O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
Próximos SlideShares
Cnc Milling
Avançar
Transfira para ler offline e ver em ecrã inteiro.

9

Compartilhar

Baixar para ler offline

CNC Milling

Baixar para ler offline

CNC Milling manual for beginners.
Hasi berrien CNC bidezko fresaketa eskuliburua.
Manual de fresado CNC para recien iniciados.

CNC Milling

  1. 1. MANUFACTURING TECHNOLOGIESMANUFACTURING TECHNOLOGIES CNCCNC by Endika Gandarias BACHELOR OF ENGINEERINGBACHELOR OF ENGINEERING
  2. 2. 2by Endika Gandarias Dr. ENDIKA GANDARIAS MINTEGI Mechanical and Manufacturing department Mondragon Unibertsitatea - www.mondragon.edu (Basque Country) www.linkedin.com/in/endika-gandarias-mintegi-91174653 Further presentations: www.symbaloo.com/mix/manufacturingtechnology
  3. 3. 3 CONTENTS BIBLIOGRAPHY INTRODUCTION REFERENCE SYSTEMS BASIC ISO PROGRAMMING FIXED CANNED CYCLES EXERCISES FAGOR SIMULATOR GLOSSARY by Endika Gandarias
  4. 4. 4 BIBLIOGRAPHY BIBLIOGRAPHY by Endika Gandarias
  5. 5. 5 The author would like to thank all the bibliographic references and videos that have contributed to the elaboration of these presentations. For bibliographic references, please refer to: • http://www.slideshare.net/endika55/bibliography-71763364 (PDF file) • http://www.slideshare.net/endika55/bibliography-71763366 (PPT file) For videos, please refer to: • www.symbaloo.com/mix/manufacturingtechnology BIBLIOGRAPHY by Endika Gandarias
  6. 6. 6 INTRODUCTION INTRODUCTION by Endika Gandarias
  7. 7. 7 1942 Bendix Corporation, a USA helicopter blade manufacturing company, needs three-dimensional cam parts. → Coordination of movements is necessary. 1947 John Parson (a Bendix corporation worker) using punched tapes is able to control simultaneously axes movements of a machine → MIT collaborates 1953 Numerical Control (NC) term appears at M.I.T. 1960 Adaptative Control term appears at M.I.T. 1970 Computer Numerical Control (CNC) is created → Microprocessors origin. 1980 Direct Numerical Control (DNC) is possible. A large number of machines are controlled by a computer. INTRODUCTION by Endika Gandarias Brief history Definition  CNC (Computer Numerical Control (CNC) refers to the method of controlling a machine tool or the machining process by means of a computer.  Coded numerical instructions are inserted into the CNC  PROGRAMMING LANGUAGE NC Punched Tape
  8. 8. 8 Machine control feedback: position & velocity CNC block diagram INTRODUCTION by Endika Gandarias Velocity Feedback Position Feedback VIDEO VIDEO CNC machine tool description Loop control types OPEN LOOP CLOSED LOOP
  9. 9. 9  Every position of an absolute device is unique.  The disk has many circular tracks, the higher the number of tracks the higher the resolution.  These devices do not lose position when power is removed (homing sequence not needed on startup).  They do not accumulate errors (not affected by noise signal).  They are more complex and expensive. INTRODUCTION by Endika Gandarias CNC machine tool description Feedback devices ABSOLUTE ROTARY ENCODER INCREMENTAL ROTARY ENCODER  The feedback signal is always referenced to a start or home position. They need an external processing of signals.  In the event of a power failure, it must be reinitialized.  They are susceptible to noise, thus, errors.  They are simpler and cheaper. An encoder is a sensor for converting rotary motion or position to analog/digital signal. VIDEO VIDEO VIDEO
  10. 10. 10  It measures directly the position of linear axes.  High positioning accuracy.  High permissible traversing speed.  It can correct next errors:  Positioning error due to thermal behavior of the recirculating ball screw.  Reversal error.  Kinematics error through ball-screw pitch error. INTRODUCTION by Endika Gandarias CNC machine tool description Feedback devices LINEAR GLASS SCALE ENCODER VIDEO VIDEO Absolute glass scale Incremental glass scale VIDEO
  11. 11. 11 INTRODUCTION Advantages  High Repeatability + High Trueness = High Accuracy.  More complex 3-dimensional geometries.  Better quality.  Higher productivity.  Greater safety and lower operator qualification.  Greater flexibility to part changes.  Minimizes human errors. Disadvantages  Higher investment cost.  Higher maintenance cost.  Time consuming set-up.  Training is needed for CNC programming. Increasing Repeatability IncreasingTrueness by Endika Gandarias CNC FAGOR - USER MANUAL www.fagorautomation.com/download/
  12. 12. 12 Type of machines  Turning Centers  Milling Centers  Machining Centers  Drilling Machines CNC manufacturers INTRODUCTION by Endika Gandarias  Grinding Machines  EDM Machines  Laser-Cutting Machines  …
  13. 13. 13by Endika Gandarias The axes are named according to DIN 66217. Axis nomenclature VIDEO Three-axes milling machine Six-axis milling machine Turning machine VIDEO A+ C+ B+ INTRODUCTION
  14. 14. 14 Reference systems by Endika Gandarias INTRODUCTION VIDEO
  15. 15. 15  M  Machine Zero or home: This is set by the manufacturer as the origin of the coordinate system of the machine.  W  Part zero or point of origin of the part: This is the origin point that is set for programming the measurements of the part. It can be freely selected by the programmer.  R  Machine Reference point. This is a point on the machine established by the manufacturer around which the synchronization of the system is done. The control positions the axis on this point. by Endika Gandarias INTRODUCTION Reference systems
  16. 16. 16  Define Tool Length & Radius Offsets  Check coolant and air supply levels, ensure work area is clean, … INTRODUCTION CNC machine setup and operation  Fill the tool carousel.  Once he workholding device is properly installed and aligned, set part X,Y&Z zero datum. by Endika Gandarias
  17. 17. 17 REFERENCE SYSTEMS REFERENCE SYSTEMS by Endika Gandarias
  18. 18. 18 Machine Reference (R) setting TOOL LENGTH COMPENSATION OFF G44 TOOL LENGTH COMPENSATION ON G43 REFERENCE SYSTEMS by Endika Gandarias RRRR T1 L1 L2 L3 L4 RRRR T2 T3 T4 TOOL TOOL OFFSET RADIUS LENGTH T1 D1 55.234 T2 D1 72.345 T3 D1 61.098 T4 D1 66.683 … … ... … OFFSET TABLE
  19. 19. 19 Tool presetting machine REFERENCE SYSTEMS Machine Reference (R) setting 1 by Endika Gandarias  High accuracy.  Based on camera images (contact methods were used in the past).  Tool length (L) and radius (R) values are measured.  Minimizes tool setting times.  Used at high production runs. TOOL LENGTH MEASUREMENT TOOL RADIUS MEASUREMENT X Z VIDEO
  20. 20. 20 Tool on the workpiece REFERENCE SYSTEMS Machine Reference (R) setting 2 by Endika Gandarias  Low accuracy.  Time consuming method.  Only tool length (L) values are measured.  Tool is rotating and thus, part or referencing block gets marked. TOOL LENGTH MEASUREMENT W T1 T2 T3 T4 L4 = 0L3 < 0 L2 > 0 L1 < 0 W RRRR
  21. 21. 21 3 REFERENCE SYSTEMS Machine Reference (R) setting by Endika Gandarias Using a tool length setter gauge TOOL LENGTH MEASUREMENT  Good accuracy.  Time consuming method.  Only tool length (L) values are measured.  Part or referencing block does not get marked. W L2<0L1=0 RR L1 M 50 z1 z2 L2 50 L1= z1-50 L2= z2-50 R R BASEDONAREF.TOOLBASEDONMACHINEDATUM VIDEO
  22. 22. 22 REFERENCE SYSTEMS Machine Reference (R) setting Using a touch probe4 by Endika Gandarias  High accuracy.  Fast method.  Tool length (L) and radius (R) values are measured.  Tool rotates counterclockwise not to mark the probe at low RPM. Additional applications Low RPM TOOL LENGTH MEASUREMENT TOOL RADIUS MEASUREMENT VIDEO
  23. 23. 23 REFERENCE SYSTEMS Machine Reference (R) setting Using a laser beam5 Additional applications  Highest accuracy.  Fast method.  Tool length (L) and radius (R) values are measured.  Tool rotates at working conditions. TOOL LENGTH MEASUREMENT TOOL RADIUS MEASUREMENT by Endika Gandarias VIDEOVIDEO
  24. 24. 24 Part zero (W) setting  Prior to defining part zero, procedure should be: 1. Study how the drawing is dimensioned. 2. Decide on the workholding device type and part zero (W) definition.  Machine operator defines part zero (W) position anywhere.  Most common positions: o Left lower side of the part (all data position values are positive). o Part symmetry axis. o CLAMP CASE  Centering pins side. o VISE CASE  Stationary chuck & vise stop side. REFERENCE SYSTEMS by Endika Gandarias Clamps (with or without centering pins) Vise (with or without vise stop) Movable chuck Stationary chuck Vise stop Centering pinsClamps
  25. 25. 25 X Z Y Symmetry X Y Z Y Part zero (W) setting X Z Y X Y Z Y Stationary chuck & Y axis part symmetryX-Y axis part symmetry REFERENCE SYSTEMS by Endika Gandarias VISE VISE
  26. 26. 26 Part zero (W) setting Stationary chuck & left lower part REFERENCE SYSTEMS by Endika Gandarias X Y Z X Z VISE CLAMP Stationary chuck & Y axis part symmetry X Y Z X
  27. 27. 27 Part zero (W) setting VIDEO Using the tool  Low accuracy.  Tool is rotating and thus, part gets marked. REFERENCE SYSTEMS by Endika Gandarias Using a mechanical edge finder1 2  Low accuracy. X Y DATUM SETTING X Y Z DATUM SETTING Optical edge finder  similar VIDEO
  28. 28. 28 3 Part zero (W) setting VIDEO REFERENCE SYSTEMS by Endika Gandarias Using a touch probe  High accuracy. X Y Z DATUM SETTING VIDEO
  29. 29. 29by Endika Gandarias VIDEO 2 types: 1. Touch-trigger probes 2. Scanning probes (continuous measuring) PRO & CON: Almost any machined geometry may be measured in-situ. Reduced machine downtime. Part unclamping for measuring is avoided. It cannot consider possible machine axes errors. Touch probe stylus tips 3 Part zero (W) setting REFERENCE SYSTEMS Using a touch probe
  30. 30. 30 BASIC ISO PROGRAMMING FAGOR 8055-M by Endika Gandarias BASIC ISO PROGRAMMING
  31. 31. 31 BASIC ISO PROGRAMMING by Endika Gandarias Block identification Identifies the block of information. / N**** G** X****.*** Y****.*** Z****.*** A****.*** B****.*** C****.*** F****.** S****.** Preparatory functions or G-codes Linear and angular positioning data Feed function Speed function Block structure T** D** M** N** ;***** Tool number Tool offset number Miscellaneous or auxiliary functions Block skip condition Number of block repetitions Block comment Not ISO, corresponds to FAGOR 8055M =
  32. 32. 32by Endika Gandarias Feed function (F) Speed function (S)  The feed function F is the speed at which the tool center point moves.  The programmed F is effective working in linear (G01) or circular (G02, G03).  The maximum F value is limited by the machine parameters.  The speed function S is the speed at which the tool (in milling) or part (in turning) rotates.  The maximum S value is limited by the machine parameters. BASIC ISO PROGRAMMING
  33. 33. 33by Endika Gandarias Tool number (T) The "T" code identifies the tool position in the tool magazine. Tool offset number (D) The tool offset contains the tool dimensions. Each tool may have several offsets associated with it. TOOL TOOL OFFSET RADIUS LENGTH … T1 D1 8.002 55.234 … D2 7.502 55.234 … D3 8.002 55.026 … … … … … TOOL TOOL OFFSET RADIUS LENGTH … T2 D1 4.000 72.345 … D2 11.990 60.036 … D3 7.500 33.110 … … … … … … BASIC ISO PROGRAMMING
  34. 34. 34 M functions DESCRIPTION M00 Program STOP / Spindle STOP / Coolant OFF M03 Spindle ON clockwise M04 Spindle ON counterclockwise M05 Spindle STOP M06 Tool change M08 Coolant ON M09 Coolant OFF M30 End of program BASIC ISO PROGRAMMING Auxiliary or Miscellaneous (M) functions by Endika Gandarias
  35. 35. 35 M functions MODAL DESCRIPTION G00 * Rapid traverse G01 * Linear interpolation G02 * Clockwise circular interpolation G03 * Counterclockwise circular interpolation G05 * Controlled corner rounding G07 * Square corner G36 Automatic radius blend G39 Chamfer G37 Tangential entry G38 Tangential exit G40 * Cancellation of tool radius compensation G41 * Left-hand tool radius compensation G42 * Right-hand tool radius compensation G43 * Tool length compensation G44 * Cancellation of tool length compensation G90 * Absolute programming G91 * Incremental programming … … … BASIC ISO PROGRAMMING Preparatory functions or G-codes by Endika Gandarias MODAL = Once programmed, it remains active until another incompatible G function is programmed or until M30 / EMERGENCY or RESET.
  36. 36. 36  It is a positioning linear movement at maximum F value defined in the machine parameters.  Not valid for cutting.  It can be programmed as G00, G0 or G. by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Rapid traverse (G00) Linear interpolation (G01)  It is a working linear movement at the programmed F value.  It can be programmed as G01 or G1. … N80 G00 X500 Y300 … … N120 G01 X500 Y300 F400 … (TP) (SP) (TP) (SP) G00 X___ Y___ TP G01 X___ Y___ TP
  37. 37. 37by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Rapid traverse (G00) Linear interpolation (G01) EXERCISE 1 w = SP
  38. 38. 38 I J SP TP CC I J SP TP CC  It is a working circular movement at the programmed F value.  It can be programmed as G02 or G2 / G03 or G3. by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) … N60 G02 X300 Y300 I200 J0 … CARTESIANCOORDINATES WITHARCCENTER G02 X___ Y___ I___ J___ Distance from the SP to the Circle Center (CC). TP … N60 G03 X300 Y300 I0 J200 … G03 X___ Y___ I___ J___ Distance from the SP to the Circle Center (CC). TP
  39. 39. 39 SP TP SP TP by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes … N40 G02 X400 Y150 R150 … Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) CARTESIANCOORDINATES WITHARCRADIUS G02 X___ Y___ R___ R + : Arc < 180ºTP  A complete circle cannot be programmed. … N40 G02 X400 Y150 R-150 … R+ … N40 G03 X400 Y300 R150 … … N40 G03 X400 Y300 R-150 … R+ G03 X___ Y___ R___ R + : Arc < 180ºTP
  40. 40. 40by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) EXERCISE 2 EXERCISE 3 EXERCISE 4 EXERCISE 5 w w w w SP SP SP SP
  41. 41. 41by Endika Gandarias BASIC ISO PROGRAMMING Preparatory functions or G-codes Clockwise circular interpolation (G02) Counterclockwise circular interpolation (G03) EXERCISE 6 w SP
  42. 42. 42 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Absolute programming (G90) Incremental programming (G91) G90: The positioning data refers to the part zero (default). G91: The positioning data corresponds to the distance to be travelled from the point where the tool is situated. w … N70 G01 G90 X70 Y15 F350 ; P2 N80 G01 X70 Y30 ; P3 N90 G01 X45 Y45 ; P4 N100 G01 X20 Y45 ; P5 N110 G01 X20 Y15 ; P6 … Absolute programming (G90) … N70 G01 G91 X50 Y0 F350; P2 N80 G01 X0 Y15 ; P3 N90 G01 X-25 Y15 ; P4 N100 G01 X-25 Y0 ; P5 N110 G01 X0 Y-30 ; P6 … Incremental programming (G91) = SP
  43. 43. 43 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Absolute programming (G90) Incremental programming (G91) EXERCISE 7 w EXERCISE 8 SP SP
  44. 44. 44 BASIC ISO PROGRAMMING by Endika Gandarias Other functions REPEAT (RPT N___ ,N___)N___ Number of repetitions From block To block EXERCISE 9 100 275 450 600 775 950 1100 1275 1450 SP
  45. 45. 45 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  46. 46. 46 Face milling by Endika Gandarias N00 T1 D1 ; Ø28mm end-mill, assign tool 1 value D1 N10 M06 ; Tool change action N20 G00 G43 X14 Y40 Z100 F400 S1500 M03 N30 G00 Z58 N40 G01 X116 Y40 N50 G00 X116 Y54 N60 G01 X14 Y54 N70 G00 X14 Y68 N80 G01 X116 Y68 N90 G00 X116 Y82 N100 G01 X14 Y82 N110 G00 X14 Y96 N120 G01 X116 Y96 N130 G00 Z100 N130 M30 ; End of program SP 60 70 20 40 60 80 100 100 80 60 40 20 Security distance ~ 2 mm For exercises consider: ae = 50% of tool Ø BASIC ISO PROGRAMMING
  47. 47. 47by Endika Gandarias Face milling EXERCISE 10 Tool: Ø50mm HSS end-mill, z=4 Material: Aluminium • CASE A  apTOTAL=5mm; ap=5mm • CASE B  apTOTAL=5mm; ap=2.5mm  RPT • CASE C  apTOTAL=5mm; ap=1mm  RPT & G91 BASIC ISO PROGRAMMING
  48. 48. 48 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Square corner (G07) Round corner (G05)  The CNC starts executing the following block as soon as the position programmed in the current block has reached the dead band (default)  Sharp edges, Machining time ↑, Shocks ↑.  To be used with G00: face milling, canned cycles, …  The CNC starts executing the following block as soon as deceleration of the currently executing axes start (“?” distance depends on the feedrate F value)  Rounded edges, Machining time ↓  NOT to be used with G00: slot milling, engraving, contouring,… … N60 G01 G07 X50 Y100 F400 N70 G01 X140 Y100 F300 … … N60 G01 G05 X50 Y100 F400 N70 G01 X140 Y100 F300 … w t Fy t Fx w DEAD BAND: The range through which an input can be varied without initiating response t Fy t Fx Acceleration Constant feed Deceleration
  49. 49. 49 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  50. 50. 50 Slot milling by Endika Gandarias SP 20 60 85 20 Security distance ~ 2 mm 70 95 45 N00 T7 D1 ; Ø10mm end-mill N10 M06 N20 G00 G43 X85 Y13 Z100 F400 S3500 M03 N30 G00 Z20 N40 G00 G91 Z-2 N50 G01 G90 G05 X85 Y45 N60 G01 X60 Y70 N70 G01 X60 Y95 N80 G01 G07 X3 Y95 N90 G00 G91 Z10 N100 G00 G90 X85 Y13 N110 G00 G91 Z-10 N120 (RPT N40,N110)N1 ; Repeat N130 (RPT N40,N80)N1 ; Repeat N140 G00 Z100 N150 M30 20 40 60 80 100 60 40 20 6 +Z • • • • Tool: Ø10mm H.S.S. end-mill ap TOTAL = 6mm ; ap = 2mm BASIC ISO PROGRAMMING
  51. 51. 51 35 100 40 SP 85 65 6555 • •• • • 85 Slot milling by Endika Gandarias EXERCISE 11 60 40 20 5 +Z Tool: Ø16mm H.M. end-mill, z=3 Material: Steel ap TOTAL = 5mm ; ap = 2.5mm BASIC ISO PROGRAMMING
  52. 52. 52 Engraving by Endika Gandarias EXERCISE 12 Tool: Ø12mm HSS engraving tool, z=1 Material: Steel ap TOTAL = 2mm ; ap = 2mm H.S.S. engraving tool H.M. engraving tool 60 40 20 2 +Z 20 40 60 80 100 100 20 20 45 60 70 35 45 55 70 85 100 52.5 BASIC ISO PROGRAMMING
  53. 53. 53 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Cancellation of tool radius compensation (G40) Left-hand tool radius compensation (G41) Right-hand tool radius compensation (G42)  The CNC automatically calculates the path the tool should follow based on the contour of the part and the tool radius value stored in the tool offset table. G41 - CLIMB CUTTING G42 - CONVENTIONAL CUTTING
  54. 54. 54 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Cancellation of tool radius compensation (G40) Left-hand tool radius compensation (G41) Right-hand tool radius compensation (G42) … N50 G01 G41 G05 X77.5 Y70 F400 N60 G01 X100 Y70 N70 G01 X100 Y60 N80 G03 X85 Y45 I0 J-15 N90 G02 X70 Y30 I-15 J0 N100 G01 X50 Y30 N110 G01 X20 Y20 N120 G01 X25 Y70 N130 G03 X55 Y70 I15 J0 N140 G01 X77.5 Y70 N150 G01 G40 G07 X77.5 Y100 … G41  Tool entry & exit should always be perpendicular to the workpiece contour.  Tool entry & exit should be avoided to be from a workpiece edge  may produce burr. 20 25 50 55 70 85 100 20 45 60 70 30 SP • 22.5 30
  55. 55. 55 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  56. 56. 56 BASIC ISO PROGRAMMING by Endika Gandarias Roughing operation Tool: Ø8mm H.M. end-mill, z=3 Material: Aluminium ap TOTAL = 10mm ; ap = 2.5mm +Z 30 60 90 120 150 30 60 30 60 90 120 150 30 60 90 25 SP • Profile milling EXERCISE 13
  57. 57. 57 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Automatic radius blend (G36) Chamfer (G39)  It rounds a corner with a determined radius, without having to calculate the center nor the start and end points of the arc.  Function G36 is not modal. … N60 G01 G36 R5 X250 Y450 F400 N70 G01 X400 Y0 … … N60 G01 G39 R15 X350 Y600 F400 N70 G01 X500 Y0 … G36 R___  It chamfers corners between two straight lines, without having to calculate intersection points.  Function G39 is not modal. G39 R___
  58. 58. 58 BASIC ISO PROGRAMMING by Endika Gandarias Preparatory functions or G-codes Tangential entry (G37 RENTRY) Tangential exit (G38 REXIT)  It is used to create a tangential entry in Finishing operations so tool entry mark can be unnoticeable (not necessary for roughing).  It is used to create a tangential entry in Finishing operations so tool exit mark can be unnoticeable (not necessary for roughing). … N60 G01 G05 G41 G37 R12 X25 Y30 ; Tool Ø 22mm N70 G01 X10 Y30 … … N60 G01 G38 R12 X25 Y30 ; Tool Ø 22mm N70 G01 G07 G40 X25 Y5 … RENTRY > RTOOL-OFFSET LENTRY ≥ 2 * RENTRY RENTRY LENTRY REXIT > RTOOL-OFFSET LEXIT ≥ 2 * REXIT 12 ≥ 11 25 ≥ 2 * 12 12 ≥ 11 25 ≥ 2 * 12 REXIT LEXIT NOT MODAL FUNCTION NOT MODAL FUNCTION G38 REXIT G37RENTRY
  59. 59. 59 G01 G05 G41 G37 RENTRY G00 G43 G01 G07 G40 RENTRY = REXIT G38 REXIT 1 2 3 4 5 0 WORKPIECE LENTRY = LEXIT TOOL BASIC ISO PROGRAMMING Preparatory functions or G-codes Summary for profile milling operations by Endika Gandarias NOTE: - G37 & G38 only for finishing operations. RENTRY > RTOOL-OFFSET LENTRY ≥ 2 * RENTRY
  60. 60. 60 Pocket Milling Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling BASIC ISO PROGRAMMING Pecking / Drilling / Threading / Reaming
  61. 61. 61 SP Profile milling by Endika Gandarias Roughing operation: Tool: Ø20mm H.M. end-mill, z=3 Stock: 0.4mm Finishing operation: Tool: Ø20mm H.M. end-mill, z=3 Stock: 0mm Material: Steel ap TOTAL = 5mm ; ap = 2.5mm (Use G36 R__ and G39 R__) BASIC ISO PROGRAMMING +X +Y +X +Z • EXERCISE 14 • CASE A  Same tool • CASE B  Different tool
  62. 62. 62  Cycles are referred to repetitive program sequences commonly used In machining operations that makes easier programming.  Canned cycles or Fixed cycles: They are an inbuilt feature of the CNC usually permanently stored as a pre-program and cannot be altered by the user (G80-G89)  User-defined cycles or Sub-routines: They are created when the necessary fixed cycle is not available. FIXED CYCLES OR CANNED CYCLES by Endika Gandarias CANNED CYCLE NUMBER DESCRIPTION G80 Canned cycle cancellation G81 Drilling cycle G69 Deep hole drilling cycle with variable peck G84 Tapping cycle G85 Reaming cycle G87 Rectangular pocket cycle G88 Circular pocket cycle
  63. 63. 63 G81 G98/G99 X___ Y___ Z___ I___ K___ G81: Drilling cycle FIXED CYCLES OR CANNED CYCLES by Endika Gandarias  Valid for drilling depth ≤ 3*Ø  Valid for pecking cycle N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G81 G98 X30 Y20 Z2 I-15 K100 ; P1 N40 G80 N50 M30 Only one drill machining N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G81 G99 X30 Y20 Z2 I-15 K100 ; P1 N40 G00 X80 Y20 ; P2 N50 G00 X80 Y50 ; P3 N60 G00 G98 X30 Y50 ; P4 N70 G80 N80 M30 Four drills machining Dwell time (1/100s) I.P. R.P. Distance from w to the drilling depth Distance from w to the R.P. Machining coordinates Withdrawal planes Z I Reference Plane (R.P.) - G99 Initial Plane (I.P.) - G98 W 15 8 4 3 1 2
  64. 64. 64 G81 G98/G99 X___ Y___ Z___ I___ K___ G81: Drilling cycle FIXED CYCLES OR CANNED CYCLES by Endika Gandarias  Valid for drilling depth ≤ 3*Ø  Valid for pecking cycle N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 ; Z100 N30 G81 G99 X30 Y20 Z2 I-15 K100 ; Z2 N40 G00 G98 X30 Y50 ; Z100 N50 G81 G99 X80 Y50 Z27 I10 K100 ; Z27 N60 G00 G98 X80 Y20 ; Z100 N70 G80 N80 M30 Dwell time (1/100s) I.P. R.P. Distance from w to the drilling depth Distance from w to the R.P. Machining coordinates Withdrawal planes Z Z’R.P. - G99 Initial Plane (I.P.) - G98 W 15 Ref. Plane’ (R.P.) - G99’ I’ I 25 10 8 2 3 1 4 Four drills machining
  65. 65. 65 G69: Deep hole drilling cycle with variable peck FIXED CYCLES OR CANNED CYCLES by Endika Gandarias  General drilling cycle (≥ 3*Ø) G69 G98/G99 X___ Y___ Z___ I___ B___ C___ Drilling peck I.P. R.P. Distance from w to the R.P. Machining coordinates Withdrawal planes Distance from w to the drilling depth D___ H___ J___ K___ L___ R___ Reduction factor for drilling peck Dwell time (1/100s) Minimum drilling peck Approach to the previous drilling Distance between R.P. and working surface (absolute value) Withdrawal after drilling Num. pecks before total withdrawal N0 T3 D3 ; Ø10mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G69 G99 X30 Y20 Z2 I-60 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z2 N40 G00 G98 X30 Y50 ; Z100 N50 G69 G99 X80 Y50 Z27 I-20 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z27 N60 G98 X80 Y20 ; Z100 N40 G80 N50 M30 8 2 3 1 4 Z Z’R.P. - G99 Initial Plane (I.P.) - G98 W 60 Ref. Plane’ (R.P.) - G99’ I’ I 25 20 B D D’
  66. 66. 66 G84: Tapping cycle N0 T7 D7 ; M-10 tap N10 M06 N20 G00 G43 X50 Y20 Z100 F600 S600 M03 N30 G84 G98 X50 Y20 Z2 I-60 R0 N40 G80 N50 M30 Z I Ref. Plane (R.P.) - G99 Initial Plane (I.P.) - G98 W 60 G84 G98/G99 X___ Y___ Z___ I___ K___ R___ Dwell time (1/100s) I.P. R.P. Distance from w to the thread depth Distance from w to the R.P. Machining coordinates Withdrawal planes FIXED CYCLES OR CANNED CYCLES by Endika Gandarias Type of tapping R=0 Normal tapping R=1 Rigid tapping
  67. 67. 67 N0 T4 D4 ; Ø12H6 reamer N10 M06 N20 G00 G43 X30 Y20 Z100 F500 S2500 M03 N30 G85 G99 X30 Y20 Z2 I-35 K100 N40 G00 G98 X30 Y50 N50 G85 G99 X80 Y50 Z22 I-15 K100 N60 G00 X80 Y20 N70 G80 N80 M30 G85 G98/G99 X___ Y___ Z___ I___ K___ Dwell time (1/100s) I.P. R.P. Distance from w to the reaming depth Distance from w to the R.P. Machining coordinates Withdrawal planes FIXED CYCLES OR CANNED CYCLES by Endika Gandarias G85: Reaming cycle 12 2 3 1 4 Z Z’R.P. - G99 Initial Plane (I.P.) - G98 W 35 Ref. Plane’ (R.P.) - G99’ I’ I 20 15
  68. 68. 68 Pocket MillingPecking / Drilling / Tapping / Reaming Engraving by Endika Gandarias Profile Milling Face Milling Slot Milling FIXED CYCLES OR CANNED CYCLES
  69. 69. 69by Endika Gandarias FIXED CYCLES OR CANNED CYCLES Pecking / Drilling / Tapping / Reaming EXERCISE 15 Tool: Ø12mm H.M. spot drill, z=2 Ø7.75mm H.S.S. drill, z=2 Ø8H7 H.M. reamer, z=5 Material: Steel 8 H 7
  70. 70. 70by Endika Gandarias FIXED CYCLES OR CANNED CYCLES Pecking / Drilling / Tapping / Reaming EXERCISE 16 Tool: Ø12mm H.M. spot drill, z=2 Ø5mm H.S.S. drill, z=2 M-6x1 H.M. tap Material: Aluminium
  71. 71. 71by Endika Gandarias FIXED CYCLES OR CANNED CYCLES Pecking / Drilling / Tapping / Reaming EXERCISE 17 Tool: Ø16mm H.S.S. spot drill, z=2 Ø5mm H.S.S. drill, z=2 M-6x1 H.M. tap Material: Steel
  72. 72. 72 EXERCISES EXERCISES by Endika Gandarias
  73. 73. 73by Endika Gandarias EXERCISES Face milling / Profile milling EXERCISE 18 Material: Steel
  74. 74. 74by Endika Gandarias EXERCISES Face milling / Profile milling EXERCISE 19 Material: Aluminium
  75. 75. 75 EXERCISES by Endika Gandarias Face milling / Grooving / Pecking / Drilling / Tapping / Reaming EXERCISE 20 Material: Aluminium
  76. 76. 76 FAGOR SIMULATOR FAGOR SIMULATOR by Endika Gandarias
  77. 77. 77 FAGOR SIMULATOR by Endika Gandarias CNC FAGOR 8060/65 SIMULATOR www.fagorautomation.com/download/ CHANGE LANGUAGE: https://www.youtube.com/watch?v=rFTlmvQJdk8 VIDEO VIDEOVIDEO
  78. 78. 78 GLOSSARY GLOSSARY by Endika Gandarias
  79. 79. 79 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Accuracy Exactitud Zehaztasun Adaptative control Control adaptativo Kontrol moldagarri Blade Hélice Helize Burr Rebaba Bizar Cam Leva Espeka Carousel Carrusel Karrusel Chamfer Chaflán Alaka Clamp Brida Brida Climb cutting Corte en concordancia Konkordantzia ebaketa Clockwise Sentido horario Erlojuaren norantza Closed loop Lazo cerrado Lotura itxia Conventional cutting Corte en contraposición Kontraposizio ebaketa Coolant Regfrigerante Hozkarri Counterclockwise Sentido anti-horario Erlojuaren aurkako norantza Dead band Banda muerta Tarte hila Deep hole drilling Taladrado profundo Zulaketa sakona Downtime Tiempo de inactividad Aktibitate gabeko denbora Drill Broca Barauts Drilling Taladrado Zulaketa Driving system Sistema de regulación Erregulazio sistema Dwell time Tiempo de espera Itxaron denbora Edge finder Centrador Zentratzaile EDM Electroerosión Elektrohigadura Encoder Encoder Encoder End mill Fresa plana Fresa planua Engraving Grabado Grabaketa Face milling Planeado Planeaketa Feed Avance por minuto Aitzinamendua minutuko
  80. 80. 80 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Finishing Acabado Akabera Fixed canned cycle Ciclo fijo Ziklo fijoa Glass scale Regla óptica Erregela optiko Grinding Rectificado Artezketa Grooving Ranurado Artekaketa Homing Búsqueda de cero máquina Zero makina bilatzea HSS Acero rápido Altzairu laster Investment Inversión Inbertsio Left-hand tool Herramienta a izquierdas Ezkerretarako erraminta Load Cargar Kargatu Loop Lazo Lotura Machine zero Cero máquina Zero makina bilatzea Machining centre Centro de mecanizado Mekanizatu zentru Modal Modal Modal Noise Ruido Zarata Offset Corrector Zuzentzaile Offset table Tabla de correctores Taula zuzentzaile Open loop Lazo abierto Lotura irekia Part zero Cero pieza Zero pieza Peck Picada Ziztada Pecking Punteado Punteaketa Pin Pasador Ziri Pocket Cajera Kajera Power failure Fallo de alimentación eléctrica Elikadura elektriko gabezia Profiling Perfilado / Contorneado Perfilaketa / Kontorneaketa Punched tape Tarjeta perforada Tarjeta perforatu Rapid traverse Recorrido rápido Ibilbide azkar Reamer Escariador Otxabu
  81. 81. 81 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Reaming Escariado Otxabuketa Reference system Sistema de referencias Erreferentzi sistema Referencing block Bloque de referencia Erreferentzi bloke Repeatability Repetibilidad Errepikagarritasun Rigth-hand tool Herramienta a derechas Eskuinetarako erraminta Roughing Desbaste Arbastaketa Round corner Arista matada Ertz hila Setter gauge Calibre de alturas Altuera kalibratzailea Set-up Puesta a punto Prestaketa Skip Salto Jauzi Slot Ranura Arteka Speed Velocidad de giro Biraketa abiadura Spot drill Broca de puntear Punteatzaile Square corner Arista viva Ertz bizia Stationary chuck Parte no movil Atal ez higikor Stylus Estilete Estilete Tap Macho de roscar Hariztatze ardatz Tapping Roscado (con macho de roscar) Hariztaketa (hariztatze ardatzarekin) Target position Posición objetivo Jomuga posizio Thermal growth Alargamiento térmico Luzapen termikoa Threading Roscado Hariztaketa Tip Punta Punta Tool magazine Cambiador de herramienta Erraminta aldatzaile Tool presetting machine Máquina de pre-reglaje Doikuntza makina Touch probe Palpador Haztagailu Track Pista Pista Trueness Veracidad Egiatasun Unnoticeable Imperceptible Hauteman ezin
  82. 82. 82 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Vise Mordaza Baraila Wear Desgaste Higadura Withdrawal planes Planos de salida Irteera planu Workholding Sistema de amarre de pieza Pieza lotze sistema
  • abdcareemmohd

    May. 31, 2021
  • VishalNaik39

    Feb. 4, 2021
  • NicolsNerikDiazSalin

    Nov. 8, 2020
  • AnishrajaAyyathurai

    Oct. 18, 2020
  • imansaifudin

    Dec. 9, 2019
  • HASSANALDARSI

    Nov. 14, 2019
  • BenjaminSldner

    Nov. 30, 2017
  • tharindu1995

    Mar. 8, 2017
  • mohamedsgomaa88

    Feb. 10, 2017

CNC Milling manual for beginners. Hasi berrien CNC bidezko fresaketa eskuliburua. Manual de fresado CNC para recien iniciados.

Vistos

Vistos totais

2.761

No Slideshare

0

De incorporações

0

Número de incorporações

2

Ações

Baixados

367

Compartilhados

0

Comentários

0

Curtir

9

×