SlideShare uma empresa Scribd logo
1 de 56
AZ. NASUTION
CEVEST
©2013
Content
•
•
•
•

Laplace Transforms (Lecture 01)
Fourier Transforms (Lecture 02)
Numerical Methods (Lecture 03)
Statistical Analysis (Lecture 04)
Advanced
Search
Lecture 01
Section 01
Introduction to Laplace
Transforms
Pengantar Laplace
Pierre-Simon, marquis

de Laplace
(23 March 1749 – 5 March 1827)
French mathematician
Astronomer
Development of mathematical astronomy
and statistics.
BASIC CONCEPT
Mail

E-mail
scan
internet
internet

print

Physical World

Signal World
BASIC CONCEPT
Time function

y ' '+ y = te

HOW TO……? Frequency function
−t

transform

1
( s + 1)Y =
( s + 1) 2
2

L
internet
internet

y (t ) =...... ?
1
1
1
y (t ) = − cos t + te − t + e − t
2
2
2

Time Domain

L
-1

1
Y=
( s + 1) 2 ( s 2 + 1)
inverse transform
Frequency domain
Laplace Transformation
•Laplace Transformation………….?
• Tramsformasi fungsi dari kawasan waktu (t) ke
dalam kawasan frekwensi (s)
• Simbol
11

L
I

--

L
D
Inverse Laplace Transformation
•Inverse Laplace
Transformation………….?
• Tramsformasi fungsi dari kawasan frekwensi (s)
11
ke dalam kawasan waktu (t)
• Simbol

L
I

--

L
D
How to make a Laplace Transforms
Time Domain

Frequency domain

L ( f(t))
f (t )
L ( f(t))
∞

∫

0

∞

F (s ) =

∫

f (t ) .e −st dt

0

f (t ), t > 0

f (t ) .e −st dt = F (s )
How to make a Laplace Transforms
Time Domain

Frequency domain

L (......)
f(t)
f (t )
L (......)
y(t)
f(t)
y (t )
L (......)
x(t)
f(t)
x(t )

= F (s )
= Y (s )
= X (s )
Contoh 1

Konstanta di kawasan waktu
akan dibagi oleh koefisien S di kawasan frekwensi

Time Domain

Frequency domain

L ( f(t))
1....untuk ..t ≥ 0
F (s ) =
f (t ) = {
0....untuk ..t < 0

f (t )

∞

∫

.e −st dt
1

0

f (t ), t > 0
− st ∞

e
F (s ) =
−s
−∞

e −e
=
−s

=
0

−0

e

− s .∞

−e
−s

− s .0

0− 1 1
=
=
−s
s
Contoh 2
Time Domain

Frequency domain

L ( f(t))
1....untuk ..t ≥ 2
F (s ) =
f (t ) = {
0....untuk ..t < 2

f (t )

∞

∫

f (t) .e −st dt

0

2

∫

f (t) .e −st dt +

0

f (t ), t > 0
∞

∫

f (t) .e − st dt

2

2

∫

0

.e −st dt +
0

∞

∫

2

.e − st dt
1
contoh2
Tundaan
sebesar 2 di
kawasan
waktu
akan
memunculkan

e −2 s
Di kawasan
frekwensi

e

−∞

e

−0

ee. Tidak ada yang punya pangkat tak hingga
ee. Tidak ada yang punya pangkat tak hingga
Tidak ada pangkat dekat ke …1
2

F (s ) = ∫

0 .e −st dt +

0

F (s ) =
F (s ) =

∞

∫

.e − st dt
1

2

∞

e 


− s 2

− st

− s .∞

e
−s

− s .2

e
−
−s

e −2 s
=0 − − s

=

0
=
−s
−2 s

1e
s

e −2 s
−
−s
Contoh 3
Time Domain

Frequency domain

L ( f(t))
2....untuk ..t ≥ 2
F (s ) =
f (t ) = {
0....untuk ..t < 2

f (t )

∞

∫

f (t) .e −st dt

0

2

∫

f (t) .e −st dt +

0

f (t ), t > 0
∞

∫

f (t) .e − st dt

2

2

∫

0

.e −st dt +
0

∞

∫

2

.e − st dt
2
contoh3

e

−∞

e

−0

ee. Tidak ada yang punya pangkat tak hingga
ee. Tidak ada yang punya pangkat tak hingga
Tidak ada pangkat dekat ke …1
2

F (s ) = ∫

0 .e −st dt +

0

F (s ) =
F (s ) =

∞

∫

.e − st dt
2

2

∞

e 


− s 2

− st

− s .∞

e
−s

− s .2

2.e
−
−s

2.e −2 s
=0 − − s

=

0
=
−s
−2 s

2e
s

2.e −2 s
−
−s
Contoh 4
Time Domain

Frequency domain

L ( f(t))
1....untuk ..t ≥ 3
F (s ) =
f (t ) = {
0....untuk ..t < 3

f (t )

∞

∫

f (t) .e −st dt

0

3

∫

f (t) .e −st dt +

0

f (t ), t > 0
∞

∫

f (t) .e − st dt

2

3

∫

0

.e −st dt +
0

∞

∫

2

.e − st dt
1
contoh4

e

−∞

e

−0

ee. Tidak ada yang punya pangkat tak hingga
ee. Tidak ada yang punya pangkat tak hingga
Tidak ada pangkat dekat ke …1
3

F (s ) = ∫

0 .e −st dt +

0

F (s ) =
F (s ) =

∞

∫

.e − st dt
1

2

∞

e 


− s 3

− st

− s .∞

e
−s

− s .3

e
−
−s

e −3s
=0 − − s

=

0
=
−s
−3 s

1e
s

e −3s
−
−s
Resume
P....untuk ..t ≥ Q

f (t ) = { 0....untuk..t < Q
Konstanta P di kawasan waktu
akan dibagi oleh koefisien S di
kawasan frekwensi
Tundaan sebesar Q di kawasan
waktu akan memunculkan

e

−2 s

Di kawasan frekwensi

−Qs

Pe
F (s ) =
s
Contoh 5
Time Domain

Frequency domain

L ( f(t))
t....untuk ..t ≥ 0
F (s ) =
f (t ) = { 0....untuk..t < 0
f (t )

F (s ) =

∞

∫

0

f t(t) .e −st dt
f (t ), t > 0
Contoh5
∞

F (s ) = ∫ t .e

−st

dt

0

∫ udv = uv −∫vdu
=

−∫

tdt = dv
e − st = u
dv
e st
u = e −−st
t=
dt
du d (e − st )
=
dv
dt
dt
=t
dt
du
= e − st
v = ∫ tdt
dt
− st
tt22
du = e dt

v=

2
2
Contoh5
∞

F (s ) = ∫ t .e

−st

dt

0

∫ udv = uv −∫vdu
=

−∫

t =u
u = tt

e − st dt = dv
dv
− st
e =
dt
du d (t )
=
dv
dt
dt
= e − st
dx
du
=1
v = ∫ e − st dt
dt
e −−st
e st
du = dt

te − st e − st
+C
=
− 2
−s
s
v=
− st
− st
−s
−s
te
e
∞
− 2
F (s ) =
−s
s
0

[]
Contoh5

ee. Tidak ada yang punya pangkat tak hingga
ee. Tidak ada yang punya pangkat tak hingga
Jika sudah tidak ada pangkat , dekat ke …1

[
[] ]

F (s ) =
F (s ) =
F (s ) =

te − st e − st
− 2
−s
s

0
∞
te − st e − st
−

 ∞.e − s∞ e − s∞ 

 − s − s2  −



1
f (t ) = t n
s2

F (s ) =

−s

−

s2

 0.e − s 0 e − s 0 

 − s − s2 



n!
s n +1

n faktorial
karena akan
di integrasi
parsial
sebanyak n
kali

N+1 karena setiap
setiap integrasi akan
menghasilkan sebuah
faktor pembagi s
dikawasan frekwensi
Contoh 7
Time Domain
e

−2 t

Frequency domain

L ( f(t))
....untuk ..t ≥ 0
F (s ) =

f (t ) = { 0....untuk..t < 0
f (t )

F (s ) =

∞

∫

0

2t
ef−(t) .e −st dt

f (t ), t > 0
f (t ) = e
F (s ) =

−2 t
∞

∫

e −2t .e −st dt

F (s ) =

0−

0

∞

∫

e

t ( −2 − s )

dt

0


 

0
1

 −
 ( −2 − s )   ( −2 − s ) 


 


F (s ) =

1
( −2 − s )

1
( s + 2)

∞

 e t ( −2 −s ) 


(−2 − s ) 0


∞

 e t ( −2 −s ) 
 e t ( −2 −s ) 

 −

( −2 − s ) 

(−2 − s ) 0

 e ∞( −2 −s )   e 0 ( −2 −s ) 

 ( −2 − s )  −  ( −2 − s ) 
 


 


 

0
1

 −
 ( −2 − s )   ( −2 − s ) 


 


Mengalikan fungsi
dengan koefisien sebesar

e −2t
pada kawasan waktu
akan mengurangi nilai
fungsi pada kawasan s
dengan faktor pembagi
(s+2)
f (t ) = e 2t
F (s ) =

∞

F (s ) =
e 2t .e −st dt

∫

0−

0

∞

∫

 0   1 

 (2 − s)  − (2 − s ) 
 


 

 0   1 

 (2 − s)  − (2 − s ) 
 


 


et ( 2− s ) dt

0
∞

e



(2 − s ) 0

t ( 2 −s )

∞

e

 e t ( 2 −s ) 

 −

(2 − s) 

(2 − s ) 0
t ( 2 −s )

 e ∞( 2 −s )   e 0 ( 2 −s ) 

 (2 − s)  −  (2 − s ) 
 


 


F (s ) =

1
(2 − s )

1
( s − 2)

Mengalikan fungsi dengan
koefisien sebesar

e 2t waktu
pada kawasan

akan menambah nilai fungsi pada
kawasan s dengan faktor pembagi
(s-2)
Lecture 01
Section 02
Laplace transform
for ODEs
(algebraic equation)
Lecture 01
Section 03
Review of Complex Variabel
Lecture 01
Section 04
Laplace transform
Of Trigonometric
Laplace transform
Of Trigonometric
Sin

(at)
Sinh (at)
Cos (at)
Cosh(at)

Teknik

1
Teknik 2
Teknik 3
Laplace Transform of Sin(at) 1st Way
L ( sin 4t ) = ... ?
∞

∫e

− st

dv = sin 4tdt
du d (e − st ) dv
= sin 4t
=
dx
dx
dx

u = e − st

. sin 4tdt

0

∫ udv = uv − ∫ vdu

du = − se st dx

v = ∫ sin 4tdt

cos 4t
v=−
4
e −st sin 4tdt = e −st . −
∫

= −e

−st

cos t
cos 4t
) − (∫ −
. − se −st dt
4
4

cos 4t
cos 4t
−∫
.se −st dt
4
4

30
Laplace Transform of Sin(at) 1st Way
2

cos 4t
cos 4t − st
∫ e sin 4tdt = −e 4 − ∫ 4 .se dt
s
− st
− st cos 4t
e sin 4tdt = −e
− ∫ se − st . cos 4tdt
∫
4
4
− st

− st

dv = cos 4tdt
du = − se st dt v = ∫ cos 4tdt

u = e − st

v=

sin 4t
4

s  − st sin 4t
sin 4t

− st
− e
−∫
. − se dt 
4
4
4

31
Laplace Transform of Sin(at) 1st Way
e −st sin 4tdt = −e −st
∫

cos 4t s  −st sin 4t
sin 4t

− e
−∫
. − se −st dt 
4
4
4
4


= −e −st
= −e −st
= −e −st
= −e −st

∫e

−st

cos 4t
4
cos 4t
4
cos 4t
4
cos 4t
4

s  −st sin 4t s

e
+ ∫ sin 4t.e −st dt 
4
4
4


s
sin 4t s s
− e −st
− . ∫ sin 4t.e −st dt
4
4
4 4
s −st
s2
− e sin 4t − ∫ sin 4t.e −st dt
16
16
s −st
s 2 −st
− e sin 4t − ∫ e . sin 4tdt
16
16
−

s2
s −st
−st
−st cos 4t
. sin 4t + ∫ e . sin 4tdt = −e
− e sin 4t
16
4
16

∫e

−st

 s2 
s −st
−st cos 4t
. sin 4t 1 +  = −e
− e sin 4t
16 
4
16

Laplace Transform of Sin(at) 1st Way
∫e

−st

 s2 
cos 4t
s
. sin 4t 1 +  = −e −st
− e −st sin 4t
4
16
 16 
16  −st cos 4t
s

−e
− e −st sin 4t 
16 + s 2 
4
16


16  −st cos 4t
s

=
−e
− e −st sin 4t 
16 + s 2 
4
16



e −st . sin 4t =
∫

∞

∫e
0

−st

∞

 − 4e

−st
. sin 4t = 
se sin 4t + 4 cos 4t 
2
16 + s
0
−st

[

]

∞

 − 4e − s ∞

 − 4e − s 0

−s∞
=
se sin 4∞ + 4 cos 4∞  − 
se −s 0 sin 0 + 4 cos 0 
2
2
 16 + s

16 + s
0
∞
 −0
[ s.0. sin ∞ + 4 cos ∞] −  −1 2 [1.0 + 4.1]
=
2

16 + s

16 + s


0

[

 −4 
= [ 0] − 
2 
16 + s 

]

4
=
16 + s 2

[

]
Laplace Transform of Sin(at)
f (t ) = sin ( 4t )

L { f (t )} = ..... ?
.... + 4 2

s

2

L { f (t )} =

4

s

2

+4

4
2
Bentuk Semi Baku 7

e sin 2 xdx =
∫
4x

e sin xdx =
∫
nx

e sin 2 xdx =
∫
4x

∫e

nx

sin( px ± q )dx =

1 4x 
cos 2 x 
e  sin 2 x −

5
2 

nx

e
(n sin x − cos x)
2
n +1
1 4x
e ( 4 sin 2 x − 2 cos 2 x )
20

1
e nx ( n sin( px ± q ) − p cos( px ± q ) )
( p 2 + n2 )
Laplace Transform of Sinh(at)
f (t ) = sinh ( 4t )

L { f (t )} = ..... ?
.... − 4 2

s

2

L { f (t )} =

4

s

2

−4

4
2
Laplace Transform of Cos(at)
f (t ) = Cos ( 4t )

L { f (t )} = ..... ?
.... + 4 2

s

2

L { f (t )} =

s
s

2

+4

s
2
Laplace Transform of Cosh(at)
f (t ) = Cosh( 4t )

L { f (t )} = ..... ?
.... − 4 2

s

2

L { f (t )} =

s
s

2

−4

s
2
2nd Way
sin t = Im(cos t + i sin t )
= Im e it
3rd Way
1
sin( at ) =
(e jat − e − jat )
2j
Laplace
Transformation

An !
L [ At e 1(t )] =
n +1
(s + a)
n − at

f (t ) = A cos(ω t )1(t ),
jω t
− jω t
 e +e

1(t ) 
L [ A cos(ω t )1(t )] = L  A
2


 e jω t

 e − jω t

= L A
1(t )  + L  A
1(t ) 
2
 2



A 1
A 1
A ( s + jω ) + ( s − jω )
=
+
=
2 s − jω 2 s + jω 2 ( s − jω ) ( s + jω )
As
= 2
2
s +ω
Lecture 01
Section 05
Laplace transform
of a derivatif and integral
Laplace
transform of a
derivative
d

L  f (t )  = sF ( s ) − f (0)
 dt


Note:
Lower case f indicates function
of time.
Upper case F indicates function
of s.

(Multiplication by s) =
(differentiation wrt time)

Primes and dots are often used as alternative notations for the derivative.
Dots are almost always used to denote time derivatives.
Primes might denote either time or space derivatives.
In problems with both time and space derivatives, primes are space
derivatives and dots are time derivatives.
Transform of Derivatives
 THEORM

1

◦ Laplace of f(t) exists
◦ f ’(t) exists and piecewise continuous for t>=0

L( f ' ) = sL( f ) − f (0)
 THEOREM

2

L( f ( n ) ) = s n L( f ) − s n−1 f (0) − s n− 2 f ' (0) −  − f ( n−1) (0)
Differential Equations
y"+ ay '+by = r (t )
1st step

y (0) = K 0

y ' ( 0) = K 1

[ s 2Y − sy (0) − y ' (0)] + a[ sY − y (0)] + bY = R (s )

2nd step

3rd step

1
Q(s) = 2
s + as + b
Y ( s ) = [( s + a ) y (0) + y ' (0)]Q( s ) + R ( s )Q( s )

y (t ) = L−1 (Y )
Questions
 Does

Laplace transform always exist?

 When

can Laplace transform be used to solve differential
equations?

 Advantages?

◦
◦
Transform of Integrals
t

L( f ) F ( s )
L{∫ f (τ )dτ } =
=
s
s
0
t

∫
0

F ( s)
f (τ )dτ = L {
}
s
−1
Lecture 01
Section 06
Inverse Laplace transform
BASIC CONCEPT
Time function

y ' '+ y = te

HOW TO……? Frequency function
−t

transform

1
( s + 1)Y =
( s + 1) 2
2

L
internet
internet

y (t ) =...... ?
1
1
1
y (t ) = − cos t + te − t + e − t
2
2
2

Time Domain

L
-1

1
Y=
( s + 1) 2 ( s 2 + 1)
inverse transform
Frequency domain
INVERSE LAPLACE TRANSFORM METHODE

Metode Partial
Pangkat
koefisien s dari
pembilang
selalu lebih
rendah 1
pangkat
dibandingkan
dengan
koefisien dari
penyebut

Metode Partial
Contoh 1
Tentukan i(t) jika
I ( s) =

4
( s 2 + 4)( s + 3)

4
As + B
C
= 2
+
( s 2 + 4)( s + 3)
( s + 4) ( s + 3)

4=
4=
=
=

Untuk mendapatkan
nilai C, misalkan s=-3
sehingga suku
pertama akan = 0

( As + B )( s + 3) + ( s 2 + 4)C

( A( −3) + B )(−3 + 3) + ((−3) 2 + 4)C
((−3) 2 + 4)C
(13)C
4
C =
13

( As + B )( s + 3) + ( s 2 + 4)C
=
( s 2 + 4)( s + 3)
4................... ( As + B )( s + 3) + ( s 2 + 4)C
=
2
( s + 4)( s + 3)
( s 2 + 4) ( s + 3)
INVERSE LAPLACE TRANSFORM METHODE
2
4 = ( As + B )( s + 3) + ( s + 4)C

Lihat koefisen s

= As + 3 As + Bs + 3B + Cs + C 4
2
2
= As + Cs + 3 As + Bs + 3B + C 4
2
0 s 2 + 0 s + 4 = ( A + C ) s + (3 A + B ) s + 3B + C 4
2

Lihat koefisen
s2

( A + C) = 0
A = −C
4
= −
13

2

(3 A + B ) = 0
B = − 3A

= − 3. −

4
12
=
13
13

4
12
4
− s+
4
As + B
C
13 + 13
= 2
= 13
I ( s) = 2
+
( s 2 + 4)
( s + 3)
( s + 4)( s + 3)
( s + 4) ( s + 3)
4  − s +3
1 
I (s ) =
 ( s 2 + 4) + ( s + 3) 
13 

INVERSE LAPLACE TRANSFORM METHODE
i (t ) =

L

I (s ) =

-1

L
-1

=

L
-1

=

L
-1

=

L
-1

=

L
-1

i (t ) =

4  − s +3
1 
 ( s 2 + 4) + ( s + 3) 
13 

4  −s
3
1 
 ( s 2 + 4) + ( s 2 + 4) + ( s + 3) 
13 

4  −s
3
1 
 ( s 2 + 2 2 ) + ( s 2 + 2 2 ) + ( s + 3) 
13 

3


.2
4 
s
1 
− 2
+ 22 2 +


13  ( s + 2 2 ) ( s + 2 ) ( s + 3) 


4 
s
3
2
1 
− ( s 2 + 2 2 ) + 2 ( s 2 + 2 2 ) + ( s + 3) 
13 


4 
3

− cos 2t + sin 2t + e −3t 
13 
2


Aplication Of Laplace I
 Consider

the circuit when
the switch is closed at t = 0
with VC(0) = 1.0 V.

 Solve

for the current i(t) in
the circuit?.
1
∫ i c (t )dt
C
v R (t ) = RiR (t )

v(t ) = vc (t ) + vR (t )
=

5 =

L

1
∫ i c (t )dt
C

+ RiR (t )

1
i (t )dt + 103 iR (t )
−6 ∫ c
10

5 10 −6 = L

5.10 −6

vc (t ) =

1 = 1
s
s

×10 −6

i (t )dt + 10 −3 i (t )
∫

[∫ i(t )dt ].

t =0

+10 −3 I ( s )

i R (t ) = iC (t ) = i (t )
vc (t ) =

1
∫ i c (t )dt
C

1
10 −6

1=

[∫i(t )dt ]

.t =0

5.10 −6
5.10 −6

vc (0) = 1volt

[∫i(t )dt ]

.t =0

= 10 6

[

]

−3
1 = 1
i (t )dt .t =0 +10 I ( s )
s
s ∫
1 = 1 6
10 + 10 −3 I ( s )
s
s
Aplication Of Laplace I
 Consider

the circuit when
the switch is closed at t = 0
with VC(0) = 1.0 V.

 Solve

for the current i(t) in
the circuit?.

I (s)
5.10 −6
=
+ I ( s )10 −3
s2
s

×

s2

−3
5.10 −6 s = I (s ) + sI ( s )10

0 = I (s ) + sI ( s )10 −3 − 5.10 −6 s 2
−3
5.10 −6 s 2 − sI ( s )10 − I (s ) = 0
Aplication Of Laplace II
v(t ) = vR (t ) + vL (t ) + vC (t )

di (t ) 1
v (t ) = RiR (t ) + L L
+ ∫ i c (t ) dt
C
dt
di 2 L (t )
di (t )
+ 1 i (t )dt
R
+L
0=
dt
C
dt

L

di 2 L (t )
di (t )
+ 1 i (t )dt = L
L
R
+
dt
C
dt

0

Mais conteúdo relacionado

Mais procurados

2.4 model matematika sistem mekanik
2.4 model matematika sistem mekanik2.4 model matematika sistem mekanik
2.4 model matematika sistem mekanikRaziST
 
Transformasi Laplace
Transformasi LaplaceTransformasi Laplace
Transformasi LaplaceYosefh Gultom
 
Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...
Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...
Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...Beny Nugraha
 
Perpindahan kalor
Perpindahan kalorPerpindahan kalor
Perpindahan kalorIbnu Hamdun
 
Transformasi laplace
Transformasi laplaceTransformasi laplace
Transformasi laplacedwiprananto
 
Ii Rangkaian Listrik Fasor
Ii Rangkaian Listrik FasorIi Rangkaian Listrik Fasor
Ii Rangkaian Listrik FasorFauzi Nugroho
 
Alat ukur kumparan putar
Alat ukur kumparan putarAlat ukur kumparan putar
Alat ukur kumparan putarDwi Puspita
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)Sanre Tambunan
 

Mais procurados (20)

Contoh soal
Contoh soalContoh soal
Contoh soal
 
Bab 2 sistem kontrol
Bab 2 sistem kontrolBab 2 sistem kontrol
Bab 2 sistem kontrol
 
Deret fourier
Deret fourierDeret fourier
Deret fourier
 
Diagram blok
Diagram blokDiagram blok
Diagram blok
 
2.4 model matematika sistem mekanik
2.4 model matematika sistem mekanik2.4 model matematika sistem mekanik
2.4 model matematika sistem mekanik
 
Transformasi Laplace
Transformasi LaplaceTransformasi Laplace
Transformasi Laplace
 
2 deret fourier
2 deret fourier2 deret fourier
2 deret fourier
 
Dielektrik
DielektrikDielektrik
Dielektrik
 
Deret Fourier
Deret FourierDeret Fourier
Deret Fourier
 
PPT Matriks
PPT MatriksPPT Matriks
PPT Matriks
 
diferensial vektor
diferensial vektordiferensial vektor
diferensial vektor
 
Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...
Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...
Pengolahan Sinyal Digital - Slide week 3 - sistem & sinyal waktu diskrit - pr...
 
Perpindahan kalor
Perpindahan kalorPerpindahan kalor
Perpindahan kalor
 
Transformasi laplace
Transformasi laplaceTransformasi laplace
Transformasi laplace
 
Modul 3 transformasi laplace
Modul 3 transformasi laplaceModul 3 transformasi laplace
Modul 3 transformasi laplace
 
Mt3 #3 laplace
Mt3 #3 laplaceMt3 #3 laplace
Mt3 #3 laplace
 
Ii Rangkaian Listrik Fasor
Ii Rangkaian Listrik FasorIi Rangkaian Listrik Fasor
Ii Rangkaian Listrik Fasor
 
Alat ukur kumparan putar
Alat ukur kumparan putarAlat ukur kumparan putar
Alat ukur kumparan putar
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
 
Fourier
FourierFourier
Fourier
 

laplace transf presentation by exar sept 2014 konsep dasar dan aplikasi

  • 2. Content • • • • Laplace Transforms (Lecture 01) Fourier Transforms (Lecture 02) Numerical Methods (Lecture 03) Statistical Analysis (Lecture 04) Advanced Search
  • 3. Lecture 01 Section 01 Introduction to Laplace Transforms
  • 4. Pengantar Laplace Pierre-Simon, marquis de Laplace (23 March 1749 – 5 March 1827) French mathematician Astronomer Development of mathematical astronomy and statistics.
  • 6. BASIC CONCEPT Time function y ' '+ y = te HOW TO……? Frequency function −t transform 1 ( s + 1)Y = ( s + 1) 2 2 L internet internet y (t ) =...... ? 1 1 1 y (t ) = − cos t + te − t + e − t 2 2 2 Time Domain L -1 1 Y= ( s + 1) 2 ( s 2 + 1) inverse transform Frequency domain
  • 7. Laplace Transformation •Laplace Transformation………….? • Tramsformasi fungsi dari kawasan waktu (t) ke dalam kawasan frekwensi (s) • Simbol 11 L I -- L D
  • 8. Inverse Laplace Transformation •Inverse Laplace Transformation………….? • Tramsformasi fungsi dari kawasan frekwensi (s) 11 ke dalam kawasan waktu (t) • Simbol L I -- L D
  • 9. How to make a Laplace Transforms Time Domain Frequency domain L ( f(t)) f (t ) L ( f(t)) ∞ ∫ 0 ∞ F (s ) = ∫ f (t ) .e −st dt 0 f (t ), t > 0 f (t ) .e −st dt = F (s )
  • 10. How to make a Laplace Transforms Time Domain Frequency domain L (......) f(t) f (t ) L (......) y(t) f(t) y (t ) L (......) x(t) f(t) x(t ) = F (s ) = Y (s ) = X (s )
  • 11. Contoh 1 Konstanta di kawasan waktu akan dibagi oleh koefisien S di kawasan frekwensi Time Domain Frequency domain L ( f(t)) 1....untuk ..t ≥ 0 F (s ) = f (t ) = { 0....untuk ..t < 0 f (t ) ∞ ∫ .e −st dt 1 0 f (t ), t > 0 − st ∞ e F (s ) = −s −∞ e −e = −s = 0 −0 e − s .∞ −e −s − s .0 0− 1 1 = = −s s
  • 12. Contoh 2 Time Domain Frequency domain L ( f(t)) 1....untuk ..t ≥ 2 F (s ) = f (t ) = { 0....untuk ..t < 2 f (t ) ∞ ∫ f (t) .e −st dt 0 2 ∫ f (t) .e −st dt + 0 f (t ), t > 0 ∞ ∫ f (t) .e − st dt 2 2 ∫ 0 .e −st dt + 0 ∞ ∫ 2 .e − st dt 1
  • 13. contoh2 Tundaan sebesar 2 di kawasan waktu akan memunculkan e −2 s Di kawasan frekwensi e −∞ e −0 ee. Tidak ada yang punya pangkat tak hingga ee. Tidak ada yang punya pangkat tak hingga Tidak ada pangkat dekat ke …1 2 F (s ) = ∫ 0 .e −st dt + 0 F (s ) = F (s ) = ∞ ∫ .e − st dt 1 2 ∞ e    − s 2  − st − s .∞ e −s − s .2 e − −s e −2 s =0 − − s = 0 = −s −2 s 1e s e −2 s − −s
  • 14. Contoh 3 Time Domain Frequency domain L ( f(t)) 2....untuk ..t ≥ 2 F (s ) = f (t ) = { 0....untuk ..t < 2 f (t ) ∞ ∫ f (t) .e −st dt 0 2 ∫ f (t) .e −st dt + 0 f (t ), t > 0 ∞ ∫ f (t) .e − st dt 2 2 ∫ 0 .e −st dt + 0 ∞ ∫ 2 .e − st dt 2
  • 15. contoh3 e −∞ e −0 ee. Tidak ada yang punya pangkat tak hingga ee. Tidak ada yang punya pangkat tak hingga Tidak ada pangkat dekat ke …1 2 F (s ) = ∫ 0 .e −st dt + 0 F (s ) = F (s ) = ∞ ∫ .e − st dt 2 2 ∞ e    − s 2  − st − s .∞ e −s − s .2 2.e − −s 2.e −2 s =0 − − s = 0 = −s −2 s 2e s 2.e −2 s − −s
  • 16. Contoh 4 Time Domain Frequency domain L ( f(t)) 1....untuk ..t ≥ 3 F (s ) = f (t ) = { 0....untuk ..t < 3 f (t ) ∞ ∫ f (t) .e −st dt 0 3 ∫ f (t) .e −st dt + 0 f (t ), t > 0 ∞ ∫ f (t) .e − st dt 2 3 ∫ 0 .e −st dt + 0 ∞ ∫ 2 .e − st dt 1
  • 17. contoh4 e −∞ e −0 ee. Tidak ada yang punya pangkat tak hingga ee. Tidak ada yang punya pangkat tak hingga Tidak ada pangkat dekat ke …1 3 F (s ) = ∫ 0 .e −st dt + 0 F (s ) = F (s ) = ∞ ∫ .e − st dt 1 2 ∞ e    − s 3  − st − s .∞ e −s − s .3 e − −s e −3s =0 − − s = 0 = −s −3 s 1e s e −3s − −s
  • 18. Resume P....untuk ..t ≥ Q f (t ) = { 0....untuk..t < Q Konstanta P di kawasan waktu akan dibagi oleh koefisien S di kawasan frekwensi Tundaan sebesar Q di kawasan waktu akan memunculkan e −2 s Di kawasan frekwensi −Qs Pe F (s ) = s
  • 19. Contoh 5 Time Domain Frequency domain L ( f(t)) t....untuk ..t ≥ 0 F (s ) = f (t ) = { 0....untuk..t < 0 f (t ) F (s ) = ∞ ∫ 0 f t(t) .e −st dt f (t ), t > 0
  • 20. Contoh5 ∞ F (s ) = ∫ t .e −st dt 0 ∫ udv = uv −∫vdu = −∫ tdt = dv e − st = u dv e st u = e −−st t= dt du d (e − st ) = dv dt dt =t dt du = e − st v = ∫ tdt dt − st tt22 du = e dt v= 2 2
  • 21. Contoh5 ∞ F (s ) = ∫ t .e −st dt 0 ∫ udv = uv −∫vdu = −∫ t =u u = tt e − st dt = dv dv − st e = dt du d (t ) = dv dt dt = e − st dx du =1 v = ∫ e − st dt dt e −−st e st du = dt te − st e − st +C = − 2 −s s v= − st − st −s −s te e ∞ − 2 F (s ) = −s s 0 []
  • 22. Contoh5 ee. Tidak ada yang punya pangkat tak hingga ee. Tidak ada yang punya pangkat tak hingga Jika sudah tidak ada pangkat , dekat ke …1 [ [] ] F (s ) = F (s ) = F (s ) = te − st e − st − 2 −s s 0 ∞ te − st e − st −  ∞.e − s∞ e − s∞    − s − s2  −    1 f (t ) = t n s2 F (s ) = −s − s2  0.e − s 0 e − s 0    − s − s2     n! s n +1 n faktorial karena akan di integrasi parsial sebanyak n kali N+1 karena setiap setiap integrasi akan menghasilkan sebuah faktor pembagi s dikawasan frekwensi
  • 23. Contoh 7 Time Domain e −2 t Frequency domain L ( f(t)) ....untuk ..t ≥ 0 F (s ) = f (t ) = { 0....untuk..t < 0 f (t ) F (s ) = ∞ ∫ 0 2t ef−(t) .e −st dt f (t ), t > 0
  • 24. f (t ) = e F (s ) = −2 t ∞ ∫ e −2t .e −st dt F (s ) = 0− 0 ∞ ∫ e t ( −2 − s ) dt 0     0 1   −  ( −2 − s )   ( −2 − s )       F (s ) = 1 ( −2 − s ) 1 ( s + 2) ∞  e t ( −2 −s )    (−2 − s ) 0  ∞  e t ( −2 −s )   e t ( −2 −s )    −  ( −2 − s )   (−2 − s ) 0  e ∞( −2 −s )   e 0 ( −2 −s )    ( −2 − s )  −  ( −2 − s )             0 1   −  ( −2 − s )   ( −2 − s )       Mengalikan fungsi dengan koefisien sebesar e −2t pada kawasan waktu akan mengurangi nilai fungsi pada kawasan s dengan faktor pembagi (s+2)
  • 25. f (t ) = e 2t F (s ) = ∞ F (s ) = e 2t .e −st dt ∫ 0− 0 ∞ ∫  0   1    (2 − s)  − (2 − s )          0   1    (2 − s)  − (2 − s )         et ( 2− s ) dt 0 ∞ e    (2 − s ) 0  t ( 2 −s ) ∞ e   e t ( 2 −s )    −  (2 − s)   (2 − s ) 0 t ( 2 −s )  e ∞( 2 −s )   e 0 ( 2 −s )    (2 − s)  −  (2 − s )         F (s ) = 1 (2 − s ) 1 ( s − 2) Mengalikan fungsi dengan koefisien sebesar e 2t waktu pada kawasan akan menambah nilai fungsi pada kawasan s dengan faktor pembagi (s-2)
  • 26. Lecture 01 Section 02 Laplace transform for ODEs (algebraic equation)
  • 27. Lecture 01 Section 03 Review of Complex Variabel
  • 28. Lecture 01 Section 04 Laplace transform Of Trigonometric
  • 29. Laplace transform Of Trigonometric Sin (at) Sinh (at) Cos (at) Cosh(at) Teknik 1 Teknik 2 Teknik 3
  • 30. Laplace Transform of Sin(at) 1st Way L ( sin 4t ) = ... ? ∞ ∫e − st dv = sin 4tdt du d (e − st ) dv = sin 4t = dx dx dx u = e − st . sin 4tdt 0 ∫ udv = uv − ∫ vdu du = − se st dx v = ∫ sin 4tdt cos 4t v=− 4 e −st sin 4tdt = e −st . − ∫ = −e −st cos t cos 4t ) − (∫ − . − se −st dt 4 4 cos 4t cos 4t −∫ .se −st dt 4 4 30
  • 31. Laplace Transform of Sin(at) 1st Way 2 cos 4t cos 4t − st ∫ e sin 4tdt = −e 4 − ∫ 4 .se dt s − st − st cos 4t e sin 4tdt = −e − ∫ se − st . cos 4tdt ∫ 4 4 − st − st dv = cos 4tdt du = − se st dt v = ∫ cos 4tdt u = e − st v= sin 4t 4 s  − st sin 4t sin 4t  − st − e −∫ . − se dt  4 4 4  31
  • 32. Laplace Transform of Sin(at) 1st Way e −st sin 4tdt = −e −st ∫ cos 4t s  −st sin 4t sin 4t  − e −∫ . − se −st dt  4 4 4 4  = −e −st = −e −st = −e −st = −e −st ∫e −st cos 4t 4 cos 4t 4 cos 4t 4 cos 4t 4 s  −st sin 4t s  e + ∫ sin 4t.e −st dt  4 4 4   s sin 4t s s − e −st − . ∫ sin 4t.e −st dt 4 4 4 4 s −st s2 − e sin 4t − ∫ sin 4t.e −st dt 16 16 s −st s 2 −st − e sin 4t − ∫ e . sin 4tdt 16 16 − s2 s −st −st −st cos 4t . sin 4t + ∫ e . sin 4tdt = −e − e sin 4t 16 4 16 ∫e −st  s2  s −st −st cos 4t . sin 4t 1 +  = −e − e sin 4t 16  4 16 
  • 33. Laplace Transform of Sin(at) 1st Way ∫e −st  s2  cos 4t s . sin 4t 1 +  = −e −st − e −st sin 4t 4 16  16  16  −st cos 4t s  −e − e −st sin 4t  16 + s 2  4 16   16  −st cos 4t s  = −e − e −st sin 4t  16 + s 2  4 16   e −st . sin 4t = ∫ ∞ ∫e 0 −st ∞  − 4e  −st . sin 4t =  se sin 4t + 4 cos 4t  2 16 + s 0 −st [ ] ∞  − 4e − s ∞   − 4e − s 0  −s∞ = se sin 4∞ + 4 cos 4∞  −  se −s 0 sin 0 + 4 cos 0  2 2  16 + s  16 + s 0 ∞  −0 [ s.0. sin ∞ + 4 cos ∞] −  −1 2 [1.0 + 4.1] = 2  16 + s  16 + s   0 [  −4  = [ 0] −  2  16 + s  ] 4 = 16 + s 2 [ ]
  • 34. Laplace Transform of Sin(at) f (t ) = sin ( 4t ) L { f (t )} = ..... ? .... + 4 2 s 2 L { f (t )} = 4 s 2 +4 4 2
  • 35. Bentuk Semi Baku 7 e sin 2 xdx = ∫ 4x e sin xdx = ∫ nx e sin 2 xdx = ∫ 4x ∫e nx sin( px ± q )dx = 1 4x  cos 2 x  e  sin 2 x −  5 2   nx e (n sin x − cos x) 2 n +1 1 4x e ( 4 sin 2 x − 2 cos 2 x ) 20 1 e nx ( n sin( px ± q ) − p cos( px ± q ) ) ( p 2 + n2 )
  • 36. Laplace Transform of Sinh(at) f (t ) = sinh ( 4t ) L { f (t )} = ..... ? .... − 4 2 s 2 L { f (t )} = 4 s 2 −4 4 2
  • 37. Laplace Transform of Cos(at) f (t ) = Cos ( 4t ) L { f (t )} = ..... ? .... + 4 2 s 2 L { f (t )} = s s 2 +4 s 2
  • 38. Laplace Transform of Cosh(at) f (t ) = Cosh( 4t ) L { f (t )} = ..... ? .... − 4 2 s 2 L { f (t )} = s s 2 −4 s 2
  • 39. 2nd Way sin t = Im(cos t + i sin t ) = Im e it
  • 40. 3rd Way 1 sin( at ) = (e jat − e − jat ) 2j
  • 41. Laplace Transformation An ! L [ At e 1(t )] = n +1 (s + a) n − at f (t ) = A cos(ω t )1(t ), jω t − jω t  e +e  1(t )  L [ A cos(ω t )1(t )] = L  A 2    e jω t   e − jω t  = L A 1(t )  + L  A 1(t )  2  2    A 1 A 1 A ( s + jω ) + ( s − jω ) = + = 2 s − jω 2 s + jω 2 ( s − jω ) ( s + jω ) As = 2 2 s +ω
  • 42. Lecture 01 Section 05 Laplace transform of a derivatif and integral
  • 43. Laplace transform of a derivative d  L  f (t )  = sF ( s ) − f (0)  dt  Note: Lower case f indicates function of time. Upper case F indicates function of s. (Multiplication by s) = (differentiation wrt time) Primes and dots are often used as alternative notations for the derivative. Dots are almost always used to denote time derivatives. Primes might denote either time or space derivatives. In problems with both time and space derivatives, primes are space derivatives and dots are time derivatives.
  • 44. Transform of Derivatives  THEORM 1 ◦ Laplace of f(t) exists ◦ f ’(t) exists and piecewise continuous for t>=0 L( f ' ) = sL( f ) − f (0)  THEOREM 2 L( f ( n ) ) = s n L( f ) − s n−1 f (0) − s n− 2 f ' (0) −  − f ( n−1) (0)
  • 45. Differential Equations y"+ ay '+by = r (t ) 1st step y (0) = K 0 y ' ( 0) = K 1 [ s 2Y − sy (0) − y ' (0)] + a[ sY − y (0)] + bY = R (s ) 2nd step 3rd step 1 Q(s) = 2 s + as + b Y ( s ) = [( s + a ) y (0) + y ' (0)]Q( s ) + R ( s )Q( s ) y (t ) = L−1 (Y )
  • 46. Questions  Does Laplace transform always exist?  When can Laplace transform be used to solve differential equations?  Advantages? ◦ ◦
  • 47. Transform of Integrals t L( f ) F ( s ) L{∫ f (τ )dτ } = = s s 0 t ∫ 0 F ( s) f (τ )dτ = L { } s −1
  • 48. Lecture 01 Section 06 Inverse Laplace transform
  • 49. BASIC CONCEPT Time function y ' '+ y = te HOW TO……? Frequency function −t transform 1 ( s + 1)Y = ( s + 1) 2 2 L internet internet y (t ) =...... ? 1 1 1 y (t ) = − cos t + te − t + e − t 2 2 2 Time Domain L -1 1 Y= ( s + 1) 2 ( s 2 + 1) inverse transform Frequency domain
  • 50. INVERSE LAPLACE TRANSFORM METHODE Metode Partial Pangkat koefisien s dari pembilang selalu lebih rendah 1 pangkat dibandingkan dengan koefisien dari penyebut Metode Partial Contoh 1 Tentukan i(t) jika I ( s) = 4 ( s 2 + 4)( s + 3) 4 As + B C = 2 + ( s 2 + 4)( s + 3) ( s + 4) ( s + 3) 4= 4= = = Untuk mendapatkan nilai C, misalkan s=-3 sehingga suku pertama akan = 0 ( As + B )( s + 3) + ( s 2 + 4)C ( A( −3) + B )(−3 + 3) + ((−3) 2 + 4)C ((−3) 2 + 4)C (13)C 4 C = 13 ( As + B )( s + 3) + ( s 2 + 4)C = ( s 2 + 4)( s + 3) 4................... ( As + B )( s + 3) + ( s 2 + 4)C = 2 ( s + 4)( s + 3) ( s 2 + 4) ( s + 3)
  • 51. INVERSE LAPLACE TRANSFORM METHODE 2 4 = ( As + B )( s + 3) + ( s + 4)C Lihat koefisen s = As + 3 As + Bs + 3B + Cs + C 4 2 2 = As + Cs + 3 As + Bs + 3B + C 4 2 0 s 2 + 0 s + 4 = ( A + C ) s + (3 A + B ) s + 3B + C 4 2 Lihat koefisen s2 ( A + C) = 0 A = −C 4 = − 13 2 (3 A + B ) = 0 B = − 3A = − 3. − 4 12 = 13 13 4 12 4 − s+ 4 As + B C 13 + 13 = 2 = 13 I ( s) = 2 + ( s 2 + 4) ( s + 3) ( s + 4)( s + 3) ( s + 4) ( s + 3) 4  − s +3 1  I (s ) =  ( s 2 + 4) + ( s + 3)  13  
  • 52. INVERSE LAPLACE TRANSFORM METHODE i (t ) = L I (s ) = -1 L -1 = L -1 = L -1 = L -1 = L -1 i (t ) = 4  − s +3 1   ( s 2 + 4) + ( s + 3)  13   4  −s 3 1   ( s 2 + 4) + ( s 2 + 4) + ( s + 3)  13   4  −s 3 1   ( s 2 + 2 2 ) + ( s 2 + 2 2 ) + ( s + 3)  13   3   .2 4  s 1  − 2 + 22 2 +   13  ( s + 2 2 ) ( s + 2 ) ( s + 3)    4  s 3 2 1  − ( s 2 + 2 2 ) + 2 ( s 2 + 2 2 ) + ( s + 3)  13   4  3  − cos 2t + sin 2t + e −3t  13  2  
  • 53. Aplication Of Laplace I  Consider the circuit when the switch is closed at t = 0 with VC(0) = 1.0 V.  Solve for the current i(t) in the circuit?. 1 ∫ i c (t )dt C v R (t ) = RiR (t ) v(t ) = vc (t ) + vR (t ) = 5 = L 1 ∫ i c (t )dt C + RiR (t ) 1 i (t )dt + 103 iR (t ) −6 ∫ c 10 5 10 −6 = L 5.10 −6 vc (t ) = 1 = 1 s s ×10 −6 i (t )dt + 10 −3 i (t ) ∫ [∫ i(t )dt ]. t =0 +10 −3 I ( s ) i R (t ) = iC (t ) = i (t )
  • 54. vc (t ) = 1 ∫ i c (t )dt C 1 10 −6 1= [∫i(t )dt ] .t =0 5.10 −6 5.10 −6 vc (0) = 1volt [∫i(t )dt ] .t =0 = 10 6 [ ] −3 1 = 1 i (t )dt .t =0 +10 I ( s ) s s ∫ 1 = 1 6 10 + 10 −3 I ( s ) s s
  • 55. Aplication Of Laplace I  Consider the circuit when the switch is closed at t = 0 with VC(0) = 1.0 V.  Solve for the current i(t) in the circuit?. I (s) 5.10 −6 = + I ( s )10 −3 s2 s × s2 −3 5.10 −6 s = I (s ) + sI ( s )10 0 = I (s ) + sI ( s )10 −3 − 5.10 −6 s 2 −3 5.10 −6 s 2 − sI ( s )10 − I (s ) = 0
  • 56. Aplication Of Laplace II v(t ) = vR (t ) + vL (t ) + vC (t ) di (t ) 1 v (t ) = RiR (t ) + L L + ∫ i c (t ) dt C dt di 2 L (t ) di (t ) + 1 i (t )dt R +L 0= dt C dt L di 2 L (t ) di (t ) + 1 i (t )dt = L L R + dt C dt 0