SlideShare uma empresa Scribd logo
1 de 26
Lecture 3 Oscillator 
• Introduction of Oscillator 
• Linear Oscillator 
– Wien Bridge Oscillator 
– RC Phase-Shift Oscillator 
– LC Oscillator 
• Stability 
Ref:06103104HKN EE3110 Oscillator 1
Oscillators 
Oscillation: an effect that repeatedly and 
regularly fluctuates about the mean value 
Oscillator: circuit that produces oscillation 
Characteristics: wave-shape, frequency, 
amplitude, distortion, stability 
Ref:06103104HKN EE3110 Oscillator 2
Application of Oscillators 
• Oscillators are used to generate signals, e.g. 
– Used as a local oscillator to transform the RF 
signals to IF signals in a receiver; 
– Used to generate RF carrier in a transmitter 
– Used to generate clocks in digital systems; 
– Used as sweep circuits in TV sets and CRO. 
Ref:06103104HKN EE3110 Oscillator 3
Linear Oscillators 
1. Wien Bridge Oscillators 
2. RC Phase-Shift Oscillators 
3. LC Oscillators 
4. Stability 
Ref:06103104HKN EE3110 Oscillator 4
Integrant of Linear Oscillators 
Ve 
+ Amplifier (A) 
Vs Vo 
S 
+ 
Frequency-Selective 
Feedback Network (b) 
Vf 
Positive 
Feedback 
For sinusoidal input is connected 
“Linear” because the output is approximately sinusoidal 
A linear oscillator contains: 
- a frequency selection feedback network 
- an amplifier to maintain the loop gain at unity 
Ref:06103104HKN EE3110 Oscillator 5
Basic Linear Oscillator 
+ 
Ve A(f) 
Vs Vo 
S 
+ 
SelectiveNetwork 
          b(f) 
Vf 
( ) o s f V = AV = A V +V e and f o V = bV 
A 
Ab 
V 
s 
Þ o 
= 
V 
- 
1 
If Vs = 0, the only way that Vo can be nonzero 
is that loop gain Ab=1 which implies that 
A (Barkhausen Criterion) 
b 
A 
= 
b 
| | 1 
Ð = 
0 
Ref:06103104HKN EE3110 Oscillator 6
Wien Bridge Oscillator 
1 
C 
1 
C 
Let Frequency Selection Network 
= and 
1 
XC 1 
w 
1 1 C1 Z = R - jX 
2 
X= 
C 2 
w 
C 
jR X 
2 2 
2 2 
1 
2 2 
ù 
é 
Vi Vo 
jR X R jX 
= - - 
( / ) 
C C 
2 2 2 2 
2 
V 
o 
Z 
C 
jR X 
2 2 
b = - 
R - jX R - jX - 
jR X 
( )( ) C C C 
Ref:06103104HKN EE3110 Oscillator 7 
2 
1 1 
C 
C R jX 
R jX 
Z 
- 
= - úû 
êë 
- 
= + 
- 
Therefore, the feedback factor, 
( ) ( / ) 
1 1 2 2 2 2 
1 2 
C C C 
i 
R jX jR X R jX 
Z Z 
V 
- + - - 
+ 
b = = 
1 1 2 2 2 2 
R1 C1 
C2 R2 
Z1 
Z2
b can be rewritten as: 
C 
R X 
2 2 
R X + R X + R X + j R R - 
X X 
( ) 1 C 2 2 C 1 2 C 2 1 2 C 1 C 
2 
b = 
For Barkhausen Criterion, imaginary part = 0, i.e., 
0 1 2 1 2 - = C C R R X X 
or 1 1 
C C 
w w 
1 2 
R R C C 
1 2 1 2 
R R 
1 2 
1/ 
Þ = 
= 
w 
Supposing, 
R1=R2=R and XC1= XC2=XC, 
RX 
C 
+ - 
3 RX j ( R 2 X 
2 ) 
C C 
b = 
0.34 b 
0.32 
factor 0.3 
0.28 
Feedback 0.26 
0.24 
0.22 
0.2 
1 
0.5 
0 
Phase 
-0.5 
-1 
f(R=Xc) 
Phase=0 
Frequency 
b=1/3 
Ref:06103104HKN EE3110 Oscillator 8
Example 
Rf 
- 
+ 
R 
R 
C 
R1 
C 
Z1 
Z2 
Vo 
w = 1 
By setting RC 
, we get 
b = 1 
Imaginary part = 0 and 
3 
Due to Barkhausen Criterion, 
Loop gain Avb=1 
where 
Av : Gain of the amplifier 
R 
A A f 
v v b = Þ = = + 
R 
1 
1 3 1 
RTherefore, f 2 
Wien Bridge Oscillator 
= 
R 
1 
Ref:06103104HKN EE3110 Oscillator 9
RC Phase-Shift Oscillator 
- 
+ 
Rf 
R1 
C C C 
R R R 
 Using an inverting amplifier 
 The additional 180o phase shift is provided by an RC 
phase-shift network 
Ref:06103104HKN EE3110 Oscillator 10
Applying KVL to the phase-shift network, we have 
C C C 
V1 Vo 
R R R 
V = I ( R - jX ) 
- 
I R 
C 
1 1 2 
I R I R jX I R 
= - + - - 
0 (2 ) 
C 
1 2 3 
I R I R jX 
= - + - 
0 (2 ) 
2 3 
C 
I1 I2 I3 Solve for I3, we get 
C 
R - jX - 
R 
0 
R R jX R 
- - - 
C 
C 
R jX R V 
1 
2 0 
C 
- - 
C 
R R jX 
R R jX 
R 
I 
- - 
- - 
- 
= 
2 
0 2 
0 0 
3 
2 
I V R 
1 
( )[(2 )2 2 ] 2 (2 ) 
Or = 
3 
R - jX R - jX - R - R R - 
jX 
C C C Ref:06103104HKN EE3110 Oscillator 11
The output voltage, 
3 
V = I R = 
V R 
1 
o R jX R jX R R R jX 
( )[(2 )2 2 ] 2 (2 ) 
3 
- - - - - 
C C C 
Hence the transfer function of the phase-shift network is given by, 
3 
R 
( 3 5 2 ) ( 3 6 2 ) 
V 
b = o 
= 
R RX j X R X 
V 
- + - 
1 C C C 
For 180o phase shift, the imaginary part = 0, i.e., 
3 2 
X R X XC C C 
- = = 
6 0 or 0 (Rejected) 
2C 
R 
2 1 
RC 
Þ = 
X 6 
6 
= 
w 
and, 
b = - 1 
29 
Note: The –ve sign mean the 
phase inversion from the 
voltage 
Ref:06103104HKN EE3110 Oscillator 12
LC Oscillators 
- 
~ 
Av Ro 
+ 
Z1 Z2 
2 1 
Z3 
Ref:06103104HKN EE3110 Oscillator 13 
Zp 
 The frequency selection 
network (Z1, Z2 and Z3) 
provides a phase shift of 
180o 
 The amplifier provides an 
addition shift of 180o 
Two well-known Oscillators: 
• Colpitts Oscillator 
• Harley Oscillator
Av Ro 
+ 
~ 
Z1 Z2 
Vf Vo 
Z3 
Zp 
V V Z 
f o o V 
1 
+ 
Z Z 
1 3 
= b = 
Z = Z Z + 
Z p 
//( ) 
2 1 3 
( ) 
Z Z Z 
= + 
2 1 3 
Z + Z + 
Z 
1 2 3 
For the equivalent circuit from the output 
A Z 
v p 
- 
R + 
Z 
o p 
V 
- or 
= o 
= 
V 
i 
V 
o 
p 
A V 
v i 
R + 
Z 
o p 
Z 
Ro 
Io 
-A Zp vVi 
+ 
- 
+ 
Vo 
- 
Therefore, the amplifier gain is obtained, 
A Z Z Z 
= = - + 
( ) 
2 1 3 
v 
R Z + Z + Z + Z Z + 
Z 
( ) ( ) 
1 2 3 2 1 3 
A V 
o 
V 
o 
i 
Ref:06103104HKN EE3110 Oscillator 14
The loop gain, 
A A Z Z 
1 2 
v 
b = - 
R Z + Z + Z + Z Z + 
Z 
( ) ( ) 1 2 3 2 1 3 
o 
If the impedance are all pure reactances, i.e., 
1 1 2 2 3 3 Z = jX , Z = jX and Z = jX 
The loop gain becomes, 
A A X X 
1 2 
v 
jR X + X + X - X X + 
X 
( ) ( ) 1 2 3 2 1 3 
o 
b = 
The imaginary part = 0 only when X1+ X2+ X3=0 
 It indicates that at least one reactance must be –ve (capacitor) 
 X1 and X2 must be of same type and X3 must be of opposite type 
A AvX = v 
A X 
2 
1 
1 
With imaginary part = 0, b = - 
X + 
X 
1 3 
X 
For Unit Gain & 180o Phase-shift, 
A A X v b = Þ = 
1 2 
1 
X 
Ref:06103104HKN EE3110 Oscillator 15
Hartley Oscillator Colpitts Oscillator 
R L1 
L2 
C 
R 
C1 
C2 
L 
w = 1 
1 
w = 
L L C = o ( ) 
o LC 
T 
g C m = 
2 
RC 
1 
C C C T + 
1 2 
C C 
1 2 
1 2 + 
g L m = 
1 
RL 
2 
Ref:06103104HKN EE3110 Oscillator 16
Colpitts Oscillator 
R 
C1 
C2 
L 
Equivalent circuit 
+ 
- 
Vp 
L 
C2 R C1 
gmVp 
In the equivalent circuit, it is assumed that: 
 Linear small signal model of transistor is used 
 The transistor capacitances are neglected 
 Input resistance of the transistor is large enough 
Ref:06103104HKN EE3110 Oscillator 17
At node 1, 
( ) 1 1 V V i jwL p = + 
where, 
p i jwC V 1 2 = 
2 
L 
node 1 
I1 
I2 I3 
V1 
C2 R C1 
Þ V = V (1 - 
w LC ) 1 p 2 
Apply KCL at node 1, we have 
j C V g V V m w w p p 
2 + + + j CV = 
Vp 
0 1 1 
1 
R 
+ 
- 
gmVp 
(1 ) 1 0 2 1 
+ + - 2 
æ + j C 
ö çè 
j C V g V V LC m w w w p p p 
2 R 
÷ø 
= For Oscillator Vp must not be zero, therefore it enforces, 
ö 
1 [ ( ) ] 0 
gm w w w 
= - + + ÷ ÷ø 
LC 
+ - j C C LC C 
1 2 
3 
1 2 
2 
2 
æ 
ç çè 
R 
R 
I4 
Ref:06103104HKN EE3110 Oscillator 18
ö 
1 [ ( ) ] 0 
gm w w w 
= - + + ÷ ÷ø 
LC 
+ - j C C LC C 
1 2 
2 
2 
æ 
ç çè 
R 
R 
Imaginary part = 0, we have 
1 2 
3 
w = 1 
o LC 
T 
Real part = 0, yields 
g C m = 
2 
RC 
1 
C C C T + 
1 2 
C C 
1 2 
= 
Ref:06103104HKN EE3110 Oscillator 19
Frequency Stability 
• The frequency stability of an oscillator is 
defined as 
o 
ppm/ C 
w 
1 ×æ 
ö çè 
÷ø 
w = 
T 
d 
w w 
o o d 
• Use high stability capacitors, e.g. silver 
mica, polystyrene, or teflon capacitors and 
low temperature coefficient inductors for 
high stable oscillators. 
Ref:06103104HKN EE3110 Oscillator 20
Amplitude Stability 
• In order to start the oscillation, the loop 
gain is usually slightly greater than unity. 
• LC oscillators in general do not require 
amplitude stabilization circuits because of 
the selectivity of the LC circuits. 
• In RC oscillators, some non-linear devices, 
e.g. NTC/PTC resistors, FET or zener 
diodes can be used to stabilized the 
amplitude 
Ref:06103104HKN EE3110 Oscillator 21
Wien-bridge oscillator with bulb stabilization 
Vrms 
irms 
Operating 
point 
+ 
- 
R 
R 
C 
C 
R2 
Blub 
Ref:06103104HKN EE3110 Oscillator 22
Wien-bridge oscillator with diode 
stabilization 
Rf 
- 
+ 
R 
R 
C 
R1 
C 
Vo 
Ref:06103104HKN EE3110 Oscillator 23
Twin-T Oscillator 
- 
+ 
low pass filter 
high pass filter 
Filter output 
low pass region high pass region 
fr f 
Ref:06103104HKN EE3110 Oscillator 24
Bistable Circuit 
+ 
- 
vo 
v1 
v+ 
Vth 
+Vcc 
-Vcc 
vo 
v1 
-Vth 
vo 
+Vcc 
-Vcc 
v1 
Vth 
+Vcc 
-Vth 
-Vcc 
vo 
v1 
Ref:06103104HKN EE3110 Oscillator 25
A Square-wave Oscillator 
- 
+ 
vo 
vc 
vf 
vc 
vo 
+vf 
¡Ðvf 
+vmax 
¡Ðvmax 
Ref:06103104HKN EE3110 Oscillator 26

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Active filters
Active filtersActive filters
Active filters
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Oscillators
OscillatorsOscillators
Oscillators
 
Schmitt trigger circuit
Schmitt trigger circuitSchmitt trigger circuit
Schmitt trigger circuit
 
Differentiator OP Amp
Differentiator OP AmpDifferentiator OP Amp
Differentiator OP Amp
 
differential amplifier for electronic
differential amplifier for electronicdifferential amplifier for electronic
differential amplifier for electronic
 
Oscillators
OscillatorsOscillators
Oscillators
 
Instrumentation amplifier
Instrumentation amplifierInstrumentation amplifier
Instrumentation amplifier
 
Basic of Diode Rectifiers
Basic of Diode RectifiersBasic of Diode Rectifiers
Basic of Diode Rectifiers
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
filters
filtersfilters
filters
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
Two cavity klystron
Two cavity klystronTwo cavity klystron
Two cavity klystron
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
Switched capacitor filter
Switched capacitor filter Switched capacitor filter
Switched capacitor filter
 
Op amps
Op ampsOp amps
Op amps
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
 
Comparator
ComparatorComparator
Comparator
 

Semelhante a Oscillatorsppt

Lecture 10 OSCILLATOR I Electronics Circuit design .PDF
Lecture 10 OSCILLATOR I Electronics Circuit design .PDFLecture 10 OSCILLATOR I Electronics Circuit design .PDF
Lecture 10 OSCILLATOR I Electronics Circuit design .PDFEngrNoumanMemon
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier mrinal mahato
 
Bjt oscillators
Bjt oscillatorsBjt oscillators
Bjt oscillatorsCvSudhakar
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxElisée Ndjabu
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuitsarjav patel
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillatorsTouqeer Jumani
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronicsAniruddha Gautam
 
Highpass RC circuit
Highpass RC circuitHighpass RC circuit
Highpass RC circuitm balaji
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfGollapalli Sreenivasulu
 
Oscillators
OscillatorsOscillators
Oscillators12nitin
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copyKitTrnTun5
 
high-pass RC circuit.pptx
high-pass RC circuit.pptxhigh-pass RC circuit.pptx
high-pass RC circuit.pptxDeepthy Gs
 

Semelhante a Oscillatorsppt (20)

Oscillators.ppt
Oscillators.pptOscillators.ppt
Oscillators.ppt
 
Lecture 10 OSCILLATOR I Electronics Circuit design .PDF
Lecture 10 OSCILLATOR I Electronics Circuit design .PDFLecture 10 OSCILLATOR I Electronics Circuit design .PDF
Lecture 10 OSCILLATOR I Electronics Circuit design .PDF
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier
 
Bjt oscillators
Bjt oscillatorsBjt oscillators
Bjt oscillators
 
Unit 5 inverters
Unit 5 invertersUnit 5 inverters
Unit 5 inverters
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Sinusoidal oscillators
Sinusoidal oscillatorsSinusoidal oscillators
Sinusoidal oscillators
 
4606
46064606
4606
 
Commutation techniques in power electronics
Commutation techniques in power electronicsCommutation techniques in power electronics
Commutation techniques in power electronics
 
oscillators.pptx
oscillators.pptxoscillators.pptx
oscillators.pptx
 
ch2-BJTremaining.pptx
ch2-BJTremaining.pptxch2-BJTremaining.pptx
ch2-BJTremaining.pptx
 
Highpass RC circuit
Highpass RC circuitHighpass RC circuit
Highpass RC circuit
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Oscillators
OscillatorsOscillators
Oscillators
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Pract1
Pract1Pract1
Pract1
 
high-pass RC circuit.pptx
high-pass RC circuit.pptxhigh-pass RC circuit.pptx
high-pass RC circuit.pptx
 
Unit2
Unit2Unit2
Unit2
 

Último

PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSrknatarajan
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 

Último (20)

PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 

Oscillatorsppt

  • 1. Lecture 3 Oscillator • Introduction of Oscillator • Linear Oscillator – Wien Bridge Oscillator – RC Phase-Shift Oscillator – LC Oscillator • Stability Ref:06103104HKN EE3110 Oscillator 1
  • 2. Oscillators Oscillation: an effect that repeatedly and regularly fluctuates about the mean value Oscillator: circuit that produces oscillation Characteristics: wave-shape, frequency, amplitude, distortion, stability Ref:06103104HKN EE3110 Oscillator 2
  • 3. Application of Oscillators • Oscillators are used to generate signals, e.g. – Used as a local oscillator to transform the RF signals to IF signals in a receiver; – Used to generate RF carrier in a transmitter – Used to generate clocks in digital systems; – Used as sweep circuits in TV sets and CRO. Ref:06103104HKN EE3110 Oscillator 3
  • 4. Linear Oscillators 1. Wien Bridge Oscillators 2. RC Phase-Shift Oscillators 3. LC Oscillators 4. Stability Ref:06103104HKN EE3110 Oscillator 4
  • 5. Integrant of Linear Oscillators Ve + Amplifier (A) Vs Vo S + Frequency-Selective Feedback Network (b) Vf Positive Feedback For sinusoidal input is connected “Linear” because the output is approximately sinusoidal A linear oscillator contains: - a frequency selection feedback network - an amplifier to maintain the loop gain at unity Ref:06103104HKN EE3110 Oscillator 5
  • 6. Basic Linear Oscillator + Ve A(f) Vs Vo S + SelectiveNetwork b(f) Vf ( ) o s f V = AV = A V +V e and f o V = bV A Ab V s Þ o = V - 1 If Vs = 0, the only way that Vo can be nonzero is that loop gain Ab=1 which implies that A (Barkhausen Criterion) b A = b | | 1 Ð = 0 Ref:06103104HKN EE3110 Oscillator 6
  • 7. Wien Bridge Oscillator 1 C 1 C Let Frequency Selection Network = and 1 XC 1 w 1 1 C1 Z = R - jX 2 X= C 2 w C jR X 2 2 2 2 1 2 2 ù é Vi Vo jR X R jX = - - ( / ) C C 2 2 2 2 2 V o Z C jR X 2 2 b = - R - jX R - jX - jR X ( )( ) C C C Ref:06103104HKN EE3110 Oscillator 7 2 1 1 C C R jX R jX Z - = - úû êë - = + - Therefore, the feedback factor, ( ) ( / ) 1 1 2 2 2 2 1 2 C C C i R jX jR X R jX Z Z V - + - - + b = = 1 1 2 2 2 2 R1 C1 C2 R2 Z1 Z2
  • 8. b can be rewritten as: C R X 2 2 R X + R X + R X + j R R - X X ( ) 1 C 2 2 C 1 2 C 2 1 2 C 1 C 2 b = For Barkhausen Criterion, imaginary part = 0, i.e., 0 1 2 1 2 - = C C R R X X or 1 1 C C w w 1 2 R R C C 1 2 1 2 R R 1 2 1/ Þ = = w Supposing, R1=R2=R and XC1= XC2=XC, RX C + - 3 RX j ( R 2 X 2 ) C C b = 0.34 b 0.32 factor 0.3 0.28 Feedback 0.26 0.24 0.22 0.2 1 0.5 0 Phase -0.5 -1 f(R=Xc) Phase=0 Frequency b=1/3 Ref:06103104HKN EE3110 Oscillator 8
  • 9. Example Rf - + R R C R1 C Z1 Z2 Vo w = 1 By setting RC , we get b = 1 Imaginary part = 0 and 3 Due to Barkhausen Criterion, Loop gain Avb=1 where Av : Gain of the amplifier R A A f v v b = Þ = = + R 1 1 3 1 RTherefore, f 2 Wien Bridge Oscillator = R 1 Ref:06103104HKN EE3110 Oscillator 9
  • 10. RC Phase-Shift Oscillator - + Rf R1 C C C R R R  Using an inverting amplifier  The additional 180o phase shift is provided by an RC phase-shift network Ref:06103104HKN EE3110 Oscillator 10
  • 11. Applying KVL to the phase-shift network, we have C C C V1 Vo R R R V = I ( R - jX ) - I R C 1 1 2 I R I R jX I R = - + - - 0 (2 ) C 1 2 3 I R I R jX = - + - 0 (2 ) 2 3 C I1 I2 I3 Solve for I3, we get C R - jX - R 0 R R jX R - - - C C R jX R V 1 2 0 C - - C R R jX R R jX R I - - - - - = 2 0 2 0 0 3 2 I V R 1 ( )[(2 )2 2 ] 2 (2 ) Or = 3 R - jX R - jX - R - R R - jX C C C Ref:06103104HKN EE3110 Oscillator 11
  • 12. The output voltage, 3 V = I R = V R 1 o R jX R jX R R R jX ( )[(2 )2 2 ] 2 (2 ) 3 - - - - - C C C Hence the transfer function of the phase-shift network is given by, 3 R ( 3 5 2 ) ( 3 6 2 ) V b = o = R RX j X R X V - + - 1 C C C For 180o phase shift, the imaginary part = 0, i.e., 3 2 X R X XC C C - = = 6 0 or 0 (Rejected) 2C R 2 1 RC Þ = X 6 6 = w and, b = - 1 29 Note: The –ve sign mean the phase inversion from the voltage Ref:06103104HKN EE3110 Oscillator 12
  • 13. LC Oscillators - ~ Av Ro + Z1 Z2 2 1 Z3 Ref:06103104HKN EE3110 Oscillator 13 Zp  The frequency selection network (Z1, Z2 and Z3) provides a phase shift of 180o  The amplifier provides an addition shift of 180o Two well-known Oscillators: • Colpitts Oscillator • Harley Oscillator
  • 14. Av Ro + ~ Z1 Z2 Vf Vo Z3 Zp V V Z f o o V 1 + Z Z 1 3 = b = Z = Z Z + Z p //( ) 2 1 3 ( ) Z Z Z = + 2 1 3 Z + Z + Z 1 2 3 For the equivalent circuit from the output A Z v p - R + Z o p V - or = o = V i V o p A V v i R + Z o p Z Ro Io -A Zp vVi + - + Vo - Therefore, the amplifier gain is obtained, A Z Z Z = = - + ( ) 2 1 3 v R Z + Z + Z + Z Z + Z ( ) ( ) 1 2 3 2 1 3 A V o V o i Ref:06103104HKN EE3110 Oscillator 14
  • 15. The loop gain, A A Z Z 1 2 v b = - R Z + Z + Z + Z Z + Z ( ) ( ) 1 2 3 2 1 3 o If the impedance are all pure reactances, i.e., 1 1 2 2 3 3 Z = jX , Z = jX and Z = jX The loop gain becomes, A A X X 1 2 v jR X + X + X - X X + X ( ) ( ) 1 2 3 2 1 3 o b = The imaginary part = 0 only when X1+ X2+ X3=0  It indicates that at least one reactance must be –ve (capacitor)  X1 and X2 must be of same type and X3 must be of opposite type A AvX = v A X 2 1 1 With imaginary part = 0, b = - X + X 1 3 X For Unit Gain & 180o Phase-shift, A A X v b = Þ = 1 2 1 X Ref:06103104HKN EE3110 Oscillator 15
  • 16. Hartley Oscillator Colpitts Oscillator R L1 L2 C R C1 C2 L w = 1 1 w = L L C = o ( ) o LC T g C m = 2 RC 1 C C C T + 1 2 C C 1 2 1 2 + g L m = 1 RL 2 Ref:06103104HKN EE3110 Oscillator 16
  • 17. Colpitts Oscillator R C1 C2 L Equivalent circuit + - Vp L C2 R C1 gmVp In the equivalent circuit, it is assumed that:  Linear small signal model of transistor is used  The transistor capacitances are neglected  Input resistance of the transistor is large enough Ref:06103104HKN EE3110 Oscillator 17
  • 18. At node 1, ( ) 1 1 V V i jwL p = + where, p i jwC V 1 2 = 2 L node 1 I1 I2 I3 V1 C2 R C1 Þ V = V (1 - w LC ) 1 p 2 Apply KCL at node 1, we have j C V g V V m w w p p 2 + + + j CV = Vp 0 1 1 1 R + - gmVp (1 ) 1 0 2 1 + + - 2 æ + j C ö çè j C V g V V LC m w w w p p p 2 R ÷ø = For Oscillator Vp must not be zero, therefore it enforces, ö 1 [ ( ) ] 0 gm w w w = - + + ÷ ÷ø LC + - j C C LC C 1 2 3 1 2 2 2 æ ç çè R R I4 Ref:06103104HKN EE3110 Oscillator 18
  • 19. ö 1 [ ( ) ] 0 gm w w w = - + + ÷ ÷ø LC + - j C C LC C 1 2 2 2 æ ç çè R R Imaginary part = 0, we have 1 2 3 w = 1 o LC T Real part = 0, yields g C m = 2 RC 1 C C C T + 1 2 C C 1 2 = Ref:06103104HKN EE3110 Oscillator 19
  • 20. Frequency Stability • The frequency stability of an oscillator is defined as o ppm/ C w 1 ×æ ö çè ÷ø w = T d w w o o d • Use high stability capacitors, e.g. silver mica, polystyrene, or teflon capacitors and low temperature coefficient inductors for high stable oscillators. Ref:06103104HKN EE3110 Oscillator 20
  • 21. Amplitude Stability • In order to start the oscillation, the loop gain is usually slightly greater than unity. • LC oscillators in general do not require amplitude stabilization circuits because of the selectivity of the LC circuits. • In RC oscillators, some non-linear devices, e.g. NTC/PTC resistors, FET or zener diodes can be used to stabilized the amplitude Ref:06103104HKN EE3110 Oscillator 21
  • 22. Wien-bridge oscillator with bulb stabilization Vrms irms Operating point + - R R C C R2 Blub Ref:06103104HKN EE3110 Oscillator 22
  • 23. Wien-bridge oscillator with diode stabilization Rf - + R R C R1 C Vo Ref:06103104HKN EE3110 Oscillator 23
  • 24. Twin-T Oscillator - + low pass filter high pass filter Filter output low pass region high pass region fr f Ref:06103104HKN EE3110 Oscillator 24
  • 25. Bistable Circuit + - vo v1 v+ Vth +Vcc -Vcc vo v1 -Vth vo +Vcc -Vcc v1 Vth +Vcc -Vth -Vcc vo v1 Ref:06103104HKN EE3110 Oscillator 25
  • 26. A Square-wave Oscillator - + vo vc vf vc vo +vf ¡Ðvf +vmax ¡Ðvmax Ref:06103104HKN EE3110 Oscillator 26