblaciones de Araya y Chacopata, y desde la costa
norte de la Península de Araya hasta Manicuare en la costa sur.
Su expresión topográfica se caracteriza por cerros y colinas redondeadas, de color rojo
ladrillo. Frecuentemente se observan afloramientos de cuarzo blancos en las cumbres.
Debido a la ausencia de fósiles, y según su litología y grado de metamorfismo, se
correlaciona con parte del Grupo Juan Griego de la Isla de Margarita, asignándole una edad
Jurasico Superior a Cretáceo Inferior.
2.4 ADQUISICIÓN DE DATOS
En el presente trabajo se realizaron los estudios de resistividad del suelo utilizando el
método Wenner (Keller, 1966), en dos áreas designadas como: área administrativa y subestación
principal (Ver Figura 2.10).
Estas áreas están destinadas a la construcción de oficinas administrativas y la disposición
de equipos de telecomunicaciones. Detalles sobre la adquisición en estas áreas se describen en las
próximas secciones.
37
Figura 2.10: Ubicación Área Administrativa y Subestación Principal (Modificado de Google
Earth)
La ASTM (American Society for Testing Materials), es una institución que se encarga de
normalizar procedimientos o procesos, de acuerdo a ciertos estándares de calidad. La norma
ASTM G57-95, indica los procedimientos y equipos necesarios para realizar estudios de
resistividad mediante el método Wenner. La adquisición de los datos en el Área Administrativa y
Subestación Principal se realizó siguiendo las indicaciones propuestas en esta norma.
Se midieron los valores de resistividad aparente del suelo utilizando aperturas entre
electrodos de 0,5; 1; 2; 4; 8; 10; 14 y 20m.
2.4.1 Equipos Utilizados
Para la adquisición de los datos, se emplearon los equipos que se indican a continuación:
 Unidad principal: Medidor de Resistividad de suelos multifuncional, Modelo AEMC
6470-B. (Ver Figura 2.11)
38
Figura 2.11: Equipo utilizado para la realización de los estudios de resistividad
 Dos carretes de cables de 100mts.
 Dos cables de 30mts.
 4 barras de electrodos de acero de 36cm de longitud
2.4.2 Área Administrativa
Se realizaron estudios de resistividad en 7 puntos. Las coordenadas UTM de éstos se
presentan en la Tabla 2.1. En la Figura 2.12 se muestra un mapa con la localización relativa de
estos puntos en el área administrativa.
Tabla 2.1: Coordenadas UTM de los estudios de resistividad en el área administrativa
Punto Este Norte
D1 385608 1175885
D2 385747 1175874
D3 385696 1175735
D4 385569 1175783
D5 385670 1175856
D6 385562 1175763
D7 385605 1175695
39
Figura 2.12: Ubicación de los estudios de resistividad correspondientes al área administrativa.
(Modificado de Google Earth)
2.4.3 Subestación Principal
Se realizaron estudios de resistividad en 9 puntos del terreno destinado a la construcción
de la subestación principal. Las coordenadas UTM de estos puntos se presentan en la Tabla 2.2.
En la Figura 2.13 se muestra esta zona, así como la ubicación relativa de cada punto.
40
Tabla 2.2: Coordenadas de los estudios de resistividad de la Subestación Principal
Punto Este Norte
A1 385349 1176075
A2 385333 1176086
A3 385278 1176121
A4 385233 1176145
A5 385183 1176136
A6 385121 1176121
A7 385094 1176091
A8 385043 1176039
A9 385016 1175938
Figura 2.13: Ubicación de los estudios de resistividad correspondientes a la Subestación
Principal. (Modificado de Google Earth)
41
2.5 PROCESAMIENTO
Para analizar los datos de resistividad se utilizó el programa IPI2Win. Este software está
diseñado para la interpretación automática o semi-automática de datos de sondeo eléctrico
vertical, obtenidos con varios de los arreglos utilizados con más frecuencia en la prospección
eléctrica (Guía de Usuario IPI2win, 2000).
Suministrando al programa los valores de resistividad aparente medidos en campo, y la
apertura entre los electrodos, se obtiene la curva de resistividad aparente, la cual es el resultado
del suavizamiento de los valores de campo por un método tipo spline (Guía de Usuario IPI2win,
2000). La curva es graficada en escala logarítmica, tanto para el eje de las separaciones como
para el eje de la resistividad aparente. El rango de los valores en los ejes se determina
automáticamente, de manera tal que la escala de la curva puede variar para diferentes puntos de
sondeo. Adicionalmente, se puede obtener la pseudosección de resistividad aparente.
De acuerdo a los valores de resistividad aparente, se genera una curva teórica que
representa el modelo de resistividad verdadera. Este modelo, presenta las diversas capas con sus
respectivos valores de resistividad, así como los espesores de las mismas.
Los valores de resistividad aparente obtenidos en campo se insertaron en el programa
IPI2Win con el propósito de obtener pseudosecciones de resistividad aparente, así como los
valores de resistividad real.
Con los modelos de capas de resistividad real, se generaron perfiles que ilustraran la
distribución de resistividades en el suelo. Estos perfiles se obtuvieron a través el software
Surfer8. Se utilizó el método de interpolación Kringing para generar los perfiles de resistividad
verdadera.
Adicionalmente, se tiene información litológica del área administrativa, proporcionada
por una perforación geotécnica realizada a, aproximadamente, unos 15m del punto de medición
D3 (Ver Apéndice A). De acuerdo a esta planilla de perforación, los primeros 3m corresponden a
42
suelo de relleno (arena arcillosa), luego se presentan arenas y limos desde los 4m hasta los 11m y,
finalmente, esquistos grafitosos de los 12m a los 20m de profundidad.
Esta litología es tomada en cuenta al momento de generar los modelos de resistividad
verdadera así como para la interpretación de los datos.
2.6 RESULTADOS Y ANÁLISIS
2.6.1 Área Administrativa
De acuerdo a la ubicación de los puntos de resistividad, se generaron 3 perfiles
correspondientes al área administrativa (Ver Figura 2.14).
Figura 2.14: Ubicación de los perfiles de resistividad del área administrativa (Modificado de
Google Earth)
Es importante indicar que, durante la adquisición de los datos de resistividad, el suelo
estaba un poco húmedo en la zona Norte del área administrativa. Esto se observó principalmente
43
en las áreas cercanas a las mediciones del punto D1 (Ver figura 2.14) como una lámina de agua
en parte del terreno. Este grado de humedad afecta las mediciones, tal como se puede observar en
los perfiles que se muestran en las figuras 2.15 a 2.20
 Perfil D3-D2:
En la pseudosección de resistividad aparente se observan valores bajos en la zona
correspondiente al punto D2, principalmente a partir de los 6m de profundidad, donde la
resistividad aparente llega a presentar valores de 2,5 Ω.m (Figura 2.15)
Figura 2.15: Pseudosección de resistividad aparente, perfil D3-D2
En la sección de resistividad verdadera (Figura 2.16), se puede observar que la
resistividad va disminuyendo, a medida que el perfil va hacia el nor-este (similar al caso de
la pseudosección de resistividad aparente). Esto se puede relacionar con el grado de humedad
presente en dicha zona al momento de realizar los estudios, tal como se indicó anteriormente.
El área correspondiente al punto D2 presenta valores bajos de resistividad verdadera. En el
área cercana al punto D3, es donde encontramos los mayores valores de resistividad.
Tomando en cuenta que la perforación geotécnica realizada en el Área Administrativa se
encontraba a 15m del punto de medición D3, se puede comparar la litología presentada en la
planilla de perforación (Ver Apéndice A), con los valores de resistividad asociados a este
punto. Al realizar esta comparación, se observa concordancia entre la litología del área
(arena arcillosa, arenas, limos y esquistos grafitosos) y los resultados correspondientes a los
estudios de resistividad.
44
Figura 2.16: Sección de resistividad verdadera, perfil D3-D2
Al comparar la pseudosección de resistividad aparente con la sección de resistividad
verdadera, se aprecia una distribución similar en ambos casos, tanto en la zona N-E (punto
D2), como en la zona S-O (punto D3).
 Perfil D7-D5
La figura 2.17 presenta la distribución de resistividades aparentes (pseudosección) para el
perfil D7-D5. Se pueden apreciar valores bajos de resistividad aparente en la zona N-E,
resultado que concuerda con lo observado en el perfil D3-D2 (Ver Figura 2.15)
Figura 2.17: Pseudosección de resistividad aparente, perfil D7-D5
45
De acuerdo a los valores de resistividad verdadera de los puntos de medición D7 y D5, se
tiene la sección de resistividad verdadera (Ver Figura 2.18). En este caso, se presentan
variaciones significativas en las resistividades, principalmente en el punto D7, cuyos valores
llegan a los 32 Ω.m a los 5m de profundidad. En el caso del punto D5, las resistividades
llegan a tener valores de 22 Ω.m a los 5m de profundidad aproximadamente. Cercano a los
13m de profundidad, la resistividad decae.
Figura 2.18: Sección de resistividad verdadera, perfil D7-D5
Comparando la pseudosección de resistividad aparente con la sección de resistividad
verdadera de los puntos D7 y D5, se aprecia que mantienen relación, en los valores de
resistividad.
 Perfil D6-D4-D1
En la Figura 2.19 se presenta la pseudosección de resistividad aparente asociada a los
puntos de medición D6, D4 y D1. Como en el caso se los perfiles anteriores, se aprecian
valores bajos de resistividad aparente en la zona N-E.
46
Figura 2.19: Pseudosección de resistividad aparente, perfil D6-D4-D1
En la sección de resistividad verdadera ilustrada en la figura 2.20 se observa una
tendencia general resistividades bajas, presentando una pequeña anomalía en el punto D4,
donde las resistividades aumentan un poco.
Figura 2.20: Sección de resistividad verdadera, perfil D6-D4-D1
Este perfil presenta los menores valores de resistividad. En los primeros metros de
profundidad, correspondientes al punto D1, se tienen valores bajos. Esto se relaciona con el
grado de humedad en el suelo que se presentó cercano a este punto en el momento de la
adquisición de los datos. A los 5m de profundidad, bajo el punto D4, se tiene una pequeña
variación en los valores de resistividad, alcanzando unos 5 Ω.m. Igualmente el punto D6
presenta valores bajos de resistividad desde la superficie hasta los 15m.
47
Comparando la pseudosección con el perfil de resistividad verdadera, en ambas se
aprecian valores de resistividad un poco más altos en el punto D4. Es de hacer notar, que la
representación horizontal del punto D4 en la pseudosección no está a escala, pues el
programa grafica los puntos en forma equidistante. Por esta razón, la distribución horizontal
real de los puntos D6, D4 y D1 es la presentada en la sección de resistividad verdadera.
 Mapa de Resistividad Verdadera a los 2m de profundidad
Tomando en cuenta los valores de resistividad verdadera obtenidos para el área
administrativa, se genera un mapa que ilustra la distribución de las resistividades a 2m de
profundidad (Ver Figura 2.21).
Figura 2.21: Mapa de resistividad verdadera a 2m de profundidad, área administrativa.
N
48
Los menores valores de resistividad se tienen en la parte Norte del área de estudio, con
resistividades que alcanzan 1 Ω.m. Esto se relaciona al grado de saturación de agua en el
suelo al momento de realizar las mediciones. A pesar de que los primeros 3 ó 4m del área
administrativa corresponden a suelo de relleno (de acuerdo a la perforación geotécnica), se
puede interpretar que en la zona norte el suelo de relleno es un poco más arcilloso, razón por
la cual, absorbe mayor cantidad de agua. La zona sur del área de estudio presenta valores
mayores de resistividad, lo que indica que en este caso el suelo de rellenos presenta granos
un poco más gruesos (limo o arenas).
2.6.2 Subestación Principal
La ubicación de los perfiles de resistividad correspondientes a la subestación principal se
muestra en la figura 2.22.
Figura 2.22: Ubicación de los perfiles de resistividad correspondientes a la subestación principal.
(Modificado de Google Earth)
49
 Perfil A1-A2-A3
En la figura 2.23 se presenta la pseudosección de resistividades aparentes
correspondientes a las mediciones de los puntos A1, A2 y A3. Se observa una distribución
de valores bajos de resistividad, donde los menores se presentan en el punto A2.
Figura 2.23: Pseudosección de resistividad aparente, perfil A1-A2-A3
En la sección de resistividad verdadera (Figura 2.24) se aprecia que al tomar en
cuenta la tendencia de valores presentada de los puntos A3 y A2, el punto A1 muestra una
anomalía, con resistividades que alcanzan los 13 Ω.m.
Figura 2.24: Sección de resistividad verdadera, perfil A1-A2-A3
50
 Perfil A4-A5-A6
En la Figura 2.25 se aprecia la pseudosección de resistividad aparente asociada a los
puntos A4, A5 y A6.
Figura 2.25: Pseudosección de resistividad aparente, perfil A4-A5-A6
La distribución de resistividades verdaderas correspondiente a los puntos A4, A5 y A6
se presenta en la figura 2.26.
Figura 2.26: Sección de resistividad verdadera, perfil A4-A5-A6
En este caso se observan resistividades altas (en comparación con los resultados del
perfil A1-A2-A3), principalmente en los puntos A5 y A6 donde se llega a tener valores de
hasta 35 Ω.m en el caso del punto A6. En el punto A4 se presentan valores de unos 8 Ω.m
51
hasta los 5m de profundidad aproximadamente, para luego presentar un decaimiento
progresivo. En los puntos A5 y A6, al llegar a profundidades mayores a 10m, se observa
este decaimiento.
Comparando los resultados de la pseudosección con los de la sección de resistividad
verdadera se aprecia una variación en los valores de resistividad, en el caso de la sección
de resistividad verdadera, éstos son un poco más altos.
 Perfil A7-A8-A9
La figura 2.27 muestra la pseudosección de resistividad aparente asociada a los puntos
A7, A8 y A9.
Figura 2.27: Pseudosección de resistividad aparente, perfil A7-A8-A9
En la figura 2.28 se puede apreciar la sección de resistividad verdadera referente a
estos puntos.En este perfil se presentan los mayores valores de resistividad en los puntos
A7 y A9, llegando hasta unos 44 Ω.m. Sin embargo, en el punto A8 se produce una
anomalía, con valores de resistividad considerablemente bajos, tomando en cuenta la
tendencia indicada por A7 y A9.
52
Figura 2.28: Sección de resistividad verdadera, perfil A7-A8-A9
 Mapa de Resistividades Verdaderas a los 5m de profundidad
Tomando en cuenta los valores de resistividad verdaderos obtenidos, se genera un
mapa de resistividades verdaderas a los 5m de profundidad. Esto con el propósito de
observar gráficamente la distribución de las resistividades en la Subestación principal a
esta profundidad.
53
Figura 2.29: Mapa de resistividad verdadera a 5m de profundidad, subestación principal
Se puede observar una tendencia de aumento de resistividad hacia el oeste. Sin embargo,
se presenta una anomalía en esta zona con valores bajos de resistividad. Esto se puede relacionar
con un grado de humedad un poco más alto en esta zona en particular.
2.6.3 Consideraciones generales: sistemas puesta a tierra y protección catódica
Los sistemas puesta a tierra se implementan con el propósito de conectar a tierra equipos
eléctricos o electrónicos, para evitar daños a los equipos y al personal, en caso de la posible
existencia de una descarga de corriente peligrosa. Para diseñar estos sistemas, se deben tomar en
cuenta los menores valores de resistividad que pueda presentar el terreno, ya que éstos están
asociados a altas conductividades (Rojas, 2006). Los resultados obtenidos mediante este estudio
deben ser utilizados al momento de diseñar las mallas de puesta a tierra, principalmente, en las
zonas donde se estima la disposición de equipos eléctricos o electrónicos, como es el caso de la
Subestación Principal y el Área Administrativa.
N
54
Se denomina corrosión por suelos, a los procesos de degradación que son observados en
estructuras enterradas. La resistividad del suelo, al depender de factores como la humedad,
presencia de sales en el suelo, entre otros; es un indicativo del nivel de agresividad que presenta
el suelo en términos de corrosión (Rocabado, 2011). Mientras menos resistivo sea el suelo, el
grado de corrosión que presente será potencialmente alto. Con el propósito de evitar la corrosión
en elementos enterrados en el suelo, se diseñan los sistemas de protección catódica. La norma
API 651 (American Petroleum Institute), cuantifica el nivel de corrosión del suelo de acuerdo a
los valores de resistividad. De acuerdo a los valores obtenidos a través de los estudios realizados,
los niveles de corrosión del suelo están asociados a “muy corrosivo” y “moderadamente
corrosivo” (Norma API-657). Por esta razón es recomendable instalar sistemas de protección
catódica en las áreas estudiadas.
2.7 CONCLUSIONES
 A pesar de algunos cambios en los valores de resistividad obtenidos en los perfiles, al
tomar en cuenta que la resistividad en rocas varía en diversos órdenes de magnitud, los
resultados obtenidos no indican cambios bruscos de resistividad, que puedan asociarse a
cambios de litología o presencia de cuerpos de agua, entre otros.
 Haciendo referencia a la perforación geotécnica, la litología del área es mayormente
sedimentaria (arcillas, arenas y limos) y metamórfica al presentar esquistos grafitosos.
Los valores obtenidos concuerdan con los asociados a la litología descrita en la
perforación. Rocas sedimentarias, así como esquistos, presentan valores bajos de
resistividad (entre 1 y 100 Ω.m).
 Un factor importante a tomar en cuenta al momento de adquirir valores de resistividad en
campo, es el grado de saturación de agua que pueda presentar el suelo. Ya que, el grado
de humedad puede influir significativamente en los valores de resistividad. Para evitar
esto, se debe tener registro de las recientes precipitaciones en el área.
55
CAPÍTULO 3
ESTUDIOS GEOTÉCNICOS POR PROSPECCIÓN GEOFÍSICA EN TIERRA:
CROSSHOLE PARA EL PROYECTO “ASTILLEROS DEL ALBA (ASTIALBA)”,
ARAYA, ESTADO SUCRE
3.1 Aspectos Teóricos
3.1.1 Ondas Sísmicas
Las ondas sísmicas son un tipo de ondas elásticas que se producen por la propagación de
perturbaciones temporales que generan movimientos en un medio (Estrada, 2008).
 Ondas P: Las Ondas P son ondas longitudinales, lo que implica que las partículas se
mueven paralelas a la dirección de propagación de la onda, produciendo compresiones y
dilataciones en el medio (Figura 3.1). Ante cualquier perturbación que genere ondas
sísmicas, las ondas P son las que se perciben primero en los registros.
Figura 3.1: Ondas P (modificado de http://fatimafeijoomaneiro.blogspot.com)
 Ondas S: Llamadas también ondas de cizalla, éstas generan un movimiento de partículas
perpendicular a la dirección de propagación de la onda. Se relacionan a deformaciones del
56
terreno de tipo de cizalla (Figura 3.2). Su velocidad es menor que la de las ondas P, por lo
que se perciben como la segunda llegada en los registros sísmicos.
Figura 3.2: Onda S (modificado de http://fatimafeijoomaneiro.blogspot.com)
Un ejemplo de cómo se ven las llegadas de las ondas P y S en un registro sísmico se
presenta en la figura 3.3.
Figura 3.3: Identificación de ondas sísmicas (Modificado de Tarbuck et al. 2005)
3.1.2 Módulos Elásticos
Ya que las ondas sísmicas son elásticas, los medios por los que se propagan deben tener
propiedades elásticas. Por esta razón, pueden relacionarse las velocidades de ondas sísmicas con
las propiedades elásticas de un medio (Udías y Mezcua, 1997)
57
Se llaman módulos elásticos a los parámetros que describen las relaciones entre las
fuerzas aplicadas y las deformaciones (e) correspondientes a un material. Estos módulos son:
 Relación de Poisson: Relaciona cuánto se dilata un sólido en un eje respecto a la
contracción sufrida en otro eje (Figura 3.4) (Velis, 2007).
Figura 3.4: Relación de Poisson (Tomado de http://www.feppd.org/)
 Módulo de Young: Mide la resistencia de un material a la deformación, al ser aplicado
un esfuerzo uniaxial (Velis, 2007). Puede describirse como el comportamiento de un
cilindro al ser halado por ambos extremos (Figura 3.5).
Figura 3.5: Módulo de Young (Tomado de http://eculator.com/)
58
 Módulo de Rigidez: Describe cuán fácil es deformar un cuerpo ante la aplicación de
fuerzas de corte o tangenciales (Figura 3.6). El módulo de rigidez representa el cociente
entre la fuerza de corte ejercida y el cambio relativo de la deformación en la dirección de
la fuerza. (Velis, 2007).
Figura 3.6: Módulo de rigidez (Modificado de Velis, 2007)
 Módulo de Bulk: Representa el cociente entre el cambio en la presión hidrostática
ejercida sobre el material y la magnitud del cambio relativo sufrido por el mismo (Figura
3.7) (Velis, 2007).
Figura 3.7: Módulo de Bulk (Modificado de Velis, 2007)
59
3.1.3 Determinación de módulos elásticos usando Vp, Vs y densidad
Conociendo los valores de velocidad de propagación de ondas P y S en un medio, así
como la densidad del mismo, se pueden calcular los módulos elásticos mediante las siguientes
ecuaciones (Manilla, 2003):
 Relación de Poisson: (3.5)
 Módulo de Rigidez: (3.6)
 Módulo de Young: (3.7)
 Módulo de Bulk: (3.8)
3.1.4 Ensayo de Pozos Cruzados (Crosshole)
Este tipo de ensayo se realiza con la finalidad de determinar la velocidad de propagación
de ondas sísmicas P y S. Conociendo los valores de estas velocidades, así como la densidad del
suelo, se puede obtener valores asociados a los módulos elásticos (Norma ASTM D4428). Entre
estos módulos destacan: módulo de Young, relación de Poisson, módulo de Bulk, módulo de
Cizalla o simplemente las anomalías en el medio entre los pozos.
Las suposiciones que se realizan con este método son:
 Las capas están dispuestas horizontalmente
 Las leyes de refracción de Snell aplican (Norma ASTM D4428)
La metodología de adquisición de datos consiste en colocar una fuente de ondas a cierta
profundidad en uno de los pozos y receptores en los pozos siguientes (Figura 3.8). Al repetir el
ensayo a distintas profundidades, se puede obtener un perfil de velocidades en función de la
profundidad. Las velocidades de onda se calculan a partir de los tiempos de llegada en ambos
sondeos (Rojas et al., 2008).
60
El método general para la preparación de los pozos es perforar 3 pozos en línea, espaciados
3m entre cada uno. Sin embargo, si se sabe que los valores de ondas S serán superiores a 450 m/s,
el espaciamiento entre los pozos puede extenderse hasta los 4,5m. El diámetro de los pozos
durante la perforación no debe ser mayor de 6,5”, mientras que el diámetro del revestimiento del
pozo debe estar entre 3” y 4”. El espacio vacío que quede entre el revestimiento y el diámetro de
perforación debe ser llenado con lechada de cemento (Ver Figura 3.8). Esto se hace con el
propósito de eliminar discontinuidades que pueden impedir la propagación de las ondas. Además,
se debe tratar que la densidad de la lechada de cemento sea similar a la del suelo (Norma ASTM
D4428).
Figura 3.8: Descripción del ensayo crosshole (modificado de http://www.cedex.es)
3.2 UBICACIÓN DEL ÁREA DE ESTUDIO
Los estudios de resistividad se realizaron en la costa Norte de la Península de Araya, en el
sitio conocido como Punta de Playa o Playa de Róbalo, Municipio Cruz Salmerón Acosta, del
Estado Sucre (Ver figura 3.9).
61
Figura 3.9: Ubicación del área de estudio (Modificado de http://www.venezuelatuya.com/)
Los ensayos crosshole se realizaron en un área cercana a aquella donde se llevaron a cabo
los estudios de resistividad. La figura 3.10 muestra la ubicación los ensayos crosshole y las
mediciones de resistividad.
Figura 3.10: Ubicación de mediciones de resistividad y ensayos crosshole (Modificado de
Google Earth)
62
Las coordenadas UTM de los puntos donde se realizaron los ensayos Cross Hole son:
 Ensayo Crosshole 1: E 385.617 N 1.176.863
 Ensayo Crosshole 2: E 384.919 N 1.176.765
La Figura 3.11 muestra la ubicación relativa de estos puntos.
Figura 3.11: Ubicación de los ensayos Crosshole (Modificado de Google Earth)
3.3 ADQUISICIÓN DE DATOS
Se perforaron en línea 3 pozos para cada ensayo. La separación entre cada pozo fue de
3m. Los pozos se perforaron por rotación y lavado, sin recuperación de muestras, utilizando para
la perforación forros de 4” y de 3,5”. Durante la perforación, se comprobó la horizontalidad de la
máquina con niveles de burbuja para asegurar que no había desviaciones de los sondeos.
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora
Ada zamora

Mais conteúdo relacionado

Semelhante a Ada zamora

Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...
Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...
Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...Francisco Bongiorno Ponzo
 
Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...
Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...
Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...Marco Alvarado Torres
 
EPN BOMBEO HIDRAULICO
EPN BOMBEO HIDRAULICOEPN BOMBEO HIDRAULICO
EPN BOMBEO HIDRAULICOjulio sanchez
 
Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...
Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...
Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...Yérika López
 
SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...
SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...
SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...NathalieBonifaz
 
pdf-informe-cerro-unidocx_compress.pdf
pdf-informe-cerro-unidocx_compress.pdfpdf-informe-cerro-unidocx_compress.pdf
pdf-informe-cerro-unidocx_compress.pdfPEDROEDUARDOQUISPERA
 
Sismología aplicada a problemas geotécnicos relacionados con migración de agu...
Sismología aplicada a problemas geotécnicos relacionados con migración de agu...Sismología aplicada a problemas geotécnicos relacionados con migración de agu...
Sismología aplicada a problemas geotécnicos relacionados con migración de agu...DrugisCatarsis
 
Sucesion-ecologica-de-briofitas.pdf
Sucesion-ecologica-de-briofitas.pdfSucesion-ecologica-de-briofitas.pdf
Sucesion-ecologica-de-briofitas.pdflorenapellicermartin
 
Diseno para-proyectos-de-hidraulica guatemala
Diseno para-proyectos-de-hidraulica guatemalaDiseno para-proyectos-de-hidraulica guatemala
Diseno para-proyectos-de-hidraulica guatemalajabser2809
 
Análisis de vibración ambiental en el edificio del instituto de geología y ge...
Análisis de vibración ambiental en el edificio del instituto de geología y ge...Análisis de vibración ambiental en el edificio del instituto de geología y ge...
Análisis de vibración ambiental en el edificio del instituto de geología y ge...Enrique Santana
 
propuesta de sistema de control
propuesta de sistema de controlpropuesta de sistema de control
propuesta de sistema de controlAlinaRo0612
 
Guía básica de diseño, control de producción y colocación de mezclas asfáltic...
Guía básica de diseño, control de producción y colocación de mezclas asfáltic...Guía básica de diseño, control de producción y colocación de mezclas asfáltic...
Guía básica de diseño, control de producción y colocación de mezclas asfáltic...RubenPolischuk1
 
DIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdf
DIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdfDIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdf
DIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdfLuisCano684473
 
Barrantes Alberca - Leon Montenegro .pdf
Barrantes Alberca - Leon Montenegro .pdfBarrantes Alberca - Leon Montenegro .pdf
Barrantes Alberca - Leon Montenegro .pdffernando kedy
 
Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014
Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014
Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014Acontecer Escolar
 
Viva la 20 edición nº 5 noviembre 2011
Viva la 20 edición nº 5 noviembre 2011Viva la 20 edición nº 5 noviembre 2011
Viva la 20 edición nº 5 noviembre 2011Ana Carolina Wojtun
 

Semelhante a Ada zamora (20)

Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...
Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...
Tesis de Grado: Evaluación GeoEstructrural del Sector Los Araques- San Juan M...
 
Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...
Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...
Transformaciones agrarias y diferenciación campesina en Centro Loja a partir ...
 
EPN BOMBEO HIDRAULICO
EPN BOMBEO HIDRAULICOEPN BOMBEO HIDRAULICO
EPN BOMBEO HIDRAULICO
 
Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...
Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...
Análisis estratigráfico mediante la aplicación de registros de imágenes eléct...
 
Teg yuleidy elena herrera
Teg yuleidy elena herreraTeg yuleidy elena herrera
Teg yuleidy elena herrera
 
SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...
SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...
SEDIMENTOLOGÍA Y ESTRATIGRAFÍA DE LA FORMACIÓN CARHUÁZ EN EL DISTRITO DE LA E...
 
pdf-informe-cerro-unidocx_compress.pdf
pdf-informe-cerro-unidocx_compress.pdfpdf-informe-cerro-unidocx_compress.pdf
pdf-informe-cerro-unidocx_compress.pdf
 
Proteccion de distancia
Proteccion de distanciaProteccion de distancia
Proteccion de distancia
 
Sismología aplicada a problemas geotécnicos relacionados con migración de agu...
Sismología aplicada a problemas geotécnicos relacionados con migración de agu...Sismología aplicada a problemas geotécnicos relacionados con migración de agu...
Sismología aplicada a problemas geotécnicos relacionados con migración de agu...
 
Sucesion-ecologica-de-briofitas.pdf
Sucesion-ecologica-de-briofitas.pdfSucesion-ecologica-de-briofitas.pdf
Sucesion-ecologica-de-briofitas.pdf
 
Diseno para-proyectos-de-hidraulica guatemala
Diseno para-proyectos-de-hidraulica guatemalaDiseno para-proyectos-de-hidraulica guatemala
Diseno para-proyectos-de-hidraulica guatemala
 
Análisis de vibración ambiental en el edificio del instituto de geología y ge...
Análisis de vibración ambiental en el edificio del instituto de geología y ge...Análisis de vibración ambiental en el edificio del instituto de geología y ge...
Análisis de vibración ambiental en el edificio del instituto de geología y ge...
 
propuesta de sistema de control
propuesta de sistema de controlpropuesta de sistema de control
propuesta de sistema de control
 
Guía básica de diseño, control de producción y colocación de mezclas asfáltic...
Guía básica de diseño, control de producción y colocación de mezclas asfáltic...Guía básica de diseño, control de producción y colocación de mezclas asfáltic...
Guía básica de diseño, control de producción y colocación de mezclas asfáltic...
 
DIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdf
DIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdfDIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdf
DIVERSIDAD Y ABUNDANCIA DE ANFIBIOS Y REPTILES.pdf
 
Barrantes Alberca - Leon Montenegro .pdf
Barrantes Alberca - Leon Montenegro .pdfBarrantes Alberca - Leon Montenegro .pdf
Barrantes Alberca - Leon Montenegro .pdf
 
Tesis final 100%
Tesis final 100%Tesis final 100%
Tesis final 100%
 
Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014
Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014
Periódico Escolar de la Escuela Básica Bolivariana "Barinas" mes. julio 2014
 
30723_BIODIVERSIDAD.pdf
30723_BIODIVERSIDAD.pdf30723_BIODIVERSIDAD.pdf
30723_BIODIVERSIDAD.pdf
 
Viva la 20 edición nº 5 noviembre 2011
Viva la 20 edición nº 5 noviembre 2011Viva la 20 edición nº 5 noviembre 2011
Viva la 20 edición nº 5 noviembre 2011
 

Último

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadJonathanCovena1
 
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfluisantoniocruzcorte1
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 

Último (20)

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la Sostenibilidad
 
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 

Ada zamora

  • 1. UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE INGENIERÍA GEOFÍSICA MÉTODOS GEOFÍSICOS EN GEOTECNIA: GEORADAR, RESISTIVIDAD, CROSSHOLE. Por: Ada Eduvigis Zamora Godoy INFORME DE PASANTÍA Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero Geofísico Sartenejas, Octubre de 2012
  • 2. UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE INGENIERÍA GEOFÍSICA MÉTODOS GEOFÍSICOS EN GEOTECNIA: GEORADAR, RESISTIVIDAD, CROSSHOLE. Por: Ada Eduvigis Zamora Godoy Realizado con la asesoría de: Tutor Académico: Milagrosa Aldana Tutor Industrial: José Luis Oliver INFORME DE PASANTÍA Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero Geofísico Sartenejas, Octubre de 2012
  • 3. iv
  • 4. v RESUMEN En este trabajo se presentan los resultados de la caracterización de tres áreas diferentes, utilizando, en cada caso, métodos geofísicos distintos (Georadar, estudios de resistividad y ensayos “crosshole”), con aplicaciones específicas geotécnicas. Utilizando el método de Georadar (Ground Penetrating Radar), se trató de identificar elementos enterrados que pudieran afectar la construcción de una nueva edificación en las instalaciones de PDVSA INTEVEP, Estado Miranda. Se detectó la presencia de dos tuberías, dos posibles tuberías y una bancada. Adicionalmente, se presenta una zona en la que la señal de GPR se ve distorsionada, esto se interpretó como la presencia de planchas de acero o alto grado de humedad en dichas zonas. Dado al grado de incertidumbre asociado a la existencia de las posibles tuberías y de las zonas de “alto contraste”, se recomienda efectuar excavaciones en zonas específicas (calicatas exploratorias), para verificar la existencia de elementos que no pudieron observarse con certeza en los perfiles. Mediante sondeos eléctricos verticales (arreglo tipo Wenner), se efectuaron estudios de resistividad del suelo para el proyecto “Astilleros del Alba (ASTIALBA)” en Araya, Estado Sucre. Los resultados obtenidos indican valores de resistividad característicos de sedimentos (arenas y arcillas), presentando concordancia con la litología del área. Dichos resultados serán tomados en consideración al momento de diseñar los sistemas de puesta a tierra y de protección catódica para las estructuras a implantar. Con el propósito de definir las velocidades de ondas Vp, Vs y los módulos elásticos relacionados a sedimentos marinos, Formación Coche y Formación Manicuare, en Araya, Estado Sucre; se realizaron dos ensayos de pozos cruzados (crosshole) para el proyecto “Astilleros del Alba (ASTIALBA)”. Los valores de velocidad de ondas Vp y Vs calculados en cada caso, concuerdan con los estimados para estas litologías. Tomando en cuenta factores referentes a perforaciones geotécnicas y ensayos SPT, se calcula la velocidad de ondas de corte en los sedimentos marinos utilizando diversas ecuaciones empíricas propuestas por Ohta y Goto (1978). Comparando los resultados obtenidos, se concluye que, aunque estas ecuaciones pueden presentar una aproximación de las velocidades de ondas S, la utilización de métodos directos de medición de ondas presenta resultados más confiables.
  • 6. vii AGRADECIMIENTOS A mi mami, por apoyarme en todo momento, dar todo lo que estaba en sus manos y hasta más, para garantizar mi felicidad y estabilidad. Ser super cariñosa y amorosa, estar siempre pendiente de mi (a veces más de lo normal), y regañarme bastante. Todo lo que soy te lo debo a ti, eres lo más grande que tengo mami, te amo infinito!!! A mi papi por siempre consentirme, apoyarme y darme cariño… Te amoo! A la familia Ramírez Guevara, la abuela Willy y Nathaly, por demostrarme que no tenemos que compartir genes para ser familia. Por cuidarme, estar pendientes de mí y tratarme como un miembro más de la familia, sin la más mínima distinción. Gracias infinitas por brindarme un hogar lleno de cariño y apoyo incondicional. Los amo! A Edward Farraye, por ser mi mejor amigo en todo este tiempo. Explicarme mate y hasta cosas de geofísica. Compartir conmigo demasiadas cosas, aconsejarme y siempre estar dispuesto a ayudarme en lo que sea. Te quiero demasiado! A los Yukan Flai (Gris, Yoha, Axel, Juan, Jesús, Adri, Gian, Vicky, K, Fran, Anita y Vanessa), por hacer estos años en la universidad los mejores de mi vida, todos los momentos compartidos con ustedes son un tesoro. Tenemos recuerdos muy lindos, espero que sigan en las próximas etapas de nuestras vidas. Los adoro! A mis amigos geofísicos: Margarito, Vane, Santo, Carla, Daniel y Mag. Por hacer amenas las horas interminables de estudio, ser super solidarios y un grupo excelente! Los adoro! A Jessica Cardozo y Mary Márquez, por estar presentes en cada etapa de mi vida y ser amigas incondicionales. Las amo! A mi tía Tere y mi abuela Genoveva, por ser amorosas, comprensivas y súper alcahuetas!, ayudarnos en los malos momentos, y compartir los buenos! Las quiero. A los Godoy (Tere, Larry, Carlos, Aymara, Beto, Mary, Carlina, Manuel) por todos los lindos momentos que hemos compartido, y ser super solidarios con nosotros, los quiero mucho. A todo el equipo de Amundaray Ingeniería Geotécnica y Amundaray Instrumentos Geotécnicos, por enseñarme, ayudarme, aconsejarme y compartir conmigo durante este periodo de pasantías.
  • 7. viii A la profesora Milagrosa, Hugo, Edward, Yosu, Mikel, Rossmar y Moisés; por brindarme su ayuda y apoyo en la elaboración de este libro. A Dios Todopoderoso! A la Ilustre Universidad Simón Bolívar!!!!
  • 8. ix ÍNDICE GENERAL RESUMEN................................................................................................................................................... iv AGRADECIMIENTOS .............................................................................................................................. vii ÍNDICE GENERAL..................................................................................................................................... ix ÍNDICE DE TABLAS ................................................................................................................................ xii ÍNDICE DE FIGURAS.............................................................................................................................. xiii INTRODUCCIÓN .........................................................................................................................................1 CAPÍTULO 1: DETECCIÓN CON GEORADAR DE SERVICIOS ENTERRADOS PARA LA CONSTRUCCIÓN DE EDIFICACION EN EL PATIO DE APARCAMIENTO PDVSA-INTEVEP. LOS TEQUES, ESTADO MIRANDA ..................................................................................................................3 1.1 ASPECTOS TEÓRICOS ...............................................................................................................3 1.1.1 Ecuaciones de Maxwell.................................................................................................................3 1.1.2 Coeficientes de reflexión de Fresnel .............................................................................................5 1.1.3 Atenuación de la señal...................................................................................................................8 1.1.4 Aplicaciones Generales de datos GPR..........................................................................................9 1.1.5 Localización de tuberías................................................................................................................9 1.2 UBICACIÓN GEOGRÁFICA DEL ÁREA DE ESTUDIO..............................................................10 1.3 ADQUISICIÓN DE DATOS.............................................................................................................13 1.4 PROCESAMIENTO E INTERPRETEACIÓN DE LOS PERFILES................................................15 1.5 RESULTADOS Y ANÁLISIS...........................................................................................................19 1.5.1 Calicatas exploratorias recomendadas.........................................................................................21 1.6 CONCLUSIONES .............................................................................................................................23 CAPÍTULO 2: ESTUDIOS DE RESISTIVIDAD DEL SUELO PARA EL PROYECTO “ASTILLEROS DEL ALBA (ASTIALBA)”. ARAYA, ESTADO SUCRE. ........................................................................24 2.1 ASPECTOS TEÓRICOS ...................................................................................................................24 2.1.1 Resistividad Aparente .................................................................................................................26 2.1.2 Sondeo eléctrico vertical .............................................................................................................27 2.1.3 Pseudo-sección de resistividad aparente .....................................................................................28 2.1.4 Método Wenner...........................................................................................................................29 2.2 UBICACIÓN DEL ÁREA DE ESTUDIO.........................................................................................29 2.3 GEOLOGÍA DEL ÁREA...................................................................................................................30 2.3.1 Geología Estructural Regional .............................................................................................31 2.3.2 Geología Local.....................................................................................................................33
  • 9. x 2.3.2.1 Unidades Sedimentarias Cuaternarias..................................................................................33 2.3.2.2 Formaciones .........................................................................................................................34 2.4 ADQUISICIÓN DE DATOS.............................................................................................................36 2.4.1 Equipos Utilizados ......................................................................................................................37 2.4.2 Área Administrativa ....................................................................................................................38 2.4.3 Subestación Principal ..................................................................................................................39 2.5 PROCESAMIENTO ..........................................................................................................................41 2.6 RESULTADOS Y ANÁLISIS...........................................................................................................42 2.6.1 Área Administrativa ....................................................................................................................42 2.6.2 Subestación Principal ..................................................................................................................48 2.6.3 Consideraciones generales: sistemas puesta a tierra y protección catódica ................................53 2.7 CONCLUSIONES ............................................................................................................................54 CAPÍTULO 3: ESTUDIOS GEOTÉCNICOS POR PROSPECCIÓN GEOFÍSICA EN TIERRA: CROSSHOLE PARA EL PROYECTO “ASTILLEROS DEL ALBA (ASTIALBA)”, ARAYA, ESTADO SUCRE.........................................................................................................................................................55 3.1 Aspectos Teóricos ..............................................................................................................................55 3.1.1 Ondas Sísmicas ...........................................................................................................................55 3.1.2 Módulos Elásticos .......................................................................................................................56 3.1.3 Determinación de módulos elásticos usando Vp, Vs y densidad ................................................59 3.1.4 Ensayo de Pozos Cruzados (Crosshole) ......................................................................................59 3.2 UBICACIÓN DEL ÁREA DE ESTUDIO.........................................................................................60 3.3 ADQUISICIÓN DE DATOS.............................................................................................................62 3.4 PROCESAMIENTO DE LOS DATOS .............................................................................................67 3.4.1 Ensayo Crosshole 1..............................................................................................................67 3.4.2 Ensayo Crosshole 2..............................................................................................................69 3.5 RESULTADOS Y ANÁLISIS...........................................................................................................70 3.5.1. Cálculo de velocidades de ondas P y S ......................................................................................70 3.5.1.1 Ensayo Crosshole 1..........................................................................................................70 3.5.1.2 Ensayo Crosshole 2..........................................................................................................75 3.5.2 Cálculo de Módulos Elásticos.....................................................................................................78 3.5.2.1 Ensayo Crosshole 1..........................................................................................................78 3.5.2.2 Ensayo Crosshole 2..........................................................................................................79 3.5.3 Consideraciones de sismicidad para el diseño de edificaciones...........................................80 3.5.4 Consideraciones para el análisis de interacción suelo-estructura.........................................81 3.6 CONCLUSIONES .............................................................................................................................81
  • 10. xi CAPÍTULO 4: UTILIZACIÓN DE ECUACIONES EMPÍRICAS PARA ESTIMAR LA VELOCIDAD DE ONDAS DE CORTE A PARTIR DE PARÁMETROS RELACIONADOS A ENSAYOS DE PENETRACIÓN ESTÁNDAR....................................................................................................................83 4.1 ASPECTOS TEÓRICOS ...................................................................................................................83 4.1.1 Ensayo SPT .................................................................................................................................83 4.1.2 Relación Ensayos SPT-Velocidad Ondas de Corte.....................................................................85 4.2 METODOLOGÍA ..............................................................................................................................86 4.3 RESULTADOS Y ANÁLISIS...........................................................................................................87 4.3.1 Número de golpes (N)..........................................................................................................88 4.3.2 Número de golpes (N) y profundidad (H)............................................................................88 4.3.3 Número de golpes (N) y Tipo de Suelo (Suelo)...................................................................89 4.3.4 Número de golpes (N), Profundidad (H) y Tipo de Suelo (Suelo).......................................90 4.4 CONCLUSIONES .............................................................................................................................92 REFERENCIAS...........................................................................................................................................94 APÉNDICE A: Planilla de Perforación, sondeo PN-02...............................................................................98 APÉNDICE B: Perfil perforaciones geotécnicas cercanas al ensayo crosshole 1 .....................................100 APÉNDICE C: Ensayos de laboratorio, muestras recuperadas, sondeo SM-141 ......................................101 APÉNDICE D: Forma espectral y factor de corrección.............................................................................103 APÉNDICE E: Planilla de perforación, sondeo SM-141...........................................................................104
  • 11. xii ÍNDICE DE TABLAS Tabla 1.1: Elementos detectados..................................................................................................................19 Tabla 2.1: Coordenadas UTM de los estudios de resistividad en el área administrativa .............................38 Tabla 2.2: Coordenadas UTM de los estudios de resistividad de la Subestación Principal.........................40 Tabla 3.1: Tiempos y velocidades de Ondas P y S, sentido descendente. Ensayo Crosshole 1...................71 Tabla 3.2: Tiempos y velocidades de Ondas P y S, sentido ascendente. Ensayo Crosshole 1.....................72 Tabla 3.3: Velocidades de Ondas P y S, ensayo Crosshole 1 ......................................................................73 Tabla 3.4: Relación Vp/Vs, ensayo crosshole 1...........................................................................................74 Tabla 3.5: Tiempos y velocidades de Ondas P y S, sentido descendente, ensayo crosshole 2 ....................75 Tabla 3.6: Tiempos y velocidades de Ondas P y S, sentido ascendente, ensayo crosshole 2 ......................76 Tabla 3.7: Velocidades de Ondas P y S, ensayo crosshole 2 .......................................................................77 Tabla 3.8: Relación Vp/Vs, ensayo crosshole 2...........................................................................................78 Tabla 3.9: Módulos elásticos, ensayo crosshole 1........................................................................................79 Tabla 3.10: Módulos elásticos, ensayo crosshole 2......................................................................................80 Tabla 4.1: Velocidad de ondas S tomando en cuenta el número de golpes N..............................................88 Tabla 4.2: Velocidad de ondas S tomando en cuenta el número de golpes (N) y la profundidad (H). ........89 Tabla 4.3: Velocidad de ondas S tomando en cuenta el número de golpes (N) y el tipo de suelo...............89 Tabla 4.4: Velocidad de ondas S tomando en cuenta el número de golpes (N), la profundidad (H) y el tipo de suelo (Suelo)............................................................................................................................................90 Tabla 4.5: Error promedio y error probable .................................................................................................91
  • 12. xiii ÍNDICE DE FIGURAS Figura 1.1: Secuencia de inducción de un campo electromagnético..............................................................4 Figura 1.2: Ondas incidentes en una interfaz cuando son transmitidas y reflejadas. .....................................5 Figura 1.3: Campos de propagación de ondas electromagnéticas.................................................................6 Figura 1.4: Atenuación de la señal debido a heterogeneidades......................................................................8 Figura 1.5: Vista en planta de perfiles para detectar una tubería ...................................................................9 Figura 1.6: Ubicación del área de estudio, Estado Miranda.........................................................................10 Figura 1.7: Ubicación del área de estudio....................................................................................................11 Figura 1.8: Plano del área de estudio e indicación de ubicación de la edificación a construir ....................12 Figura 1.9: Ubicación de las bancadas de servicios a construir para la edificación.....................................12 Figura 1.10: Mallado realizado durante la adquisición de datos..................................................................13 Figura 1.11: Equipo de adquisición SIR-3000.............................................................................................14 Figura 1.12: Antena de 400MHz..................................................................................................................14 Figura 1.13: Interpretación de tuberías en secciones contiguas ...................................................................16 Figura 1.14: Perfil R656, forma original......................................................................................................17 Figura 1.15: Perfil R656, al aumentar la ganancia de las señales ................................................................17 Figura 1.16: Zonas de alto contraste y tubería .............................................................................................18 Figura 1.17: Elementos encontrados que no presentaron continuidad en los perfiles adyacentes. ..............18 Figura 1.18: Tuberías detectadas..................................................................................................................20 Figura 1.19: Ubicación de las calicatas recomendadas ................................................................................22 Figura 2.1: Resistividad de algunas rocas y minerales.................................................................................25 Figura 2.2: Mediciones de resistividad ........................................................................................................26 Figura 2.3: dispositivo electródico AMN para la definición de resistividad aparente .................................26 Figura 2.4: Ejemplo de un subsuelo heterogéneo.........................................................................................27 Figura 2.5: Arreglo Wenner ........................................................................................................................29 Figura 2.6: Ubicación del área de estudio....................................................................................................30 Figura 2.7: Área de Estudio, ubicada entre Manicuare y Chacopata ...........................................................31 Figura 2.8: Mapa esquemático estructural área del Caribe ..........................................................................32 Figura 2.9: Mapa Geológico de Unidades Sedimentarias ............................................................................33 Figura 2.10: Ubicación Área Administrativa y Subestación Principal.........................................................37 Figura 2.11: Equipo utilizado para la realización de los estudios de resistividad........................................38 Figura 2.12: Ubicación de los estudios de resistividad correspondientes al área administrativa.................39
  • 13. xiv Figura 2.13: Ubicación de los estudios de resistividad correspondientes a la Subestación Principal..........40 Figura 2.14: Ubicación de los perfiles de resistividad del área administrativa............................................42 Figura 2.15: Pseudosección de resistividad aparente, perfil D3-D2 ............................................................43 Figura 2.16: Sección de resistividad verdadera, perfil D3-D2.....................................................................44 Figura 2.17: Pseudosección de resistividad aparente, perfil D7-D5 ............................................................44 Figura 2.18: Sección de resistividad verdadera, perfil D7-D5.....................................................................45 Figura 2.19: Pseudosección de resistividad aparente, perfil D6-D4-D1 ......................................................46 Figura 2.20: Sección de resistividad verdadera, perfil D6-D4-D1...............................................................46 Figura 2.21: Mapa de resistividad verdadera a 2m de profundidad, área administrativa.............................47 Figura 2.22: Ubicación de los perfiles de resistividad correspondientes a la subestación principal............48 Figura 2.23: Pseudosección de resistividad aparente, perfil A1-A2-A3 ......................................................49 Figura 2.24: Sección de resistividad verdadera, perfil A1-A2-A3...............................................................49 Figura 2.25: Pseudosección de resistividad aparente, perfil A4-A5-A6 ......................................................50 Figura 2.26: Sección de resistividad verdadera, perfil A4-A5-A6...............................................................50 Figura 2.27: Pseudosección de resistividad aparente, perfil A7-A8-A9 ......................................................51 Figura 2.28: Sección de resistividad verdadera, perfil A7-A8-A9...............................................................52 Figura 2.29: Mapa de resistividad verdadera a 5m de profundidad, subestación principal .........................53 Figura 3.1: Ondas P......................................................................................................................................55 Figura 3.2: Ondas S......................................................................................................................................56 Figura 3.3: Identificación de ondas sísmicas................................................................................................56 Figura 3.4: Relación de Poisson...................................................................................................................57 Figura 3.5: Módulo de Young......................................................................................................................57 Figura 3.6: Módulo de rigidez......................................................................................................................58 Figura 3.7: Módulo de Bulk.........................................................................................................................58 Figura 3.8: Descripción del ensayo crosshole..............................................................................................60 Figura 3.9: Ubicación del área de estudio....................................................................................................61 Figura 3.10: Ubicación de mediciones de resistividad y ensayos crosshole ................................................61 Figura 3.11: Ubicación de los ensayos Cross Hole......................................................................................62 Figura 3.12: Sistema de martillo de pozo.....................................................................................................64 Figura 3.13: Geófono de pozo triaxial con su controlador...........................................................................64 Figura 3.14: Sismógrafo de 24 canales ........................................................................................................65 Figura 3.15: Adquisición de datos. Ensayo Crosshole 1..............................................................................66 Figura 3.16: Registro correspondiente al disparo a 5,5m al descender la fuente. Ensayo crosshole 1 ........68 Figura 3.17: Registro después de aplicar un filtro pasa banda, correspondiente al disparo a 5,5m al descender la fuente. Ensayo crosshole 1 ......................................................................................................68
  • 14. xv Figura 3.18: Registro correspondiente al disparo a 7,5m al descender la fuente. Ensayo crosshole 2 ........69 Figura 3.19: Registro después de aplicar un filtro pasa banda, correspondiente al disparo a 7,5m al descender la fuente. Ensayo crosshole 2 ......................................................................................................70 Figura 3.20: Variación de velocidades Vp y Vs con la profundidad, ensayo crosshole 1. ..........................73 Figura 3.21: Variación de velocidades Vp y Vs con la profundidad, ensayo crosshole 2. ..........................77 Figura 4.1: Esquema ensayo SPT.................................................................................................................84 Figura 4.2: Comparación velocidad de ondas S, ensayo Crosshole y ecuaciones empíricas.......................91 Figuras de los Apéndices Figura A1: Planilla de perforación, sondeo PN-03, pag. 1...........................................................................98 Figura A2: Planilla de perforación, sondeo PN-03, pag. 2...........................................................................99 Figura B1: Perfil perforaciones geotécnicas cercanas al ensayo crosshole 1.............................................100 Figura C1: Planilla laboratorio, sondeo Sm-141, pag 1 .............................................................................101 Figura C2: Planilla laboratorio, sondeo Sm-141, pag 2 .............................................................................102 Figura D1: Forma espectral y factor de corrección....................................................................................103 Figura E1: Planilla de perforación, sondeo Sm-141, pag 1........................................................................104 Figura E3: Planilla de perforación, sondeo Sm-141, pag 3........................................................................106
  • 15. 1 INTRODUCCIÓN En el área de la construcción civil, la aplicación de ciertos métodos geofísicos para obtener información del subsuelo resulta de gran utilidad en el diseño de las estructuras. Algunos de los métodos geofísicos utilizados con fines geotécnicos son: Georadar (Ground Penetrating Radar), estudios de resistividad y ensayos crosshole (Manilla, 2003). El Georadar es muy empleado en la investigación somera del subsuelo urbano, siendo la técnica por excelencia para la localización y cartografía de servicios urbanos enterrados (Bordehore, 2005). Estudios eléctricos de superficie representan un método de análisis de los geomateriales en términos de sus propiedades eléctricas, de ellas la resistividad es bastante importante (Arias, 2011), conociendo los valores de resistividad del suelo, se pueden diseñar los sistemas de puesta a tierra y protección catódica para proteger estructuras a construir. Mediante la realización de ensayos crosshole se calculan valores de velocidades de ondas sísmicas, estas son herramientas importantes al momento de diseñar estructuras que respondan a condiciones específicas de sitio, adicionalmente, conociendo los valores de velocidad de ondas sísmicas y la densidad del medio, es posible calcular las propiedades elásticas que relacionan la magnitud de la respuesta asociada al esfuerzo aplicado (Rocabado, 2011). La empresa Amundaray Instrumentos Geotécnicos se dedica a prestar servicios de instrumentación geotécnica, geofísica y sismológica para obras de ingeniería. Durante el periodo de pasantías en esta compañía, se realizaron trabajos empleando los métodos geofísicos descritos anteriormente con el propósito de la caracterización de suelos en varias partes del país. Estudios GPR son llevados a cabo para detectar elementos enterrados en un área donde se prevé la construcción de una nueva edificación en las instalaciones de INTEVEP (PDVSA), Los Teques, Estado Miranda. Estudios de resistividad y ensayos crosshole se realizaron en la zona donde se construirá el “Astillero del Alba” en Araya, estado Sucre. A fin de estimar valores de velocidad de ondas de corte, Ohta y Goto (1978), utilizando los resultados de ensayos de penetración estándar (SPT) en perforaciones geotécnicas, determinaron diversas ecuaciones empíricas que permiten calcular estas velocidades mediante parámetros geotécnicos. Habiendo calculado la velocidad de ondas de corte con los ensayos
  • 16. 2 crosshole, se toman en consideración resultados de perforaciones geotécnicas cercanas a estos ensayos, para estimar estas velocidades utilizando las ecuaciones empíricas.
  • 17. 3 CAPÍTULO 1 DETECCIÓN CON GEORADAR DE SERVICIOS ENTERRADOS PARA LA CONSTRUCCIÓN DE EDIFICACIÓN EN EL PATIO DE APARCAMIENTO DE PDVSA-INTEVEP, LOS TEQUES, EDO. MIRANDA 1.1 ASPECTOS TEÓRICOS La tecnología GPR (Ground Penetrating Radar) utiliza campos electromagnéticos para detectar estructuras y cambios en las propiedades de los materiales. La mayoría de las aplicaciones se utilizan en materiales geológicos. Sin embargo, otra aplicación consiste en la detección de compuestos generados por el hombre como lo son concreto, asfalto y otros materiales de construcción. Una de las ventajas de este método es que se obtienen imágenes del subsuelo en tiempo real y de manera continua (Annan, 2005). Los fundamentos del GPR se basan en la teoría electromagnética. Los campos electromagnéticos se propagan principalmente como ondas no dispersivas. Las ecuaciones de Maxwell describen matemáticamente la física de los campos electromagnéticos. Relaciones constitutivas cuantifican las propiedades de los materiales, la combinación de éstas provee los fundamentos para describir cuantitativamente las señales de GPR (Annan, 2005). 1.1.1 Ecuaciones de Maxwell En términos matemáticos, los campos electromagnéticos y sus propiedades relacionadas se expresan como: (Annan, 2005)
  • 18. 4 y (1.3) donde: Vector de fuerza de campo eléctrico (V/m) Vector del flujo de densidad magnética (T) Vector de desplazamiento eléctrico (C/m2 ) Intensidad del campo magnético (A/m) Densidad de carga eléctrica (C/m2 ) Vector de densidad de corriente eléctrica (A/m2 ) Tiempo (seg) Las ecuaciones de Maxwell describen un conjunto de campos eléctricos y magnéticos cuando los campos varían con el tiempo. Los campos eléctricos cambiantes generan campos magnéticos que, a su vez, inducen un campo eléctrico (Figura 1.1). Esta continua sucesión de un campo inducido por otro, da como resultado la generación de una serie de campos electromagnéticos que se desplazan a través del medio (Annan, 2005). Figura 1.1: Secuencia de inducción de un campo electromagnético (Modificado de Annan, 2005).
  • 19. 5 1.1.2 Coeficientes de reflexión de Fresnel El coeficiente de Fresnel de reflexión y transmisión cuantifica cómo varían las amplitudes de los campos electromagnéticos a través de la interfaz entre dos materiales (Annan, 2005). Cuando una onda electromagnética plana incide en un límite, es parcialmente transmitida y parcialmente reflejada (Ver figura 1.2). La amplitud del campo incidente se denota como I y la señales reflejadas son denotadas como RI y TI donde R y T son los coeficientes de reflexión y transmisión. (Annan, 2005). Figura 1.2: Ondas incidentes en una interfaz cuando son transmitidas y reflejadas (Annan, 2005). Cuando se encuentran límites planares, se ha vuelto tradicional descomponer la onda incidente en dos componentes cuyos vectores componentes tienen orientación compatible respecto al límite. Estas dos ondas se refieren a las ondas del campo eléctrico transversal (TE) y del campo magnético transversal (TM) (Ver figura 1.3). La onda del campo eléctrico transversal siempre tiene su campo eléctrico paralelo al plano de la interfaz, mientras que la onda de campo magnético transversal tiene su campo magnético en el plano de la interfaz. Esta descomposición es estrictamente dependiente de la geometría de la interfaz y no tiene relación alguna con los correspondientes campos electromagnéticos. Al descomponer el campo en las componentes TE y TM, puede obtenerse la forma matemática específica de R y T (Annan, 2005).
  • 20. 6 Figura 1.3: Campos de propagación de ondas electromagnéticas (Modificado de Annan, 2005) Los coeficientes de reflexión y transmisión de las ondas TE y TM toman formas matemáticas distintas porque su comportamiento es distinto. Formalmente puede escribirse: (1.4) (1.5) Donde ITE representa la fuerza de campo eléctrico para la onda TE e ITM representa la fuerza del campo magnético para la onda TM. Las formas matemáticas para R e I se derivan señalando dos hechos fundamentales. Primero, la ley de Snell debe satisfacerse. Segundo, el comportamiento físico requiere que los campos magnéticos y eléctricos en el plano de la interfaz sean el mismo a ambos lados del límite y además que la corriente eléctrica y la densidad de flujo magnético atravesando el límite deben ser iguales en cada lado del límite. Cuando estas condiciones se cumplen se puede deducir que:
  • 21. 7 Estas son las ecuaciones para los coeficientes de reflexión y transmisión, donde Zi y Yi son las impedancias y admitancias de la i-ésima capa (Annan, 2005). Es importante recordar que las expresiones anteriores aplican para el campo magnético en el caso TM y el campo eléctrico en el caso TE. Cuando la onda electromagnética incide verticalmente sobre la interfaz (θ1=0°), no hay distinción entre las ondas TE o TM y los coeficientes TE y TM son idénticos. Cuando la incidencia no es vertical, los coeficientes son diferentes. Estos resultados muestran los cuatro puntos importantes que deben ser recordados al momento de evaluar e interpretar datos GPR (Annan, 2005): 1. La magnitud de reflexión de los TE se vuelve más grande mientras mayores sean los ángulos de incidencia. 2. El coeficiente de reflexión TM puede eliminarse o mostrar reducciones a lo mínimo si el ángulo de incidencia aumenta. Este ángulo mínimo es conocido como el “ángulo Brewster”. Al ángulo Brewster, ocurre máxima transmisión a través de la interfaz. Para ondas TE, la admitancia debe disminuir en la interfaz para que el ángulo de Brewster exista; para las ondas TM, la impedancia debe disminuir a través de la interfaz. 3. Cuando las ondas viajan de un medio de baja velocidad a un medio de alta velocidad, la magnitud de los coeficientes de reflexión se vuelve constante para ángulos mayores a los ángulos críticos. Las ondas son totalmente reflejadas, los campos existen en el otro material pero se comportan como señales evanescentes que decaen exponencialmente con la distancia de la interfaz. 4. El signo de los coeficientes de reflexión puede ser positivo o negativo. Un signo positivo de reflexión indica que el campo reflejado ( para TE o para TM) están en la misma
  • 22. 8 dirección que el vector de campo incidente, mientras que un coeficiente negativo significa que el campo reflejado está en dirección opuesta al campo incidente (Annan, 2005). 1.1.3 Atenuación de la señal Invariablemente, las señales de GPR se transmiten a través de medios complejos. Las señales encuentran propiedades magnéticas y eléctricas heterogéneas a muchas escalas. El diseño de un estudio GPR requiere que las longitudes de ondas de los campos electromagnéticos sean comparables en escala con los objetos a detectar. Las heterogeneidades a pequeñas escalas generan respuestas débiles o indetectables, pero su presencia tiene un impacto en la señal mientras se transmite. Las heterogeneidades extraen energía a medida que los campos electromagnéticos viajan, la dispersan en todas las direcciones y hasta pueden absorber un poco de energía (Annan, 2005). Cuando las señales de GPR viajan a través de medios heterogéneos, la señal directa pierde energía constantemente (Figura 1.4). Esta pérdida de energía es imposible de cuantificar a menos que se utilice un modelo específico (Annan, 2005). Figura 1.4: Atenuación de la señal debido a heterogeneidades (modificado de Annan, 2005).
  • 23. 9 1.1.4 Aplicaciones Generales de datos GPR El objetivo esencial de las investigaciones con GPR es extraer información del subsuelo. Las aplicaciones son muy amplias, pero el objetivo principal es detectar objetos enterrados, definiendo su localización y extensión en un espacio 3D. Por estos motivos, la interpretación de datos de GPR requiere analizar los datos dos veces: primero para extraer información sobre la velocidad y la atenuación y luego para definir la ubicación del objetivo, profundidad, entre otros (Annan, 2005). Los datos de GPR pueden presentar artefactos que pueden llevar a interpretaciones incorrectas. La interpretación de los datos es inherentemente subjetiva y depende mayormente de las habilidades, experiencia y conocimientos de quien analiza los datos (Annan, 2005). 1.1.5 Localización de tuberías La forma común de adquirir los datos GPR para localizar tuberías, consiste en adquirir perfiles transversales y perpendiculares entre sí. En campo, el primer paso es estudiar los primeros resultados obtenidos sobre las tuberías observadas en los perfiles. Varios perfiles en diversas direcciones pueden ser necesarios (Figura 1.5) (Annan, 2005). Figura 1.5: Vista en planta de perfiles para detectar una tubería (Modificado de Annan, 2005) Tubería β =90° β =45° β =0°
  • 24. 10 Como se muestra en la figura 1.4, el perfil adquirido a β =90° es perpendicular a la ubicación de la tubería y es el más adecuado para determinar la profundidad de la misma. El perfil adquirido a β =45° está en un ángulo oblicuo y el perfil correspondiente a β =0° es paralelo al eje de la tubería. Los resultados de los perfiles a 45° y 0° no son adecuados para determinar la profundidad a menos que se conozca el ángulo exacto de ubicación de la tubería (Annan, 2005). Las tuberías se observan en los perfiles como hipérbolas. El vértice de la hipérbola indica directamente la localización de la tubería. En campo se pueden marcar estos puntos y señalar la trayectoria de la tubería (Annan, 2005). 1.2 UBICACIÓN GEOGRÁFICA DEL ÁREA DE ESTUDIO En este trabajo se adquirieron datos GPR para ubicar tuberías en un área aproximada de 3500 m², la cual encierra la mayor parte de área útil del estacionamiento entre los sectores internos Norte 1 y Norte 2 de PDVSA INTEVEP, Los Teques, Edo. Miranda (Ver Figura 1.6). Figura 1.6: Ubicación del área de estudio, Estado Miranda (Modificado de http://www.venezuelatuya.com/)
  • 25. 11 En la Figura 1.7 se muestra una imagen en planta de las instalaciones de PDVSA INTEVEP, el área de estudio está señalada con un recuadro rojo. Figura 1.7: Ubicación del área de estudio (Modificado de Google Earth) En la figura 1.8 se presenta el plano del área, identificando específicamente la zona de estudio. Este estudio fue realizado con la finalidad de detectar de servicios y/o elementos enterrados que puedan ser afectados al momento de ejecutar trabajos de construcción de una nueva edificación dentro de instalaciones de PDVSA INTEVEP, Los Teques, Edo. Miranda. Ya que ésta es una zona urbanizada, se prevé la existencia de gran variedad de tuberías y elementos enterrados.
  • 26. 12 Figura 1.8: Plano del área de estudio e indicación de ubicación de la edificación a construir La construcción de esta nueva edificación implica la disposición de bancadas y nuevas tuberías para los servicios. La figura 1.9 presenta una imagen de la ubicación de las bancadas a construir, así como la vista en planta de la proyección de la edificación. Figura 1.9: Ubicación de las bancadas de servicios a construir para la edificación
  • 27. 13 1.3 ADQUISICIÓN DE DATOS Con el propósito de detectar servicios enterrados, se realizó la adquisición de los datos siguiendo un mallado, el cual se muestra en la figura 1.10. Figura 1.10: Mallado realizado durante la adquisición de datos. Dicho mallado consta de trece perfiles en dirección vertical, realizados con un espaciamiento entre perfiles de aproximadamente 3m, y nueve perfiles en dirección horizontal, realizados con un espaciamiento aproximado entre perfiles de 2,5m. Los obstáculos encontrados durante la adquisición fueron vehículos aparcados en el área de estudio, estos obstáculos no influyen significativamente en los resultados. La fosa de transformadores, ubicada en las adyacencias a la zona de estudio, consta de dos transformadores, de éstos transformadores se tienen dos bancadas eléctricas que forman parte de la red de distribución de electricidad para INTEVEP.
  • 28. 14 La adquisición de datos fue llevada a cabo con el equipo SIR-3000 (Ver figura 1.11), con características que se indican a continuación: Figura 1.11: Equipo de adquisición SIR-3000  Unidad de control SIR-3000, compatible con todas las antenas GSSI (Geophysical Survey Systems, Inc.), con memoria de 2GB. El software que regula las mediciones del Georadar es GSSI. La unidad incluye teclado, con el cual se introducen los datos necesarios para realizar cada estudio (nombre, separación entre perfiles, dirección de perfil, rango, etc.) y permite visualizar los datos adquiridos en tiempo real.  Una fuente de poder de 10.8V DC (Batería recargable).  Antenas blindadas con frecuencias de 400MHz (Figura 1.12). Figura 1.12: Antena de 400MHz
  • 29. 15  Un odómetro, que mide las distancias recorridas por el Georadar una vez que se inicia la medición. En función de la información que adquiere este dispositivo, la unidad de control regula la emisión de pulsos y puede ubicar los registros de cada perfil en su posición correcta, de acuerdo a la información proporcionada por el usuario. La metodología de adquisición de los datos comprendió:  Marcación de inicio y final de perfiles georeferenciados amarrados a la topografía.  Puesta en marcha del equipo para la adquisición de los perfiles correspondientes. Se marcó en la libreta de campo la dirección del perfil y la ubicación del mismo en el plano.  Verificación de datos adquiridos incluyendo relación señal-ruido y longitud marcada por el odómetro. 1.4 PROCESAMIENTO E INTERPRETEACIÓN DE LOS PERFILES Los datos adquiridos se visualizaron en el programa RADAN 6.6, de la compañía Geophysical Survey Systems, Inc. Para ubicar tuberías enterradas en las distintas zonas de estudio, se realizó una correlación lateral entre las distintas difracciones hiperbólicas que aparecían en los radargramas (ver Figura 1.13). Si una difracción era observada en distintas secciones contiguas entonces se procedía a cartografiar como una tubería. Si se observaba una difracción similar a la que produce tradicionalmente una tubería, pero resultaba ser un evento aislado que no se correlacionaba con secciones contiguas, entonces se concluía que éstas eran ocasionadas por peñones u otros objetos enterrados.
  • 30. 16 Figura 1.13: Interpretación de tuberías en secciones contiguas (Modificado de http://www.idscompany.it) Cada perfil se procesó de forma individual. En algunos casos se aumentó un poco la ganancia en los perfiles, con el propósito de obtener mejor resolución en las señales. Se tomó en consideración que, si se aumentaba mucho la ganancia, aumentaba también el ruido de la señal, lo que podía ocasionar distorsiones en ésta. No se aplicaron filtros durante el procesamiento. La figura 1.14 presenta un ejemplo de un perfil antes de aumentarle la ganancia. En la figura 1.15 se aprecia este mismo perfil, luego de aumentarle la ganancia.
  • 31. 17 Figura 1.14: Perfil R656, forma original Figura 1.15: Perfil R656, al aumentar la ganancia de las señales Durante el procesamiento de los perfiles, se observaron ciertas zonas en las que la señal se presenta distorsionada, éstas son llamadas “zonas de alto contraste”. Se infiere que en estas áreas, hay presencia de planchas de acero o humedad en el terreno, que ocasionan anomalías en la señal. En la figura 1.16 se muestra un perfil en el que se observó la presencia de estas “zonas de alto contraste”, este perfil es el R646. Adicionalmente, en este perfil se aprecia una tubería.
  • 32. 18 Figura 1.16: Zonas de alto contraste y tubería En algunos perfiles se encontraron elementos que no presentaban continuidad en los perfiles siguientes, por lo que se estima que no sean tuberías, sino grupo de rocas o escombros en el área (Ver figura 1.17). Figura 1.17: Elementos encontrados que no presentaron continuidad en los perfiles adyacentes. Luego de detectar las tuberías u otros elementos en cada perfil, se procede a ubicar la posible profundidad, esta es indicada en la tabla de resultados. De acuerdo a las anotaciones realizadas en campo, se tiene en el plano la ubicación de los perfiles. El programa indica la distancia horizontal desde el inicio del perfil, por lo que se puede implantar en el plano la ubicación del elemento encontrado.
  • 33. 19 1.5 RESULTADOS Y ANÁLISIS En los perfiles procesados se identificaron bancadas, tuberías, posibles tuberías y zonas de alto contraste, en las que la señal se presenta distorsionada. La Tabla 1.1 muestra los datos aproximados de ubicación en el espacio y características generales de los elementos enterrados detectados. Cada elemento se identifica mediante su nomenclador (T-XX), con el cual se localizan las representaciones implantadas en las figuras 1.18 y 1.19. Dichos datos y características de los elementos, se resumen como: a) Coordenadas de dos puntos o extremos, ya sea de un tramo de tubería o sector localizado; b) rango de valores de profundidad del tope de las tuberías; c) observaciones y, d) posible utilidad de los servicios. Tabla 1.1: Elementos detectados Los resultados obtenidos señalan ciertas características físicas y de ubicación espacial relativa, de tuberías de las que se desconoce en algunos casos, sus condiciones de operatividad. Los servicios detectados se representan mediante geometrías individuales, identificables como líneas de tuberías de las que se desconoce, los puntos de origen y destino de las mismas (Figura 1.18). Para la ubicación en sitio de las tuberías y elementos detectados, se recomienda considerar un margen de error horizontal de +/- 1m. Como se puede apreciar dentro de la tabla de resultados, dos elementos se denotan como “posible tubería”, esto se debe a que las señales no son lo suficientemente determinantes. No obstante, se toman en cuenta al observar que se trata de reflejos que señalan la existencia de algún elemento con estructura muy similar a la de tuberías.
  • 34. 20 Figura 1.18: Tuberías detectadas  La tubería T-01 se observó tenuemente en algunos perfiles. Sin embargo, al encontrar la tanquilla de electricidad en el área de estudio, se abrió la misma y se estudió la profundidad y la dirección de la tubería, por lo que las señales tenues en los perfiles (que presentan profundidades similares a las esperadas para esta tubería), se interpretan como la continuidad de la tubería que sale de la tanquilla. Se estima que esta tubería sigue su continuidad en la dirección señalada y probablemente esté en la bancada designada como T-02.  El elemento T-02 se refiere a una bancada que presenta varias tuberías en un área pequeña.  Los elementos T-03 y T-05 son considerados como posibles tuberías, éstas se encuentran ubicadas directamente en el área donde se construirá la edificación. Se recomienda tomar precauciones debido a las complicaciones que implican la cercanía de T-05 al un vértice de la proyección horizontal de la edificación y la ubicación de T-03 dentro de dicha proyección.
  • 35. 21  Las señales que determinan a T-04, se consideran pronunciadas pero sin continuidad, por lo que podría tratarse de un grupo de rocas o escombros que se observan a partir de 1,10m de profundidad.  La tubería T-06 está representada en dos secciones en la figura 1.16, esto se debe a que sólo se observó en ciertos perfiles, sin embargo, se estima que presenta continuidad en la dirección señalada. La posición relativa de ésta intercepta las bocas de visita de la Electricidad de Caracas y el foso de transformadores, razón por la que se deduce que la utilidad de esta tubería es Electricidad.  Las zonas indicadas en la implantación con líneas rojas inclinadas se refieren a “zonas de alto contraste”, en estas áreas se tuvo poca resolución en los datos obtenidos, posiblemente por causa del acero de refuerzo que compone la estructura de ciertos paños de la losa de pavimento rígido o por la presencia de humedad. 1.5.1 Calicatas exploratorias recomendadas Con el propósito de comprobar, de manera directa, la existencia de los elementos detectados, se recomienda realizar excavaciones exploratorias de dimensiones aproximadas de 16m2 de área y 2,5m de profundidad (calicatas exploratorias). Principalmente, al tratarse de los elementos T-03, T-04, T-05 y la zona de alto contraste, donde las señales percibidas mediante el Georadar no ofrecen certidumbre suficiente. Se recomienda excavar un grupo de 6 calicatas, ubicadas y numeradas en orden de importancia, según las interferencias que representan (Figura 1.19)
  • 36. 22 Figura 1.19: Ubicación de las calicatas recomendadas  C1: para este caso se plantea la excavación sobre el área T-04, a fin de revelar con precisión las características de la estructura de los elementos enterrados bajo el área. Estos elementos causan interferencia al eje de fundación y a un tramo de la bancada de requerimientos de instrumentación y telecomunicaciones (ver figura 1.9). Adicionalmente, esta calicata puede comprobar o descartar las continuidades de T-03 y T-05.  C2: la zona reconocida como de Alto Contraste requiere de una calicata que determinará la causa del reflejo fuerte que oculta todo lo que pudo detectarse bajo la superficie, especialmente para descartar o comprobar las posibles interferencias con la bancada de requerimientos de instrumentación y telecomunicaciones (ver figura 1.9).  C3: se propone esta tercera calicata para asegurar que no existan interferencias con las zanjas o bancadas de drenajes de aguas de lluvia. Además se comprobará la continuidad de la bancada designada como T-02.
  • 37. 23  C4: calicata que revelará si realmente existe relación entre la Fosa de Transformadores y elementos como T-04, T-05. También para descartar interferencia entre la Fosa de transformadores y futuras bancadas de requerimientos de instrumentación y telecomunicaciones y electricidad (ver figura 1.9).  C5: esta recomendación servirá para diagnosticar con precisión la causa del alto contraste en la zona.  C6: esta calicata permitirá revisar el área donde irán tramos de las bancadas de requerimientos de instrumentación y telecomunicaciones y evaluar la posible existencia de la matriz de aguas blancas que alimenta al hidrante (H) (ver figura 1.9). 1.6 CONCLUSIONES  El estudio realizado permitió determinar posibles ubicaciones de tuberías, zonas de alto contraste y elementos enterrados. La existencia de los elementos identificados podría afectar en la construcción de la nueva edificación.  Fueron detectadas dos tuberías, dos posibles tuberías y una bancada. Adicionalmente, en ciertas zonas, la señal se observaba distorsionada. Estas áreas se denominaron como zonas de alto contraste, se interpreta que la distorsión de las señales se debe a la presencia de planchas de acero o humedad.  La aplicación de Georadar para determinar elementos enterrados, constituye un método indirecto que permite indicar la ubicación relativa y profundidad de estos elementos. Por esta razón, una vez realizadas las detecciones con Georadar, se recomienda excavar calicatas exploratorias con el propósito de comprobar la existencia de los elementos detectados y tener mayor información de los mismos.
  • 38. 24 CAPÍTULO 2 ESTUDIOS DE RESISTIVIDAD DEL SUELO PARA EL PROYECTO “ASTILLEROS DEL ALBA (ASTIALBA)”. ARAYA, ESTADO SUCRE 2.1 ASPECTOS TEÓRICOS La resistividad de un material se define como la oposición que éste ofrece al paso de la corriente eléctrica. Generalmente se designa con la letra griega ρ. Contrario a la resistividad, la conductividad es una medida que representa la capacidad de un cuerpo de permitir el paso de corriente eléctrica a través de él (Manilla, 2003). La magnitud de la resistividad es un coeficiente que depende de la naturaleza y el estado físico del cuerpo considerado, sus dimensiones serán Ω.m (ohmnios por metro). La resistividad es una de las magnitudes eléctricas de mayor amplitud de variación. Esto ocurre porque la conductividad puede deberse a diferentes mecanismos, que dependen de la estructura del cuerpo considerado. En el caso de mediciones de resistividad del suelo, muchos factores influyen. Entre los que destacan el contenido de minerales, porosidad, grado de humedad, concentración de sales disueltas en el agua, temperatura, entre otros (Orellana, 1972). Para relacionar valores de resistividad del suelo con la geología del área, se deben conocer los valores típicos de resistividad de diversos materiales (Orellana, 1972). La figura 2.1 presenta valores de resistividad característicos de algunos tipos de rocas y minerales.
  • 39. 25 Figura 2.1: Resistividad de algunas rocas y minerales (Modificado de http://www.alhgeofisica.com.ar/) Las rocas ígneas y metamórficas, generalmente, presentan valores altos de resistividad. La resistividad de estas rocas depende, mayormente, del grado de fracturas y el porcentaje de estas fracturas que está lleno de agua. Las rocas sedimentarias, que generalmente son más porosas y tienen contenidos de agua más altos, normalmente presentan valores de resistividad bajos. Los suelos arcillosos presentan valores de resistividad más bajos que los suelos arenosos (Orellana, 1972). Se puede observar que los valores asociados a cada elemento varían unos de otros en diversos órdenes de magnitud. Esto se debe a la cantidad de factores que influyen en la resistividad, como se indicó anteriormente. Las mediciones de resistividad del suelo, generalmente, se realizan inyectando corriente al suelo a través de dos electrodos (C1 y C2) y midiendo el voltaje resultante de la diferencia de potencial en dos electrodos (P1 y P2) (Ver Figura 2.2). A partir de los valores de corriente y voltaje, se calcula la resistividad aparente mediante la ecuación (Loke, 1999): ρa= k V/I (2.1)
  • 40. 26 Figura 2.2: Mediciones de resistividad (Loke, 1999) En la ecuación 2.1, k es el factor geométrico. Este factor depende de la forma del arreglo de los electrodos. Cada arreglo de electrodos puede caracterizarse con un factor geométrico k en particular. Este es un parámetro que, cuando se multiplica por la resistencia medida, convertirá la resistencia a la resistividad de un medio uniforme (Keller, 1966). 2.1.1 Resistividad Aparente Consideremos un subsuelo homogéneo de resistividad ρ en cuya superficie se coloca un dispositivo electródico AMN (Figura 2.3) (Orellana, 1972). Figura 2.3: Dispositivo electródico AMN para la definición de resistividad aparente (Orellana, 1972) En este dispositivo, como se observa en la figura 2.3, el electrodo A está conectado a un generador de corriente de intensidad I. El campo eléctrico que produce se estudia por medio de los electrodos M y N, que están conectados a un voltímetro que mide la diferencia de potencial que aparece entre ellos. Los tres electrodos están alineados. El electrodo B que cierra el circuito de A, se supone lo suficientemente alejado de los demás para que no influya en las observaciones. Entonces, si AM= r y MN = a tendremos (Orellana, 1972):
  • 41. 27 Despejando ρ resulta: La ecuación anterior puede utilizarse para calcular la resistividad de un subsuelo homogéneo si se miden las magnitudes que aparecen en ella (r, a, ΔV, I) (Orellana, 1972). En el caso cuando el subsuelo no es homogéneo (como por ejemplo el mostrado en la figura 2.4), al aplicar la fórmula anterior, se obtendrá un valor de resistividad ficticio, dependiente de las resistividades del medio ρ1, ρ2, ρ3 y de las distancias r y a. Esta resistividad ficticia, obtenida aplicando a los datos obtenidos sobre un medio heterogéneo, la expresión correspondiente a un medio homogéneo, es la resistividad aparente. Figura 2.4: Ejemplo de un subsuelo heterogéneo (Orellana, 1972) En el caso de mediciones en campo de resistividad, debido al carácter heterogéneo del suelo, los valores obtenidos representan la resistividad aparente del suelo. 2.1.2 Sondeo eléctrico vertical Se llama sondeo eléctrico a una serie de determinaciones de resistividad aparente, efectuadas con el mismo tipo de dispositivo y separación creciente entre los electrodos de emisión y recepción (Orellana, 1972).
  • 42. 28 Cuando el dispositivo empleado es simétrico, o asimétrico con un electrodo en el “infinito”, y durante la medición permanecen fijos el azimut del dispositivo y el centro del segmento MN, suele llamarse Sondeo Eléctrico Vertical (SEV). La finalidad del SEV es conocer la distribución vertical de resistividades bajo el punto sondeado (Orellana, 1972). Los datos de resistividad aparente obtenidos en cada SEV son representados por medio de una curva, en función de las distancias entre electrodos. Utilizando el método Wenner, esto se logra gracias a que la configuración de los electrodos permanece geométricamente semejante (Loke, 1999). Esta curva se caracteriza por representar las resistividades aparentes ρa en el eje de las ordenadas; en las abscisas, se presentan los valores sucesivos de las distancias a. La escala empleada para cada eje es del tipo logarítmica. Al interpretar esta curva, generalmente se supone que el subsuelo consiste de capas horizontales. Usando este método, se supone además que la resistividad del suelo varía sólo con la profundidad, no en la dirección horizontal (Loke, 1999). 2.1.3 Pseudo-sección de resistividad aparente Las pseudo-secciones son usadas como un medio de representar gráficamente los valores de resistividad aparente, medidos utilizando sondeos eléctricos verticales, de manera que queden registradas las variaciones laterales de resistividad aparente (Cuesta, 2007). Adicionalmente, se utilizan como una guía inicial para interpretaciones cuantitativas futuras. Las pseudo-secciones dan una imagen muy aproximada de la distribución de resistividad aparente en el suelo. Sin embargo, esta imagen generalmente está distorsionada pues la forma de los contornos depende del tipo de arreglo utilizado así como de la resistividad verdadera del suelo. Otra aplicación de estas pseudosecciones es para escoger malas medidas de resistividad aparente, estas medidas generalmente se destacan como puntos con valores de resistividad inusualmente altos o bajos (Loke, 1999).
  • 43. 29 2.1.4 Método Wenner El método Wenner de 4 electrodos requiere que 4 electrodos metálicos sean colocados con igual separación sobre una línea recta en la superficie del suelo (Figura 2.5). La distancia entre dos electrodos adyacentes es llamada “espaciamiento del arreglo” y se denota con la letra a. El factor geométrico k para este arreglo es (Keller, 1966): Figura 2.5: Arreglo Wenner (Cuesta, 2007) Este arreglo se caracteriza por ser sensible a cambios verticales de resistividad del suelo (estructuras horizontales), pero es poco eficiente detectando cambios horizontales (estructuras verticales). Para este arreglo, la profundidad de investigación es, aproximadamente, la mitad de la máxima apertura interelectródica “a” utilizada (Loke, 1999). 2.2 UBICACIÓN DEL ÁREA DE ESTUDIO En este trabajo se realizaron estudios de resistividad en la costa Norte de la Península de Araya, en el sitio conocido como Punta de Playa o Playa de Róbalo, Municipio Cruz Salmerón Acosta, del Estado Sucre (Ver Figura 2.6). Los estudios se hicieron en los puntos donde se prevé la instalación de equipos eléctricos mayores, la subestación eléctrica, grupo electrógeno y edificaciones o áreas con presencia de equipos de telecomunicaciones.
  • 44. 30 Figura 2.6: Ubicación del área de estudio. (Modificado de http://www.venezuelatuya.com/) 2.3 GEOLOGÍA DEL ÁREA La Cordillera Araya-Paria es definida por Danielo (1974) como la prolongación de la sección central de la Cordillera de la Costa, la cual comienza al oeste en Punta Barrigón y se extiende hasta Punta Narizona en el extremo oriental de la Península de Paria. Esta cordillera limita al norte con la Placa del Caribe y al sur con la costa septentrional del Golfo de Cariaco. Dicha cordillera posee una orientación E-W, alcanzando una longitud de 270 km y un ancho variable entre 4 km y 20 km. Es una región montañosa baja y de colinas, con una altura máxima de 1.060 m (en el Pico Santo de Paria). Esta cordillera se divide en dos secciones, ubicadas a ambos lados de una línea noroeste-sureste que se extiende desde la Esmeralda hasta Casanay, quedando al oeste la Península de Araya y al este la de Paria (Danielo, 1974).
  • 45. 31 La Península de Araya se caracteriza fisiográficamente por cerros de alturas máximas de 600 m, encontrándose a ambos lados, lomas y colinas que no exceden los 150 m de altura (Danielo, 1974). La zona de estudio se encuentra ubicada entre Manicuare y Chacopata (Ver Figura 2.7), en el sector occidental, y se caracteriza por la presencia de elevaciones que no sobrepasan los 250 m, con formas redondeadas y vegetación muy seca. El clima muy árido que impera en la zona ha favorecido una erosión avanzada que se traduce en la presencia de salinetas, valles secos aluvionales, que se adentran en la parte central de la Península, y algunos planos interiores, también aluvionales. El drenaje presenta un patrón dendrítico y los ríos y arroyos presentes se encuentran secos (Danielo, 1974). Figura 2.7: Área de Estudio, ubicada entre Manicuare y Chacopata. (Modificado de http://www.tiwy.com) 2.3.1 Geología Estructural Regional Giunta et al. (2002) indican que la placa del Caribe representa un fragmento litosférico entre Norteamérica y Suramérica, constituido en su parte central por la corteza oceánica ligeramente deformada y las cuencas de Colombia y Venezuela, bordeadas por cinturones deformados Mesozoico-Terciarios de ancho variable. Los márgenes occidental y oriental de la placa consisten en sistemas colisionales que desarrollaron varios arcos magmáticos (Istmo de
  • 46. 32 América Central, Antillas Menores). Los márgenes norte y sur están representados por zonas de cizalla (Cinturón de Motagua en Guatemala, Antillas Mayores y Cordilleras Septentrionales de Venezuela). En la Figura 2.8 se muestra un esquema de la geología estructural del Caribe, dentro de la cual se encuentra el área explorada, las flechas en la figura indican la dirección de los movimientos de las principales placas tectónicas. Figura 2.8: Mapa esquemático estructural área del Caribe (Modificado de Jimenez, 2008) El Norte de Venezuela es parte del límite entre las placas Caribe y Suramericana. La zona de contacto de estas dos placas tectónicas ha generado un sistema de fallas principales activas del tipo transcurrente dextral, a lo largo de un cinturón de aproximadamente 100 km, definido por los sistemas montañosos de los Andes Venezolanos, la Cordillera Central y la Cordillera Oriental. Dicho sistema se denomina Sistema de fallas de Oca-Ancón-Boconó-San Sebastián-El Pilar. El Oriente de Venezuela, por su parte, está caracterizado por una zona de subducción que se extiende hasta las Antillas Menores (Vásquez, FUNVISIS). Según Avé-Lallemant (1997), hacia el noreste del país las rocas han sido afectadas por dos fases de deformación: la primera ocurrió en el Cretácico Medio Tardío y está relacionada a procesos de subducción y colisión, generando foliación regional (NE-SO generalmente), así como también plegamientos en un régimen de cizallamiento dextral a lo largo del límite de placas, como resultado de la convergencia oblicua entre la placa del Caribe y la Suramericana. La
  • 47. 33 segunda fase es post-metamórfica y se caracteriza principalmente por la generación de fallas y corrimientos. 2.3.2 Geología Local A continuación se mencionarán las unidades sedimentarias Cuaternarias y las formaciones presentes en el área de estudio. 2.3.2.1 Unidades Sedimentarias Cuaternarias Basado en el trabajo de Alvarado (2005), se presenta a continuación la descripción de las unidades que han sido depositadas durante el Cuaternario, tomando en cuenta su medio de acumulación. En la Figura 2.9 se muestra un mapa descriptivo de las mencionadas unidades para la zona de estudio. Figura 2.9: Mapa Geológico de Unidades Sedimentarias (Modificado de Alvarado, 2005)
  • 48. 34  Medio de Acumulación de Valle Valle Coluvial-Aluvial (Qcal): Este medio de depositación está caracterizado por la toma de materiales de coluviones antiguos de edad Pleistoceno Medio a Temprano, compuestos de grava tipo cuarzo y esquistos, embebidos dentro de una matriz arenosa, de color característico marrón rojizo (Alvarado, 2005).  Medio de Acumulación Litoral Cordón o Fecha (Qhcf): Son formaciones sedimentarias que se producen en las desembocaduras de los ríos, debido a que la arena transportada por la corriente frena al chocar con las olas del mar; al anularse mutuamente la velocidad de ambas corrientes, la arena cae al fondo y crea un depósito alargado que se extiende desde la zona donde el río llega al mar y crece en la dirección que determina el contacto entre el río y los frentes de olas (Alvarado, 2005). Albúferas (Qha): Es una laguna litoral separada del mar por una barra arenosa o cordón litoral, de Edad Holoceno en la zona de interés. El material que constituye este tipo de depósitos es generalmente muy fino, de color pardo amarillento y muy rico en halita (Alvarado, 2005). Este medio de acumulación fue observado en la zona plana del área de estudio del ensayo cross hole 1 como una capa superficial arcillosa, cuarteada en prismas muy delgados con forma de platillos por efecto de la desecación. En las grietas de los mismos destaca la presencia de pequeños cristales de sal. 2.3.2.2 Formaciones  Formación Coche (Léxico Estratigráfico de Venezuela, PDVSA-Intevep) La Formación Coche fue descrita inicialmente por Patrick (1959), así como Jam y Méndez A. (1962), quienes indicaron los afloramientos de la isla de Coche como localidad tipo. Vivas et al. (1989), designaron los acantilados a 1 km al norte de Punta Negra, en la costa oriental de la isla como sección tipo. Como secciones de referencia, se nombraron acantilados en San
  • 49. 35 Pedro y en el Bichar, en la isla de Coche, y los acantilados en la costa occidental de la península de Chacopata (Hoja 7448 esc. 1:100.000, Cartografía Nacional). La formación está constituida por partes aproximadamente iguales de arcillas, areniscas y conglomerados, mal escogidos. Las arcillas son grises o azules, meteorizando en tonos abigarrados, generalmente arenosas y contienen guijas de diversas rocas y cuarzo, siendo localmente carbonosas. Las areniscas son de grano fino a grueso, con cemento arcilloso, gris y marrón, meteorizando en amarillo o rojo (Patrick, 1959; Jam y Méndez A., 1962). Los conglomerados se componen de guijarros, peñas y peñones subangulares a subredondeados, en los que predominan rocas ígneas y metamórficas, arenisca, cuarzo y, menos frecuentes, ftanitas y calizas, en una matriz arenosa poco coherente. Ambas litologías son típicamente ferruginosas (Jam y Méndez A., 1962, Bermúdez, 1966). Vivas et al., (1989), indican que las estructuras sedimentarias más comunes son la estratificación cruzada planar y bidireccional, imbricación de clastos y los rellenos de canal. Estas estructuras se observan en areniscas y conglomerados, los cuales son lenticulares (rellenos de canal y conglomerados, dismictitas). El espesor de la formación es de 60 m, aunque no ha sido posible medir secciones detalladas (González de Juana et al., 1980). En la sección tipo propuesta por Vivas et al., 1989, se midieron 21 m. Pozos perforados en la isla de Coche, alcanzaron 26 m en el Bichar, y 20 m en San Pedro sin alcanzar el basamento metamórfico. No se han encontrado fósiles ni en la isla de Coche, ni en los afloramientos septentrionales de la península de Araya. En Macanao, los fósiles no son indicativos de edad. Debido a la ausencia de fósiles, su edad es incierta; Jam y Méndez A. (1962) la atribuyeron al Pleistoceno. Tanto Patrick (1959) como el Cuadro de Correlación del Primer Congreso Venezolano del Petróleo (Soc. Ven. Ing. Petról., 1963), ubican la unidad en el Pleistoceno.  Formación Manicuare (Léxico Estratigráfico de Venezuela, PDVSA-Intevep) La Formación Manicuare fue descrita inicialmente por Balda (1963) para designar a las rocas metamórficas ubicadas en la zona de Manicuare. Posteriormente, fue redefinida por
  • 50. 36 Schubert (1972) para distinguir a los esquistos cuarzo-micáceos y cuarcitas que afloran en la parte noroccidental de la Península de Araya. Las rocas más abundantes presentes en esta formación son los esquistos cuarzo-micáceos, frecuentemente granatíferos y/o epidóticos, con abundantes intercalaciones de cuarcitas y algunas bandas de esquistos anfibólicos, mármoles y gneises, presentándose de forma alterna y con espesor variable, frecuentemente con micropliegues y estructuras de "augen". Toda la secuencia contiene vetas tabulares de cuarzo blanco o ahumado, las cuales varían entre varios centímetros y varios metros de espesor, paralelos o transversales a la foliación. El área de afloramiento se extiende en forma de una faja de aproximadamente de 3 km a 5 km de ancho, en dirección E-NE, entre las poblaciones de Araya y Chacopata, y desde la costa norte de la Península de Araya hasta Manicuare en la costa sur. Su expresión topográfica se caracteriza por cerros y colinas redondeadas, de color rojo ladrillo. Frecuentemente se observan afloramientos de cuarzo blancos en las cumbres. Debido a la ausencia de fósiles, y según su litología y grado de metamorfismo, se correlaciona con parte del Grupo Juan Griego de la Isla de Margarita, asignándole una edad Jurasico Superior a Cretáceo Inferior. 2.4 ADQUISICIÓN DE DATOS En el presente trabajo se realizaron los estudios de resistividad del suelo utilizando el método Wenner (Keller, 1966), en dos áreas designadas como: área administrativa y subestación principal (Ver Figura 2.10). Estas áreas están destinadas a la construcción de oficinas administrativas y la disposición de equipos de telecomunicaciones. Detalles sobre la adquisición en estas áreas se describen en las próximas secciones.
  • 51. 37 Figura 2.10: Ubicación Área Administrativa y Subestación Principal (Modificado de Google Earth) La ASTM (American Society for Testing Materials), es una institución que se encarga de normalizar procedimientos o procesos, de acuerdo a ciertos estándares de calidad. La norma ASTM G57-95, indica los procedimientos y equipos necesarios para realizar estudios de resistividad mediante el método Wenner. La adquisición de los datos en el Área Administrativa y Subestación Principal se realizó siguiendo las indicaciones propuestas en esta norma. Se midieron los valores de resistividad aparente del suelo utilizando aperturas entre electrodos de 0,5; 1; 2; 4; 8; 10; 14 y 20m. 2.4.1 Equipos Utilizados Para la adquisición de los datos, se emplearon los equipos que se indican a continuación:  Unidad principal: Medidor de Resistividad de suelos multifuncional, Modelo AEMC 6470-B. (Ver Figura 2.11)
  • 52. 38 Figura 2.11: Equipo utilizado para la realización de los estudios de resistividad  Dos carretes de cables de 100mts.  Dos cables de 30mts.  4 barras de electrodos de acero de 36cm de longitud 2.4.2 Área Administrativa Se realizaron estudios de resistividad en 7 puntos. Las coordenadas UTM de éstos se presentan en la Tabla 2.1. En la Figura 2.12 se muestra un mapa con la localización relativa de estos puntos en el área administrativa. Tabla 2.1: Coordenadas UTM de los estudios de resistividad en el área administrativa Punto Este Norte D1 385608 1175885 D2 385747 1175874 D3 385696 1175735 D4 385569 1175783 D5 385670 1175856 D6 385562 1175763 D7 385605 1175695
  • 53. 39 Figura 2.12: Ubicación de los estudios de resistividad correspondientes al área administrativa. (Modificado de Google Earth) 2.4.3 Subestación Principal Se realizaron estudios de resistividad en 9 puntos del terreno destinado a la construcción de la subestación principal. Las coordenadas UTM de estos puntos se presentan en la Tabla 2.2. En la Figura 2.13 se muestra esta zona, así como la ubicación relativa de cada punto.
  • 54. 40 Tabla 2.2: Coordenadas de los estudios de resistividad de la Subestación Principal Punto Este Norte A1 385349 1176075 A2 385333 1176086 A3 385278 1176121 A4 385233 1176145 A5 385183 1176136 A6 385121 1176121 A7 385094 1176091 A8 385043 1176039 A9 385016 1175938 Figura 2.13: Ubicación de los estudios de resistividad correspondientes a la Subestación Principal. (Modificado de Google Earth)
  • 55. 41 2.5 PROCESAMIENTO Para analizar los datos de resistividad se utilizó el programa IPI2Win. Este software está diseñado para la interpretación automática o semi-automática de datos de sondeo eléctrico vertical, obtenidos con varios de los arreglos utilizados con más frecuencia en la prospección eléctrica (Guía de Usuario IPI2win, 2000). Suministrando al programa los valores de resistividad aparente medidos en campo, y la apertura entre los electrodos, se obtiene la curva de resistividad aparente, la cual es el resultado del suavizamiento de los valores de campo por un método tipo spline (Guía de Usuario IPI2win, 2000). La curva es graficada en escala logarítmica, tanto para el eje de las separaciones como para el eje de la resistividad aparente. El rango de los valores en los ejes se determina automáticamente, de manera tal que la escala de la curva puede variar para diferentes puntos de sondeo. Adicionalmente, se puede obtener la pseudosección de resistividad aparente. De acuerdo a los valores de resistividad aparente, se genera una curva teórica que representa el modelo de resistividad verdadera. Este modelo, presenta las diversas capas con sus respectivos valores de resistividad, así como los espesores de las mismas. Los valores de resistividad aparente obtenidos en campo se insertaron en el programa IPI2Win con el propósito de obtener pseudosecciones de resistividad aparente, así como los valores de resistividad real. Con los modelos de capas de resistividad real, se generaron perfiles que ilustraran la distribución de resistividades en el suelo. Estos perfiles se obtuvieron a través el software Surfer8. Se utilizó el método de interpolación Kringing para generar los perfiles de resistividad verdadera. Adicionalmente, se tiene información litológica del área administrativa, proporcionada por una perforación geotécnica realizada a, aproximadamente, unos 15m del punto de medición D3 (Ver Apéndice A). De acuerdo a esta planilla de perforación, los primeros 3m corresponden a
  • 56. 42 suelo de relleno (arena arcillosa), luego se presentan arenas y limos desde los 4m hasta los 11m y, finalmente, esquistos grafitosos de los 12m a los 20m de profundidad. Esta litología es tomada en cuenta al momento de generar los modelos de resistividad verdadera así como para la interpretación de los datos. 2.6 RESULTADOS Y ANÁLISIS 2.6.1 Área Administrativa De acuerdo a la ubicación de los puntos de resistividad, se generaron 3 perfiles correspondientes al área administrativa (Ver Figura 2.14). Figura 2.14: Ubicación de los perfiles de resistividad del área administrativa (Modificado de Google Earth) Es importante indicar que, durante la adquisición de los datos de resistividad, el suelo estaba un poco húmedo en la zona Norte del área administrativa. Esto se observó principalmente
  • 57. 43 en las áreas cercanas a las mediciones del punto D1 (Ver figura 2.14) como una lámina de agua en parte del terreno. Este grado de humedad afecta las mediciones, tal como se puede observar en los perfiles que se muestran en las figuras 2.15 a 2.20  Perfil D3-D2: En la pseudosección de resistividad aparente se observan valores bajos en la zona correspondiente al punto D2, principalmente a partir de los 6m de profundidad, donde la resistividad aparente llega a presentar valores de 2,5 Ω.m (Figura 2.15) Figura 2.15: Pseudosección de resistividad aparente, perfil D3-D2 En la sección de resistividad verdadera (Figura 2.16), se puede observar que la resistividad va disminuyendo, a medida que el perfil va hacia el nor-este (similar al caso de la pseudosección de resistividad aparente). Esto se puede relacionar con el grado de humedad presente en dicha zona al momento de realizar los estudios, tal como se indicó anteriormente. El área correspondiente al punto D2 presenta valores bajos de resistividad verdadera. En el área cercana al punto D3, es donde encontramos los mayores valores de resistividad. Tomando en cuenta que la perforación geotécnica realizada en el Área Administrativa se encontraba a 15m del punto de medición D3, se puede comparar la litología presentada en la planilla de perforación (Ver Apéndice A), con los valores de resistividad asociados a este punto. Al realizar esta comparación, se observa concordancia entre la litología del área (arena arcillosa, arenas, limos y esquistos grafitosos) y los resultados correspondientes a los estudios de resistividad.
  • 58. 44 Figura 2.16: Sección de resistividad verdadera, perfil D3-D2 Al comparar la pseudosección de resistividad aparente con la sección de resistividad verdadera, se aprecia una distribución similar en ambos casos, tanto en la zona N-E (punto D2), como en la zona S-O (punto D3).  Perfil D7-D5 La figura 2.17 presenta la distribución de resistividades aparentes (pseudosección) para el perfil D7-D5. Se pueden apreciar valores bajos de resistividad aparente en la zona N-E, resultado que concuerda con lo observado en el perfil D3-D2 (Ver Figura 2.15) Figura 2.17: Pseudosección de resistividad aparente, perfil D7-D5
  • 59. 45 De acuerdo a los valores de resistividad verdadera de los puntos de medición D7 y D5, se tiene la sección de resistividad verdadera (Ver Figura 2.18). En este caso, se presentan variaciones significativas en las resistividades, principalmente en el punto D7, cuyos valores llegan a los 32 Ω.m a los 5m de profundidad. En el caso del punto D5, las resistividades llegan a tener valores de 22 Ω.m a los 5m de profundidad aproximadamente. Cercano a los 13m de profundidad, la resistividad decae. Figura 2.18: Sección de resistividad verdadera, perfil D7-D5 Comparando la pseudosección de resistividad aparente con la sección de resistividad verdadera de los puntos D7 y D5, se aprecia que mantienen relación, en los valores de resistividad.  Perfil D6-D4-D1 En la Figura 2.19 se presenta la pseudosección de resistividad aparente asociada a los puntos de medición D6, D4 y D1. Como en el caso se los perfiles anteriores, se aprecian valores bajos de resistividad aparente en la zona N-E.
  • 60. 46 Figura 2.19: Pseudosección de resistividad aparente, perfil D6-D4-D1 En la sección de resistividad verdadera ilustrada en la figura 2.20 se observa una tendencia general resistividades bajas, presentando una pequeña anomalía en el punto D4, donde las resistividades aumentan un poco. Figura 2.20: Sección de resistividad verdadera, perfil D6-D4-D1 Este perfil presenta los menores valores de resistividad. En los primeros metros de profundidad, correspondientes al punto D1, se tienen valores bajos. Esto se relaciona con el grado de humedad en el suelo que se presentó cercano a este punto en el momento de la adquisición de los datos. A los 5m de profundidad, bajo el punto D4, se tiene una pequeña variación en los valores de resistividad, alcanzando unos 5 Ω.m. Igualmente el punto D6 presenta valores bajos de resistividad desde la superficie hasta los 15m.
  • 61. 47 Comparando la pseudosección con el perfil de resistividad verdadera, en ambas se aprecian valores de resistividad un poco más altos en el punto D4. Es de hacer notar, que la representación horizontal del punto D4 en la pseudosección no está a escala, pues el programa grafica los puntos en forma equidistante. Por esta razón, la distribución horizontal real de los puntos D6, D4 y D1 es la presentada en la sección de resistividad verdadera.  Mapa de Resistividad Verdadera a los 2m de profundidad Tomando en cuenta los valores de resistividad verdadera obtenidos para el área administrativa, se genera un mapa que ilustra la distribución de las resistividades a 2m de profundidad (Ver Figura 2.21). Figura 2.21: Mapa de resistividad verdadera a 2m de profundidad, área administrativa. N
  • 62. 48 Los menores valores de resistividad se tienen en la parte Norte del área de estudio, con resistividades que alcanzan 1 Ω.m. Esto se relaciona al grado de saturación de agua en el suelo al momento de realizar las mediciones. A pesar de que los primeros 3 ó 4m del área administrativa corresponden a suelo de relleno (de acuerdo a la perforación geotécnica), se puede interpretar que en la zona norte el suelo de relleno es un poco más arcilloso, razón por la cual, absorbe mayor cantidad de agua. La zona sur del área de estudio presenta valores mayores de resistividad, lo que indica que en este caso el suelo de rellenos presenta granos un poco más gruesos (limo o arenas). 2.6.2 Subestación Principal La ubicación de los perfiles de resistividad correspondientes a la subestación principal se muestra en la figura 2.22. Figura 2.22: Ubicación de los perfiles de resistividad correspondientes a la subestación principal. (Modificado de Google Earth)
  • 63. 49  Perfil A1-A2-A3 En la figura 2.23 se presenta la pseudosección de resistividades aparentes correspondientes a las mediciones de los puntos A1, A2 y A3. Se observa una distribución de valores bajos de resistividad, donde los menores se presentan en el punto A2. Figura 2.23: Pseudosección de resistividad aparente, perfil A1-A2-A3 En la sección de resistividad verdadera (Figura 2.24) se aprecia que al tomar en cuenta la tendencia de valores presentada de los puntos A3 y A2, el punto A1 muestra una anomalía, con resistividades que alcanzan los 13 Ω.m. Figura 2.24: Sección de resistividad verdadera, perfil A1-A2-A3
  • 64. 50  Perfil A4-A5-A6 En la Figura 2.25 se aprecia la pseudosección de resistividad aparente asociada a los puntos A4, A5 y A6. Figura 2.25: Pseudosección de resistividad aparente, perfil A4-A5-A6 La distribución de resistividades verdaderas correspondiente a los puntos A4, A5 y A6 se presenta en la figura 2.26. Figura 2.26: Sección de resistividad verdadera, perfil A4-A5-A6 En este caso se observan resistividades altas (en comparación con los resultados del perfil A1-A2-A3), principalmente en los puntos A5 y A6 donde se llega a tener valores de hasta 35 Ω.m en el caso del punto A6. En el punto A4 se presentan valores de unos 8 Ω.m
  • 65. 51 hasta los 5m de profundidad aproximadamente, para luego presentar un decaimiento progresivo. En los puntos A5 y A6, al llegar a profundidades mayores a 10m, se observa este decaimiento. Comparando los resultados de la pseudosección con los de la sección de resistividad verdadera se aprecia una variación en los valores de resistividad, en el caso de la sección de resistividad verdadera, éstos son un poco más altos.  Perfil A7-A8-A9 La figura 2.27 muestra la pseudosección de resistividad aparente asociada a los puntos A7, A8 y A9. Figura 2.27: Pseudosección de resistividad aparente, perfil A7-A8-A9 En la figura 2.28 se puede apreciar la sección de resistividad verdadera referente a estos puntos.En este perfil se presentan los mayores valores de resistividad en los puntos A7 y A9, llegando hasta unos 44 Ω.m. Sin embargo, en el punto A8 se produce una anomalía, con valores de resistividad considerablemente bajos, tomando en cuenta la tendencia indicada por A7 y A9.
  • 66. 52 Figura 2.28: Sección de resistividad verdadera, perfil A7-A8-A9  Mapa de Resistividades Verdaderas a los 5m de profundidad Tomando en cuenta los valores de resistividad verdaderos obtenidos, se genera un mapa de resistividades verdaderas a los 5m de profundidad. Esto con el propósito de observar gráficamente la distribución de las resistividades en la Subestación principal a esta profundidad.
  • 67. 53 Figura 2.29: Mapa de resistividad verdadera a 5m de profundidad, subestación principal Se puede observar una tendencia de aumento de resistividad hacia el oeste. Sin embargo, se presenta una anomalía en esta zona con valores bajos de resistividad. Esto se puede relacionar con un grado de humedad un poco más alto en esta zona en particular. 2.6.3 Consideraciones generales: sistemas puesta a tierra y protección catódica Los sistemas puesta a tierra se implementan con el propósito de conectar a tierra equipos eléctricos o electrónicos, para evitar daños a los equipos y al personal, en caso de la posible existencia de una descarga de corriente peligrosa. Para diseñar estos sistemas, se deben tomar en cuenta los menores valores de resistividad que pueda presentar el terreno, ya que éstos están asociados a altas conductividades (Rojas, 2006). Los resultados obtenidos mediante este estudio deben ser utilizados al momento de diseñar las mallas de puesta a tierra, principalmente, en las zonas donde se estima la disposición de equipos eléctricos o electrónicos, como es el caso de la Subestación Principal y el Área Administrativa. N
  • 68. 54 Se denomina corrosión por suelos, a los procesos de degradación que son observados en estructuras enterradas. La resistividad del suelo, al depender de factores como la humedad, presencia de sales en el suelo, entre otros; es un indicativo del nivel de agresividad que presenta el suelo en términos de corrosión (Rocabado, 2011). Mientras menos resistivo sea el suelo, el grado de corrosión que presente será potencialmente alto. Con el propósito de evitar la corrosión en elementos enterrados en el suelo, se diseñan los sistemas de protección catódica. La norma API 651 (American Petroleum Institute), cuantifica el nivel de corrosión del suelo de acuerdo a los valores de resistividad. De acuerdo a los valores obtenidos a través de los estudios realizados, los niveles de corrosión del suelo están asociados a “muy corrosivo” y “moderadamente corrosivo” (Norma API-657). Por esta razón es recomendable instalar sistemas de protección catódica en las áreas estudiadas. 2.7 CONCLUSIONES  A pesar de algunos cambios en los valores de resistividad obtenidos en los perfiles, al tomar en cuenta que la resistividad en rocas varía en diversos órdenes de magnitud, los resultados obtenidos no indican cambios bruscos de resistividad, que puedan asociarse a cambios de litología o presencia de cuerpos de agua, entre otros.  Haciendo referencia a la perforación geotécnica, la litología del área es mayormente sedimentaria (arcillas, arenas y limos) y metamórfica al presentar esquistos grafitosos. Los valores obtenidos concuerdan con los asociados a la litología descrita en la perforación. Rocas sedimentarias, así como esquistos, presentan valores bajos de resistividad (entre 1 y 100 Ω.m).  Un factor importante a tomar en cuenta al momento de adquirir valores de resistividad en campo, es el grado de saturación de agua que pueda presentar el suelo. Ya que, el grado de humedad puede influir significativamente en los valores de resistividad. Para evitar esto, se debe tener registro de las recientes precipitaciones en el área.
  • 69. 55 CAPÍTULO 3 ESTUDIOS GEOTÉCNICOS POR PROSPECCIÓN GEOFÍSICA EN TIERRA: CROSSHOLE PARA EL PROYECTO “ASTILLEROS DEL ALBA (ASTIALBA)”, ARAYA, ESTADO SUCRE 3.1 Aspectos Teóricos 3.1.1 Ondas Sísmicas Las ondas sísmicas son un tipo de ondas elásticas que se producen por la propagación de perturbaciones temporales que generan movimientos en un medio (Estrada, 2008).  Ondas P: Las Ondas P son ondas longitudinales, lo que implica que las partículas se mueven paralelas a la dirección de propagación de la onda, produciendo compresiones y dilataciones en el medio (Figura 3.1). Ante cualquier perturbación que genere ondas sísmicas, las ondas P son las que se perciben primero en los registros. Figura 3.1: Ondas P (modificado de http://fatimafeijoomaneiro.blogspot.com)  Ondas S: Llamadas también ondas de cizalla, éstas generan un movimiento de partículas perpendicular a la dirección de propagación de la onda. Se relacionan a deformaciones del
  • 70. 56 terreno de tipo de cizalla (Figura 3.2). Su velocidad es menor que la de las ondas P, por lo que se perciben como la segunda llegada en los registros sísmicos. Figura 3.2: Onda S (modificado de http://fatimafeijoomaneiro.blogspot.com) Un ejemplo de cómo se ven las llegadas de las ondas P y S en un registro sísmico se presenta en la figura 3.3. Figura 3.3: Identificación de ondas sísmicas (Modificado de Tarbuck et al. 2005) 3.1.2 Módulos Elásticos Ya que las ondas sísmicas son elásticas, los medios por los que se propagan deben tener propiedades elásticas. Por esta razón, pueden relacionarse las velocidades de ondas sísmicas con las propiedades elásticas de un medio (Udías y Mezcua, 1997)
  • 71. 57 Se llaman módulos elásticos a los parámetros que describen las relaciones entre las fuerzas aplicadas y las deformaciones (e) correspondientes a un material. Estos módulos son:  Relación de Poisson: Relaciona cuánto se dilata un sólido en un eje respecto a la contracción sufrida en otro eje (Figura 3.4) (Velis, 2007). Figura 3.4: Relación de Poisson (Tomado de http://www.feppd.org/)  Módulo de Young: Mide la resistencia de un material a la deformación, al ser aplicado un esfuerzo uniaxial (Velis, 2007). Puede describirse como el comportamiento de un cilindro al ser halado por ambos extremos (Figura 3.5). Figura 3.5: Módulo de Young (Tomado de http://eculator.com/)
  • 72. 58  Módulo de Rigidez: Describe cuán fácil es deformar un cuerpo ante la aplicación de fuerzas de corte o tangenciales (Figura 3.6). El módulo de rigidez representa el cociente entre la fuerza de corte ejercida y el cambio relativo de la deformación en la dirección de la fuerza. (Velis, 2007). Figura 3.6: Módulo de rigidez (Modificado de Velis, 2007)  Módulo de Bulk: Representa el cociente entre el cambio en la presión hidrostática ejercida sobre el material y la magnitud del cambio relativo sufrido por el mismo (Figura 3.7) (Velis, 2007). Figura 3.7: Módulo de Bulk (Modificado de Velis, 2007)
  • 73. 59 3.1.3 Determinación de módulos elásticos usando Vp, Vs y densidad Conociendo los valores de velocidad de propagación de ondas P y S en un medio, así como la densidad del mismo, se pueden calcular los módulos elásticos mediante las siguientes ecuaciones (Manilla, 2003):  Relación de Poisson: (3.5)  Módulo de Rigidez: (3.6)  Módulo de Young: (3.7)  Módulo de Bulk: (3.8) 3.1.4 Ensayo de Pozos Cruzados (Crosshole) Este tipo de ensayo se realiza con la finalidad de determinar la velocidad de propagación de ondas sísmicas P y S. Conociendo los valores de estas velocidades, así como la densidad del suelo, se puede obtener valores asociados a los módulos elásticos (Norma ASTM D4428). Entre estos módulos destacan: módulo de Young, relación de Poisson, módulo de Bulk, módulo de Cizalla o simplemente las anomalías en el medio entre los pozos. Las suposiciones que se realizan con este método son:  Las capas están dispuestas horizontalmente  Las leyes de refracción de Snell aplican (Norma ASTM D4428) La metodología de adquisición de datos consiste en colocar una fuente de ondas a cierta profundidad en uno de los pozos y receptores en los pozos siguientes (Figura 3.8). Al repetir el ensayo a distintas profundidades, se puede obtener un perfil de velocidades en función de la profundidad. Las velocidades de onda se calculan a partir de los tiempos de llegada en ambos sondeos (Rojas et al., 2008).
  • 74. 60 El método general para la preparación de los pozos es perforar 3 pozos en línea, espaciados 3m entre cada uno. Sin embargo, si se sabe que los valores de ondas S serán superiores a 450 m/s, el espaciamiento entre los pozos puede extenderse hasta los 4,5m. El diámetro de los pozos durante la perforación no debe ser mayor de 6,5”, mientras que el diámetro del revestimiento del pozo debe estar entre 3” y 4”. El espacio vacío que quede entre el revestimiento y el diámetro de perforación debe ser llenado con lechada de cemento (Ver Figura 3.8). Esto se hace con el propósito de eliminar discontinuidades que pueden impedir la propagación de las ondas. Además, se debe tratar que la densidad de la lechada de cemento sea similar a la del suelo (Norma ASTM D4428). Figura 3.8: Descripción del ensayo crosshole (modificado de http://www.cedex.es) 3.2 UBICACIÓN DEL ÁREA DE ESTUDIO Los estudios de resistividad se realizaron en la costa Norte de la Península de Araya, en el sitio conocido como Punta de Playa o Playa de Róbalo, Municipio Cruz Salmerón Acosta, del Estado Sucre (Ver figura 3.9).
  • 75. 61 Figura 3.9: Ubicación del área de estudio (Modificado de http://www.venezuelatuya.com/) Los ensayos crosshole se realizaron en un área cercana a aquella donde se llevaron a cabo los estudios de resistividad. La figura 3.10 muestra la ubicación los ensayos crosshole y las mediciones de resistividad. Figura 3.10: Ubicación de mediciones de resistividad y ensayos crosshole (Modificado de Google Earth)
  • 76. 62 Las coordenadas UTM de los puntos donde se realizaron los ensayos Cross Hole son:  Ensayo Crosshole 1: E 385.617 N 1.176.863  Ensayo Crosshole 2: E 384.919 N 1.176.765 La Figura 3.11 muestra la ubicación relativa de estos puntos. Figura 3.11: Ubicación de los ensayos Crosshole (Modificado de Google Earth) 3.3 ADQUISICIÓN DE DATOS Se perforaron en línea 3 pozos para cada ensayo. La separación entre cada pozo fue de 3m. Los pozos se perforaron por rotación y lavado, sin recuperación de muestras, utilizando para la perforación forros de 4” y de 3,5”. Durante la perforación, se comprobó la horizontalidad de la máquina con niveles de burbuja para asegurar que no había desviaciones de los sondeos.