SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
1/9
A complete knowledge guide on Digital Twins
leewayhertz.com/digital-twin
The successful IoT deployments have enabled many paradigms associated with digital
transformation to drive concrete business outcomes in the industry. An idea among this
rapidly gaining popularity is the “digital twin.” Gartner mentioned digital twin as one of the
top 10 strategic technology trends for 2017, 2018 and 2019. It says within three to five years,
billions of things will be represented by digital twins.
According to marketsandmarkets, the global market size of the digital twin in 2020 was 3.1
billion USD and is expected to reach 48.2 billion USD by 2026 at a CAGR of 58%.
Digital twins provide a glimpse of what’s happening with physical assets now or what can
happen in the future. Let’s begin with understanding the basics of the digital twin.
What is a digital twin?
In most simple terms, a digital twin is defined as a virtual representation of a physical thing.
A thing could be a jet engine, a car, a building or a bridge. The sensors connected to these
physical assets collect data that is mapped onto the virtual model. Digital twin enables people
to see vital information about how the physical thing operates in the real world.
Technologies including Artificial Intelligence, Machine Learning, Deep Learning, IoT, sensor,
simulation, connectivity and big data have led to sophisticated digital twins.
The main characteristics of digital twin are:
2/9
Connectivity: A digital twin is based on connectivity. It enables connection between
the physical element and its digital counterpart. The sensors create the connectivity of
physical products that obtain, integrate and communicate data using various
integration technologies.
Homogenization: Digital twins are both the consequence and enabler of
homogenization of data. It allows the decoupling of information from its physical form.
Reprogrammable and Smart: Digital twins automatically enable re-
programmability through sensors, artificial intelligence techniques and predictive
analysis.
Digital traces: Digital twin technologies leave digital traces. The trails are helpful to
diagnose the source of the problem that occurred in case of machine malfunctions.
Modularity: Modularity is referred to the design and customization of products and
production modules. The addition of modularity to functional models helps
manufacturers gain the ability to tweak machines and models.
How does digital twin work?
A digital twin comprises three main elements:
Past data: It includes historical performance data of machines, specific systems and overall
processes.
3/9
Present data: Real-time data comprises sensor data, outputs from manufacturing
platforms and systems throughout the distribution chain.
Future data: It is the predicted data and insights from Machine learning algorithms and
inputs from engineers.
Digital twin performs the following three operational steps:
Step 1: Data collection and simulation
The data is collected and simulated in a virtual copy of assets. The collected information is
either stored locally or on a decentralized cloud.
Step 2: Applying cognitive insights
After receiving data from the simulation, parameters are applied to tangible assets and
integrated for precise virtual representation. Operation is done on the data to understand its
variances and tolerances. Techniques are used for machine-to-machine communication,
natural language processing, acoustical video analytics and more to help understand the
dynamics of the information that is being presented.
Step 3: Dynamic recalibration
The collected information and cognition are used to dynamically recalibrate the environment
affecting the design, the build, and the operations phases of everything done around that
particular device. The integration of data in real and virtual representations helps in
optimizing the performance of tangible assets.
4/9
How to create a digital twin?
AWS IoT Core and Microsoft Azure IoT are the next-generation IoT platforms that model the
real world into the digital world. Azure Digital Twins is an IoT platform that helps create a
digital representation of real-world objects, business processes, places, etc. It also helps to
gain insights to drive products better, optimize operations and costs and provide enhanced
customer experience. The execution process of Azure IoT digital twin involves:
Open modeling language for creating custom domain models of any connected
environment leveraging Digital Twins Definition Language.
It provides a live execution environment that brings digital twins to life through a live
graph representation.
It uses IoT to connect the assets, including IoT devices using Login Apps, Azure IoT
Hub and REST APIs.
It provides output to Time Series Insights, analytics and storage using event routes to
downstream services like Azure Synapse Analytics.
The creation of a digital twin is carried out under the following three stages:
Design
The design of a digital twin consists of two main elements:
1. Select the enabling technology to integrate the physical asset with its digital twin to
enable the real-time flow of operational and transactional information. It is also
essential to be clear about the type of device required. Modeling software is needed to
design a 3D representation of the asset. Moreover, it is crucial to know who will access
the information through digital twin and control the physical asset.
2. Understand the type of information required across the asset’s life cycle, where this
information is stored and how to access and use it. Structure the information in a
reusable way that is quickly and efficiently exchanged between the systems.
Operation
Determine the purpose and functions of the digital twin. Will it perform asset monitoring,
control and asset alteration, perform advanced analytics for predictive maintenance or
perform simulations? The answer to this question will identify the digital twin’s scope and
functionality and help determine the type of devices required to attach to the asset.
Augmentation
The implementation of digital twins usually starts small such as monitoring a component of
an asset but expands over time. The expansion is carried out in two ways:
5/9
1. Organizations bring numerous more petite digital twins to provide a complete picture
of the entire asset.
2. Organizations add more sophisticated capabilities like simulations into the existing
digital twin.
In either case, organizations want to layer up functionality within digital twin to meet the
evolving requirements. The need is to securely add those functionalities to scale the digital
twin while maintaining performance.
A five-level digital twin taxonomy
The proposed five-level taxonomy accounts for various manifestations of digital twins.
Different kinds of analysis are associated with each classification level. The description of the
fundamental data model is done at five levels:
Level 1: The digital representation, when augmented with physical simulation insights from
CAE (Computer-Aided Engineering) or controlled lab experiments, leads to level 2 digital
twin.
Level 2: Level 2 digital twin is obtained from CAE-based predictions, controlled data-based
lab predictions and time-series analysis.
Level 3: The digital representation that couples sensor data with a data model is level 3
digital twin.
Level 4: Level 4 digital twin is the one that uses design insights, asset physics, sensor data
and human knowledge encoded into the digital twin.
Level 5: It integrates level 4 digital twin with enterprise systems such as Enterprise
Resource Planning (ERP), Manufacturing Execution System (MES) and Product Lifecycle
Management (PLM). It is the most sophisticated digital twin because it leverages information
from multiple enterprise sources to provide a comprehensive view of all aspects of the asset.
6/9
Analysis
Data at every level allows engineers to perform analysis corresponding to each digital twin
representation.
Levels 1 and 2, comprising CAD, CAM and CAE, are already being used by design and
engineering teams at major Original Equipment Manufacturers (OEMs).
At level 3, the sensor data entails anomaly detection, regression and other data-driven
studies. The studies are mainly statistical, with seldom inputs from the design of the asset.
Level 4 representation enables engineers to perform various insightful analyses as this
representation is augmented with physics-based models and knowledge from expert systems.
It is beneficial in failure analysis and decision trees to track down issues with assets. For
instance, a pump service engineer may have observed that leveling the pump or tightening a
few bolts addresses overheating issues over time. Such human knowledge is valuable to
encode in a digital twin. This representation helps perform system-level performance
simulations, system-level optimization and analyzing what-if scenarios.
7/9
The ideal target state of a complete digital twin is at level 5. It is used to understand the
impact of asset behavior and performance on supply chain and procurement.
Visualization techniques
Information obtained from each digital twin representation is visualized in various ways. It is
important to note that the essence of visualization techniques is understanding the data and
generating actionable insights. Multiple visualization techniques are implemented to glean
insights from the gathered data using modalities such as 1d, 2d or 3d plots, scatter plots, heat
maps, histograms and animations.
Business outcomes
A manufacturer or an asset operator manages business outcomes associated with each
representation.
Digital twins at level 1 are used to design assets that can easily be assembled, manufactured
and serviced.
Level 2 digital twins predict asset performance and failures in the field.
At level 3, digital twins receive sensor data and other parameters from the field, which
provide condition monitoring, planned maintenance and real-time asset health as the
potential outcomes.
Business outcomes for levels 4 and 5 are similar; the only difference is that level 5 provides
an improved ability over level 4 results because of additional knowledge sources.
The asset operator and the manufacturer can:
enhance predictive and prescriptive maintenance
design product leveraging data from the field
using design insights perform system optimization
create asset-as-a-service offering
provide real-time insights for improved decision making
What are the applications of digital twins?
The application of digital twins has brought a breakthrough in multiple industries:
Manufacturing
In the manufacturing industry, digital twins are used for facilitating product development,
design customization, shop floor performance improvement and predictive maintenance.
8/9
Product development: Engineers gain benefits from digital twins as it helps to test
the feasibility of upcoming products before launching.
Design customization: Digital twins help businesses design multiple permutations
of the product and offer personalized products and services to their clients.
Shop floor performance improvement: Digital twins are helpful in monitoring
and analyzing the end products. It helps engineers to spot the defective and low-
performing products in the lot.
Predictive maintenance: Digital twins help manufacturers predict potential
downtimes of machines to improve their overall productivity by minimizing non-value-
adding maintenance activities.
Retail
In the retail sector, digital twins are used for modeling and augment customer experience at
prominent shopping centers and individual stores.
Automotive
Digital twins are highly used for creating virtual models of connected vehicles. Automotive
companies simulate and analyze the production phase to identify the potential problems
during production or when the car hits the roads.
Healthcare
Digital twins virtualize healthcare services and help healthcare providers to optimize patient
care, cost and performance. It aims to improve the operational efficiency of healthcare
processes and enhance personalized care.
Smart cities
The digital twin can help cities to become more economically, socially and environmentally
sustainable.
Conclusion
Digital twin applied across any industry makes a positive impact on product quality and
accelerates service delivery speed. It implements real-time simulation and helps businesses
leverage the advantage of predictive maintenance.
Product and business owners can realize the benefits of creating the virtual replica of their
assets. A digital twin reduces cost and tends to increase market offers of high-quality
products that benefit customers.
9/9
If you are looking for an IoT development company to develop a digital twin for your
business, we are here to help you. Schedule a consultation with our technical experts and
discuss your requirements.

Mais conteúdo relacionado

Mais procurados

digital twin seminar 1.pptx
digital twin seminar 1.pptxdigital twin seminar 1.pptx
digital twin seminar 1.pptxMacZain
 
DIGITAL_TWIN_final.pptx
DIGITAL_TWIN_final.pptxDIGITAL_TWIN_final.pptx
DIGITAL_TWIN_final.pptxBree80
 
Digital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoTDigital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoTDimitri Volkmann
 
Digital twin - Internet of Things
Digital twin - Internet of ThingsDigital twin - Internet of Things
Digital twin - Internet of ThingsAhmed Sayed
 
Digital Twin - What is it and how can it help us?
Digital Twin - What is it and how can it help us?Digital Twin - What is it and how can it help us?
Digital Twin - What is it and how can it help us?Shaun West
 
Embedded digital twin
Embedded digital twinEmbedded digital twin
Embedded digital twinIRS srl
 
Digital Twin ppt-2 (2).pptx
Digital Twin ppt-2 (2).pptxDigital Twin ppt-2 (2).pptx
Digital Twin ppt-2 (2).pptxVinay Ms
 
Seminar report of digital twin
Seminar report of digital twinSeminar report of digital twin
Seminar report of digital twinfaheem m m
 
Digital twins - Technology that is Changing Industry
Digital twins - Technology that is Changing IndustryDigital twins - Technology that is Changing Industry
Digital twins - Technology that is Changing IndustryWg Cdr Jayesh C S PAI
 
Necessity of the Digital Twin and Digital Thread
Necessity of the Digital Twin and Digital ThreadNecessity of the Digital Twin and Digital Thread
Necessity of the Digital Twin and Digital ThreadMarc Lind
 
Digital Twin and Smart Spaces
Digital Twin and Smart Spaces Digital Twin and Smart Spaces
Digital Twin and Smart Spaces SANGHEE SHIN
 
Digital Twin at-a-glance, Yong @SEMIforte
Digital Twin at-a-glance, Yong @SEMIforteDigital Twin at-a-glance, Yong @SEMIforte
Digital Twin at-a-glance, Yong @SEMIforteYong Wang
 

Mais procurados (20)

digital twin seminar 1.pptx
digital twin seminar 1.pptxdigital twin seminar 1.pptx
digital twin seminar 1.pptx
 
Digital Twin: Starting the journey
Digital Twin: Starting the journeyDigital Twin: Starting the journey
Digital Twin: Starting the journey
 
DIGITAL_TWIN_final.pptx
DIGITAL_TWIN_final.pptxDIGITAL_TWIN_final.pptx
DIGITAL_TWIN_final.pptx
 
Digital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoTDigital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoT
 
Digital twin - Internet of Things
Digital twin - Internet of ThingsDigital twin - Internet of Things
Digital twin - Internet of Things
 
Digital twin
Digital twinDigital twin
Digital twin
 
Digital twins ppt
Digital twins pptDigital twins ppt
Digital twins ppt
 
Digital Twin - What is it and how can it help us?
Digital Twin - What is it and how can it help us?Digital Twin - What is it and how can it help us?
Digital Twin - What is it and how can it help us?
 
Embedded digital twin
Embedded digital twinEmbedded digital twin
Embedded digital twin
 
Types of Digital Twins.ppt
Types of Digital Twins.pptTypes of Digital Twins.ppt
Types of Digital Twins.ppt
 
Digital Twin ppt-2 (2).pptx
Digital Twin ppt-2 (2).pptxDigital Twin ppt-2 (2).pptx
Digital Twin ppt-2 (2).pptx
 
Digital Twin Technology
Digital Twin TechnologyDigital Twin Technology
Digital Twin Technology
 
Seminar report of digital twin
Seminar report of digital twinSeminar report of digital twin
Seminar report of digital twin
 
Digital twins - Technology that is Changing Industry
Digital twins - Technology that is Changing IndustryDigital twins - Technology that is Changing Industry
Digital twins - Technology that is Changing Industry
 
Necessity of the Digital Twin and Digital Thread
Necessity of the Digital Twin and Digital ThreadNecessity of the Digital Twin and Digital Thread
Necessity of the Digital Twin and Digital Thread
 
Digital Twin and Smart Spaces
Digital Twin and Smart Spaces Digital Twin and Smart Spaces
Digital Twin and Smart Spaces
 
Digital Twin at-a-glance, Yong @SEMIforte
Digital Twin at-a-glance, Yong @SEMIforteDigital Twin at-a-glance, Yong @SEMIforte
Digital Twin at-a-glance, Yong @SEMIforte
 
Digital twin
Digital twinDigital twin
Digital twin
 
Digital Twins.pptx
Digital Twins.pptxDigital Twins.pptx
Digital Twins.pptx
 
Digital twin
Digital twinDigital twin
Digital twin
 

Semelhante a Digital Twin: A Complete Knowledge Guide

Is Your Organization Ready to Embrace a Digital Twin?
Is Your Organization Ready to Embrace a Digital Twin?Is Your Organization Ready to Embrace a Digital Twin?
Is Your Organization Ready to Embrace a Digital Twin?Cognizant
 
Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...
Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...
Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...Cognizant
 
Digital Twin Technology: Function, Significance, and Benefits
Digital Twin Technology: Function, Significance, and BenefitsDigital Twin Technology: Function, Significance, and Benefits
Digital Twin Technology: Function, Significance, and Benefitsemilybrown8019
 
Advancing Digital Twin through the Integration of new AI Algorithms
Advancing Digital Twin through the Integration of new AI AlgorithmsAdvancing Digital Twin through the Integration of new AI Algorithms
Advancing Digital Twin through the Integration of new AI AlgorithmsIRJET Journal
 
Unlocking Innovation_ Exploring Digital Twin Technology.pdf
Unlocking Innovation_ Exploring Digital Twin Technology.pdfUnlocking Innovation_ Exploring Digital Twin Technology.pdf
Unlocking Innovation_ Exploring Digital Twin Technology.pdfEnterprise Wired
 
IRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data AnalyticsIRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data AnalyticsIRJET Journal
 
Decision Making Framework in e-Business Cloud Environment Using Software Metr...
Decision Making Framework in e-Business Cloud Environment Using Software Metr...Decision Making Framework in e-Business Cloud Environment Using Software Metr...
Decision Making Framework in e-Business Cloud Environment Using Software Metr...ijitjournal
 
What Are Digital Twins in Manufacturing.pdf
What Are Digital Twins in Manufacturing.pdfWhat Are Digital Twins in Manufacturing.pdf
What Are Digital Twins in Manufacturing.pdfMr. Business Magazine
 
Digital twin technology - seminar presentation
Digital twin technology - seminar presentationDigital twin technology - seminar presentation
Digital twin technology - seminar presentation1js20ec036ksspoorthi
 
Second Edi- IIoT Dictionario cewce EEveVE
Second Edi- IIoT Dictionario cewce EEveVESecond Edi- IIoT Dictionario cewce EEveVE
Second Edi- IIoT Dictionario cewce EEveVELeonardoQuiroz21
 
Exploring Digital Twins: A Comprehensive Study
Exploring Digital Twins: A Comprehensive StudyExploring Digital Twins: A Comprehensive Study
Exploring Digital Twins: A Comprehensive StudyIrena
 
Digital Twin Technology.pdf
Digital Twin Technology.pdfDigital Twin Technology.pdf
Digital Twin Technology.pdfpankaj rajvanshi
 
DIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESS
DIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESSDIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESS
DIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESSIRJET Journal
 
Smart Traffic Monitoring System Report
Smart Traffic Monitoring System ReportSmart Traffic Monitoring System Report
Smart Traffic Monitoring System ReportALi Baker
 
Digitally Connected Factory
Digitally Connected FactoryDigitally Connected Factory
Digitally Connected FactoryTaylor McGavisk
 
Sample-Landscape_Study_Digital_Twin.pptx
Sample-Landscape_Study_Digital_Twin.pptxSample-Landscape_Study_Digital_Twin.pptx
Sample-Landscape_Study_Digital_Twin.pptxnour91922
 
Notes on Current trends in IT (1) (1).pdf
Notes on Current trends in IT (1) (1).pdfNotes on Current trends in IT (1) (1).pdf
Notes on Current trends in IT (1) (1).pdfKarishma Chaudhary
 
Exploring the Performance and Accuracy of Digital Twin Models
Exploring the Performance and Accuracy of Digital Twin ModelsExploring the Performance and Accuracy of Digital Twin Models
Exploring the Performance and Accuracy of Digital Twin ModelsIRJET Journal
 
AN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIES
AN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIESAN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIES
AN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIESIAEME Publication
 

Semelhante a Digital Twin: A Complete Knowledge Guide (20)

Is Your Organization Ready to Embrace a Digital Twin?
Is Your Organization Ready to Embrace a Digital Twin?Is Your Organization Ready to Embrace a Digital Twin?
Is Your Organization Ready to Embrace a Digital Twin?
 
Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...
Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...
Nurturing Digital Twins: How to Build Virtual Instances of Physical Assets to...
 
Digital Twin Technology: Function, Significance, and Benefits
Digital Twin Technology: Function, Significance, and BenefitsDigital Twin Technology: Function, Significance, and Benefits
Digital Twin Technology: Function, Significance, and Benefits
 
Advancing Digital Twin through the Integration of new AI Algorithms
Advancing Digital Twin through the Integration of new AI AlgorithmsAdvancing Digital Twin through the Integration of new AI Algorithms
Advancing Digital Twin through the Integration of new AI Algorithms
 
Unlocking Innovation_ Exploring Digital Twin Technology.pdf
Unlocking Innovation_ Exploring Digital Twin Technology.pdfUnlocking Innovation_ Exploring Digital Twin Technology.pdf
Unlocking Innovation_ Exploring Digital Twin Technology.pdf
 
IRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data AnalyticsIRJET- Search Improvement using Digital Thread in Data Analytics
IRJET- Search Improvement using Digital Thread in Data Analytics
 
Decision Making Framework in e-Business Cloud Environment Using Software Metr...
Decision Making Framework in e-Business Cloud Environment Using Software Metr...Decision Making Framework in e-Business Cloud Environment Using Software Metr...
Decision Making Framework in e-Business Cloud Environment Using Software Metr...
 
What Are Digital Twins in Manufacturing.pdf
What Are Digital Twins in Manufacturing.pdfWhat Are Digital Twins in Manufacturing.pdf
What Are Digital Twins in Manufacturing.pdf
 
Digital twin technology - seminar presentation
Digital twin technology - seminar presentationDigital twin technology - seminar presentation
Digital twin technology - seminar presentation
 
Second Edi- IIoT Dictionario cewce EEveVE
Second Edi- IIoT Dictionario cewce EEveVESecond Edi- IIoT Dictionario cewce EEveVE
Second Edi- IIoT Dictionario cewce EEveVE
 
Exploring Digital Twins: A Comprehensive Study
Exploring Digital Twins: A Comprehensive StudyExploring Digital Twins: A Comprehensive Study
Exploring Digital Twins: A Comprehensive Study
 
Digital Twin Technology.pdf
Digital Twin Technology.pdfDigital Twin Technology.pdf
Digital Twin Technology.pdf
 
DIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESS
DIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESSDIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESS
DIGITAL TWIN FRAMEWORK FOR SUPPLYCHAIN PROCESS
 
Smart Traffic Monitoring System Report
Smart Traffic Monitoring System ReportSmart Traffic Monitoring System Report
Smart Traffic Monitoring System Report
 
Digitally Connected Factory
Digitally Connected FactoryDigitally Connected Factory
Digitally Connected Factory
 
Sample-Landscape_Study_Digital_Twin.pptx
Sample-Landscape_Study_Digital_Twin.pptxSample-Landscape_Study_Digital_Twin.pptx
Sample-Landscape_Study_Digital_Twin.pptx
 
Notes on Current trends in IT (1) (1).pdf
Notes on Current trends in IT (1) (1).pdfNotes on Current trends in IT (1) (1).pdf
Notes on Current trends in IT (1) (1).pdf
 
0455 riverbed steel_central_pfb_060915as
0455 riverbed steel_central_pfb_060915as0455 riverbed steel_central_pfb_060915as
0455 riverbed steel_central_pfb_060915as
 
Exploring the Performance and Accuracy of Digital Twin Models
Exploring the Performance and Accuracy of Digital Twin ModelsExploring the Performance and Accuracy of Digital Twin Models
Exploring the Performance and Accuracy of Digital Twin Models
 
AN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIES
AN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIESAN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIES
AN INTRODUCTION TO DIGITAL TRANSFORMATION TECHNOLOGIES
 

Último

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 

Último (20)

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 

Digital Twin: A Complete Knowledge Guide

  • 1. 1/9 A complete knowledge guide on Digital Twins leewayhertz.com/digital-twin The successful IoT deployments have enabled many paradigms associated with digital transformation to drive concrete business outcomes in the industry. An idea among this rapidly gaining popularity is the “digital twin.” Gartner mentioned digital twin as one of the top 10 strategic technology trends for 2017, 2018 and 2019. It says within three to five years, billions of things will be represented by digital twins. According to marketsandmarkets, the global market size of the digital twin in 2020 was 3.1 billion USD and is expected to reach 48.2 billion USD by 2026 at a CAGR of 58%. Digital twins provide a glimpse of what’s happening with physical assets now or what can happen in the future. Let’s begin with understanding the basics of the digital twin. What is a digital twin? In most simple terms, a digital twin is defined as a virtual representation of a physical thing. A thing could be a jet engine, a car, a building or a bridge. The sensors connected to these physical assets collect data that is mapped onto the virtual model. Digital twin enables people to see vital information about how the physical thing operates in the real world. Technologies including Artificial Intelligence, Machine Learning, Deep Learning, IoT, sensor, simulation, connectivity and big data have led to sophisticated digital twins. The main characteristics of digital twin are:
  • 2. 2/9 Connectivity: A digital twin is based on connectivity. It enables connection between the physical element and its digital counterpart. The sensors create the connectivity of physical products that obtain, integrate and communicate data using various integration technologies. Homogenization: Digital twins are both the consequence and enabler of homogenization of data. It allows the decoupling of information from its physical form. Reprogrammable and Smart: Digital twins automatically enable re- programmability through sensors, artificial intelligence techniques and predictive analysis. Digital traces: Digital twin technologies leave digital traces. The trails are helpful to diagnose the source of the problem that occurred in case of machine malfunctions. Modularity: Modularity is referred to the design and customization of products and production modules. The addition of modularity to functional models helps manufacturers gain the ability to tweak machines and models. How does digital twin work? A digital twin comprises three main elements: Past data: It includes historical performance data of machines, specific systems and overall processes.
  • 3. 3/9 Present data: Real-time data comprises sensor data, outputs from manufacturing platforms and systems throughout the distribution chain. Future data: It is the predicted data and insights from Machine learning algorithms and inputs from engineers. Digital twin performs the following three operational steps: Step 1: Data collection and simulation The data is collected and simulated in a virtual copy of assets. The collected information is either stored locally or on a decentralized cloud. Step 2: Applying cognitive insights After receiving data from the simulation, parameters are applied to tangible assets and integrated for precise virtual representation. Operation is done on the data to understand its variances and tolerances. Techniques are used for machine-to-machine communication, natural language processing, acoustical video analytics and more to help understand the dynamics of the information that is being presented. Step 3: Dynamic recalibration The collected information and cognition are used to dynamically recalibrate the environment affecting the design, the build, and the operations phases of everything done around that particular device. The integration of data in real and virtual representations helps in optimizing the performance of tangible assets.
  • 4. 4/9 How to create a digital twin? AWS IoT Core and Microsoft Azure IoT are the next-generation IoT platforms that model the real world into the digital world. Azure Digital Twins is an IoT platform that helps create a digital representation of real-world objects, business processes, places, etc. It also helps to gain insights to drive products better, optimize operations and costs and provide enhanced customer experience. The execution process of Azure IoT digital twin involves: Open modeling language for creating custom domain models of any connected environment leveraging Digital Twins Definition Language. It provides a live execution environment that brings digital twins to life through a live graph representation. It uses IoT to connect the assets, including IoT devices using Login Apps, Azure IoT Hub and REST APIs. It provides output to Time Series Insights, analytics and storage using event routes to downstream services like Azure Synapse Analytics. The creation of a digital twin is carried out under the following three stages: Design The design of a digital twin consists of two main elements: 1. Select the enabling technology to integrate the physical asset with its digital twin to enable the real-time flow of operational and transactional information. It is also essential to be clear about the type of device required. Modeling software is needed to design a 3D representation of the asset. Moreover, it is crucial to know who will access the information through digital twin and control the physical asset. 2. Understand the type of information required across the asset’s life cycle, where this information is stored and how to access and use it. Structure the information in a reusable way that is quickly and efficiently exchanged between the systems. Operation Determine the purpose and functions of the digital twin. Will it perform asset monitoring, control and asset alteration, perform advanced analytics for predictive maintenance or perform simulations? The answer to this question will identify the digital twin’s scope and functionality and help determine the type of devices required to attach to the asset. Augmentation The implementation of digital twins usually starts small such as monitoring a component of an asset but expands over time. The expansion is carried out in two ways:
  • 5. 5/9 1. Organizations bring numerous more petite digital twins to provide a complete picture of the entire asset. 2. Organizations add more sophisticated capabilities like simulations into the existing digital twin. In either case, organizations want to layer up functionality within digital twin to meet the evolving requirements. The need is to securely add those functionalities to scale the digital twin while maintaining performance. A five-level digital twin taxonomy The proposed five-level taxonomy accounts for various manifestations of digital twins. Different kinds of analysis are associated with each classification level. The description of the fundamental data model is done at five levels: Level 1: The digital representation, when augmented with physical simulation insights from CAE (Computer-Aided Engineering) or controlled lab experiments, leads to level 2 digital twin. Level 2: Level 2 digital twin is obtained from CAE-based predictions, controlled data-based lab predictions and time-series analysis. Level 3: The digital representation that couples sensor data with a data model is level 3 digital twin. Level 4: Level 4 digital twin is the one that uses design insights, asset physics, sensor data and human knowledge encoded into the digital twin. Level 5: It integrates level 4 digital twin with enterprise systems such as Enterprise Resource Planning (ERP), Manufacturing Execution System (MES) and Product Lifecycle Management (PLM). It is the most sophisticated digital twin because it leverages information from multiple enterprise sources to provide a comprehensive view of all aspects of the asset.
  • 6. 6/9 Analysis Data at every level allows engineers to perform analysis corresponding to each digital twin representation. Levels 1 and 2, comprising CAD, CAM and CAE, are already being used by design and engineering teams at major Original Equipment Manufacturers (OEMs). At level 3, the sensor data entails anomaly detection, regression and other data-driven studies. The studies are mainly statistical, with seldom inputs from the design of the asset. Level 4 representation enables engineers to perform various insightful analyses as this representation is augmented with physics-based models and knowledge from expert systems. It is beneficial in failure analysis and decision trees to track down issues with assets. For instance, a pump service engineer may have observed that leveling the pump or tightening a few bolts addresses overheating issues over time. Such human knowledge is valuable to encode in a digital twin. This representation helps perform system-level performance simulations, system-level optimization and analyzing what-if scenarios.
  • 7. 7/9 The ideal target state of a complete digital twin is at level 5. It is used to understand the impact of asset behavior and performance on supply chain and procurement. Visualization techniques Information obtained from each digital twin representation is visualized in various ways. It is important to note that the essence of visualization techniques is understanding the data and generating actionable insights. Multiple visualization techniques are implemented to glean insights from the gathered data using modalities such as 1d, 2d or 3d plots, scatter plots, heat maps, histograms and animations. Business outcomes A manufacturer or an asset operator manages business outcomes associated with each representation. Digital twins at level 1 are used to design assets that can easily be assembled, manufactured and serviced. Level 2 digital twins predict asset performance and failures in the field. At level 3, digital twins receive sensor data and other parameters from the field, which provide condition monitoring, planned maintenance and real-time asset health as the potential outcomes. Business outcomes for levels 4 and 5 are similar; the only difference is that level 5 provides an improved ability over level 4 results because of additional knowledge sources. The asset operator and the manufacturer can: enhance predictive and prescriptive maintenance design product leveraging data from the field using design insights perform system optimization create asset-as-a-service offering provide real-time insights for improved decision making What are the applications of digital twins? The application of digital twins has brought a breakthrough in multiple industries: Manufacturing In the manufacturing industry, digital twins are used for facilitating product development, design customization, shop floor performance improvement and predictive maintenance.
  • 8. 8/9 Product development: Engineers gain benefits from digital twins as it helps to test the feasibility of upcoming products before launching. Design customization: Digital twins help businesses design multiple permutations of the product and offer personalized products and services to their clients. Shop floor performance improvement: Digital twins are helpful in monitoring and analyzing the end products. It helps engineers to spot the defective and low- performing products in the lot. Predictive maintenance: Digital twins help manufacturers predict potential downtimes of machines to improve their overall productivity by minimizing non-value- adding maintenance activities. Retail In the retail sector, digital twins are used for modeling and augment customer experience at prominent shopping centers and individual stores. Automotive Digital twins are highly used for creating virtual models of connected vehicles. Automotive companies simulate and analyze the production phase to identify the potential problems during production or when the car hits the roads. Healthcare Digital twins virtualize healthcare services and help healthcare providers to optimize patient care, cost and performance. It aims to improve the operational efficiency of healthcare processes and enhance personalized care. Smart cities The digital twin can help cities to become more economically, socially and environmentally sustainable. Conclusion Digital twin applied across any industry makes a positive impact on product quality and accelerates service delivery speed. It implements real-time simulation and helps businesses leverage the advantage of predictive maintenance. Product and business owners can realize the benefits of creating the virtual replica of their assets. A digital twin reduces cost and tends to increase market offers of high-quality products that benefit customers.
  • 9. 9/9 If you are looking for an IoT development company to develop a digital twin for your business, we are here to help you. Schedule a consultation with our technical experts and discuss your requirements.